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An IEEE 802.11p Empirical Performance Model for Cooperative Systems
Applications

Sébastien Demmel, Grégoire Larue, Dominique Gruyer and Andry Rakotonirainy

Abstract— IEEE 802.11p is the new standard for Inter-
Vehicular Communications (IVC) using the 5.9 GHz frequency
band, as part of the DSRC framework; it will enable applica-
tions based on Cooperative Systems. Simulation is widely used
to estimate or verify the potential benefits of such cooperative
applications, notably in terms of safety for the drivers. We
have developed a performance model for 802.11p that can be
used by simulations of cooperative applications (e.g. collision
avoidance) without requiring intricate models of the whole
IVC stack. Instead, it provide a a straightforward yet realistic
modelisation of IVC performance. Our model uses data from
extensive field trials to infer the correlation between speed,
distance and performance metrics such as maximum range,
latency and frame loss. Then, we improve this model to limit
the number of profiles that have to be generated when there
are more than a few couples of emitter-receptor in a given
location. Our model generates realistic performance for rural or
suburban environments among small groups of IVC-equipped
vehicles and road side units.

I. INTRODUCTION

Cooperative applications based on the usage of Inter-
Vehicular Communications (IVC) are a very popular research
topic, with many potential benefits to be found in safety,
entertainment and comfort [1], [2], [3]. In order to evaluate
these potential benefits, the main avenue of research has
been simulation, with for example studies looking at the
effectiveness of Emergency Electronic Brake Light (EEBL)
[4], [5], Cooperative Collision Warning (CCW) [6], or vari-
able speed limits [7]. Several factors are required in those
simulations in order to accurately reproduce the performance
of future applications, including but not limited to realistic
environment and kinematic models, plausible driver beha-
viour simulations, and accurate IVC performance models. In
this paper, we shall focus on that latter item.

In advanced higher-level simulations, the intricate simulation
of the whole IVC network performance, including the various
layers of the OSI model, is possible. Software such as the
NS-x family or OMNeT++ can be used to simulated IVC
networks, with a complex topology; using such an approach
allows studying the dissemination of information in vehicular
network to a large scale. At the lowest level, those software
use physical propagation models that are used to infer the
performance of connection between vehicles and roadside
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units. However, there are few physical models based on
empirical data. We have previously shown that the theoretical
and actual performance of IEEE 802.11p are likely to diverge
considerably [8]. In order to account for those variations,
especially to verify they do no hinder the expected benefits
of cooperative applications, models constructed from empir-
ical data are necessary. Recent developments have shown
interesting approaches for NS-2/3, such as using a Two-Ray
Interference model for line-of-sight (LoS) conditions [9], or
improving non-LoS conditions [10], [11]. As we mentioned
earlier, these models focus on simulating the received power
given a certain distance; performance indicators such as
delivery ratio or range can be computed from those lower
level simulations. However, our experimental data suggest
that these models are not capable of representing all the per-
formance variations that we measured on the road. Another
issue is that one needs to link the network simulator with
the application simulator, which can prove to be a time-
consuming task. Such framework already exist for traffic
simulation, such as the VEINS software suite1, but not for
detailed microscopic simulations. In most cases, a simple yet
realistic model of IVC performance would provide satisfying
performance.

Our goal is to develop a model to simulate performance
indicators (frame loss, latency) based on empirical data and
that can be implemented directly inside the software used
to simulate cooperative applications (in our case, the SiVIC-
RTMaps framework [12], [13]). Such a model would bridge a
gap between physical layer and network models by providing
a focus on some simple, yet central, performance indicators
for IEEE 802.11p in small-to-medium-sized networks where
no routing (or complex topology) is required; it is entirely
focused on delivering realistic performance indicators to
upper-layer cooperative applications simulations.

The remainder of this paper is organised as follows: Section
II presents the construction of our model, starting with a
short summary of our experimental results (II-A), then details
the frame loss model (II-B), the latency model (II-C), and
limitations (II-D). Section III then outlines improvements
that are made on the model based on further data collection.
Eventually, we offer conclusions and perspective on future
works in Section IV.

1veins.car2x.org



II. A PERFORMANCE-ORIENTED IEEE 802.11P
MODEL

A. Summary of experimental results

In order to develop an empirical performance model of IEEE
802.11p, we required a large amount of data collected with
IVC real devices on the road, or at least in an environment
that is a relatively close approximation of the road. The
chosen test location was the test tracks of Satory (near
Versailles, France), that can stand in for a suburban or rural
environment. The experimental setup, scenarios, and detailed
results can be found in [8], [14]. For the remainder of
this section, we will give a brief overview of our previous
findings.

The data collection was shaped toward three metrics: the
maximum range, frame loss and latency. Range and frame
loss are related, since the maximum range is equal to the
point where frame loss remains at 100% for good (a brief
interruption of signal with a frame loss of 100% does not
mean that we have reached the maximum range yet).

Given our setting, the maximum range measured was 1,397
metres, in line with the standard. However, we found that
the maximum range was strongly correlated to the relative
speed between the emitter and receptor, and shrunk consid-
erably while the speed increased. At 30 km/h the average
maximum range is about 900 metres, while at 130 km/h the
average maximum range has decreased to 350 metres. Initial
measurements suggested an important difference arising from
the direction of driving: the maximum range would shift
by hundreds of metres depending whether the vehicle was
driving away or toward the RSU. However, further invest-
igations shown that this effect was merely resulting from
the combination of antennas’ inhomogeneities and some
amplificatory effect by the vehicle’s body shape (for more
details, see [8], section IV-A). When properly controlled for
those latter effects, there was no significant difference due
to the direction of movement.

Frame loss measurements showed a consistent behaviour: the
frame loss would remain low for a large part of the range be-
fore rising relatively sharply over the last 200 to 300 metres.
It was found to sometimes fluctuate in a seemingly random
fashion. We noted a consistent peak around 120 metres
from the emitter, which can be explained by two-ray ground
reflection interferences related to the setup’s geometry [15],
[16], especially the antenna’s height above ground. In other
locations factors in the environment compounded to focus
the emitter’s signal and decreasing frame loss where it was
otherwise high or previously increasing.

Measurements in a clean network situation (i.e. just the 2
vehicular IVC devices together) showed that the latency did
not depend on range and relative speed, remaining under 5
milliseconds in 99.47% of cases for a BSM-like message.
In more crowded network conditions, with up to 6 IVC
devices competing for the medium, we found that the average

latency did not vary much but there was an increased spread,
with larger latency becoming more common because of
the competition between the IVC devices. This result was
expected, and we quantified the average latencies and their
spread (through the standard deviation) for different frame
sizes, from 84 bytes to 1 kilobytes.

B. Frame loss model

After having analysed the experimental data, as summarised
above, we are now looking into creating a model that studies
the correlation between speed, distance and performance for
the frame loss metric. Section II-C will show that there is
no need for this approach when considering latency.

The frame loss model is based on the concept of profiles.
A profile represents a single uninterrupted, temporally con-
sistent connection between two IVC devices and is used to
determine the frame loss probability at any given distance, as
long as they are within range of each other. Any given profile
will be different from the others, but when averaging them
all we can reproduce the averaged results of the experimental
measurements; this means that individual profiles might
introduce some “novelty” in terms of performance compared
to the measurements, but they will always tend toward
those latter. Some profiles will closely match individual
measurements laps. Each individual profile represents a set
of specific conditions that could be found on the road; for
example, a profile can represent realistically the conditions
on a sunny or on a rainy day.

1) Profiles: Let us have τ a frame loss profile (see Fig. 1)
defined by Eq. (1) where d is the distance between the emitter
and receptor and A,B, . . . F are parameters estimated from
empirical data.

τ = max
[
A. expB.(d−C)2 ; min (max [D.d+ E;F ] ; 1)

]
(1)

τ can be decomposed into two terms. The first term
A. expB.(d−C)2 represents the frame loss area corresponding
to the strongest ground reflection interferences, centred at
distance C. At this point the ground-reflected signal is strong
enough to cancel out a large proportion of the incoming dir-
ect signal’s energy, pushing a proportion of frames under the
chipset reception’s threshold; the frame loss corresponding to
this proportion is represented by A. The bell curve’s width
is proportional to B; note that B is always negative. The
model assumes that no counter-measure is applied to reduce
the frame loss induced by interferences at C; it also assumes
the vehicles’ environement has the appropriate geometry.
Overall, our model will over-estimate the error due to ground
reflection, rather than under-estimate it.

The second term D.d + E is a linear regression where
τ is modelled linearly as a function of distance d and
parameters D and E. This term represents the progressive
increase of frame loss as received signal strength decrease.



The increase starts from a non-zero frame loss ratio value
given by parameter F , which represent the average of small
perturbations measured within range. Typically, F will be
low (less than 5%). D and E by themselves have no direct
physical meaning; however, there are two meaningful ratios:
ratio F−E

D gives the distance at which frame loss starts to
increase from the plateau at F ; ratio 1−E

D expresses the
distance at which frame loss reaches 100% (or in other words
where τ = 1), hence the maximum range.

2) Classes & parameters estimation: Based on experimental
data, we created four classes which are classified according
to the relative speed between the emitter and receptor. Each
class has its own set of parameters values. The classes are
[0;40], [40;60] [60;100], and [100;160] km/h (based on the
speeds found on different types of road: urban, main road,
etc.).

Parameters A,B, . . . F excluding E are estimated on the
experimental data using the Levenberg-Marquardt algorithm
for non-linear least squares [17]. Experimental data show
that D and E are linearly correlated through the Generalised
Linear Model regression shown in Eq. (2). Indeed, the
distance required to increase from τ = 0% to τ = 100% (i.e.
the profile’s slope) is relatively consistent over the dataset so
as a result only D needs to be estimated to obtain both D
and E, with E = f (D) according to Eq. (2). The linear
regression coefficients {α, β} are themselves estimated from
experimental data and can be further divided into sub-classes
for an improved fidelity to experimental data, if required. No
statistically significant correlation was found for any other
parameters.

E = αD + β + e e N (0, σ) (2)

Then, a non-parametric probability density estimate is com-
puted to extract the continuous distribution A,B, . . .F for
each parameter; this is achieved with a Gaussian kernel
smoothing method. Changing the parameters of the Gaussian
kernel smoothing allows generating distributions for the
model’s parameters that either closely reproduce experi-
mental data or, on the other hand, that allow non-measured
but plausible profiles.

The last step consists in transforming A,B, . . .F to cumu-
lative distribution functions Gx where x ∈ {A,B, . . .F},
excluding E. These cumulative distributions can then be
used to generate the parameters’ values with an inverse
transform sampling method when generating a profile (see
next subsection).

3) Generating the profiles: When generating any new τ , the
parameters’ distributions (specifically cumulative distribution
GA, GB, . . . , GF) are used to generate realistic random
values for A,B, . . . F , using the following pseudo-algorithm:

1) For each x ∈ {A,B, . . . F} excluding E // x is a parameter and x
its distribution

a) u ← U(0, 1) // a random number u is generated from the
uniform distribution U(0, 1)
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Fig. 1: Decomposition of a frame loss profile τ , with its
parameters
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Fig. 2: Generation of frame loss profiles for the [60;100]
km/h class with 100 drawings of u
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Fig. 3: Averages of 1,000 profiles for each of the four classes,
compared to the measured averages (in black)



b) x ← G−1
x (u) // a parameter receives the value from its

inverse cumulative distribution
2) End For
3) E ← αD+ β+ e // E is obtained from the linear relationship that

links it to D, where α and β are the regression coefficients based
on experimental data, and e is a Gaussian noise centred at 0 and
with standard deviation extracted from experimental data

4) τ = max
[
A. expB.(d−C)2 ;min (max [D.d+ E;F ] ; 1)

]
//

Once each parameter has been assigned a value, τ can be processed
from the values with Eq. (1)

In Fig. 2 we show the results of the generation of a hundred
profile for the [60; 100] class (“intermediate speeds”), that is
100 drawings of u in total; it illustrate the large variability
that our model can represent while still remaining plausible
and representative to the experimental data on average.
Ground-reflection interferences remain concentrated around
the 120 metres mark, and the final total range varies from 900
metres at best, to 250 metres at worst. Note the consistency
of the rising part’s slope, which reproduce well the behaviour
found with experimental data, even considering the large
variability of F−E

D i.e. the point where the slope starts.

If we average all those profiles, the result will closely match
the average frame loss measured on the tracks. This is
illustrated in Fig. 3 for all the classes, considering 1,000
profiles for each, with distributions that are set to the
maximum fidelity to experimental data. Note that for the
two lower speed classes ([0;40], [40;60] km/h), the peak
associated with the ground reflection interferences is not
visible on average; many individual profiles will still display
some degree of interference, but they are dwarfed by a much
larger set of profiles where interference is minimal. A similar
phenomenon can be seen in Fig. 2, where the highest peaks
reach 50% of loss, whereas the average is only 10% as per
Fig. 3.

In a simulated environment, a profile can be generated each
time a connection is established between 2 nodes (typically
when they enter within a static maximum range threshold);
one emitter can have several profiles active at the same time
if it is connected with more than one receptor.

C. Latency model

The latency model is simpler than the frame loss model;
indeed, experimental data show that the latency does not
depend on the relative speed or distance, when considering
small packets which are similar to BSM. Experimental data
have further shown that when the activity on the wireless net-
work increases, the average latency is constant (the geometric
average remains the same, the arithmetic average increases)
but there is an increased spread of recorded latencies, i.e.
larger latencies are becoming more common (in the case of
BSM sent at 40 Hz, the average latency was 5 milliseconds;
the measured standard deviation was multiplied by 5, from
5.6 to 27.1 milliseconds, when comparing clean and noisy
network conditions) We created our latency model to account
for this effect as well as the message’s size, which obviously
increases the time necessary to transmit it.
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Fig. 4: Distribution of 1000 drawings of v for each of the
three latency distributions

A simple algorithm is used to generate a latency di for each
individual message i ∈ {1, . . . n}, assuming there are n mes-
sages waiting to be exchanged at the present simulation time
step. From the experimental data we obtained the cumulative
distribution functions Gy where y ∈ {LS,LM,LL}, with
LS,LM,LL continuous distributions built for three size of
messages, respectively “small” i.e. <400 bytes, “medium” i.e.
400 to 800 bytes, and “large” i.e. >800 bytes. In effect, we
have three classes of latency that depend on the size of the
message. The BSM-like messages used for most of the data
collection were 84 bytes, so it would fall in the “small” class,
where the average measured latency was 1.5 milliseconds.

In order to simplify the model’s implementation into a
numerical simulation environment, the Gy distributions can
be re-sampled to integer values of the simulation’s timestep;
for example, the simulation framework based on SiVIC
that we used in previous research [18] has a timestep of
5 milliseconds. Given this latter information, the pseudo-
algorithm used is the following:

1) For each messages i being sent at the present time step
a) y ← f (size [i]) // the latency class is chosen among
{LS,LM,LL} through a function depending on the size of
i

b) v ← U(0, 1) // a random number v is generated from the
uniform distribution U(0, 1)

c) mi ← G−1
y (v) // a multiplier mi receives the value from

the (re-sampled) inverse cumulative distribution
d) di = mi × 5ms // the delay di is computed

2) End For

Fig. 4 shows a sample distribution of delays generated for
1000 messages in each of the three classes.

D. Limitations

Our 802.11p performance model has a number of limitations.
Those limitations arise both from the experimental condi-
tions, that limits the amount of available data, and from the
model’s structure itself.



The model’s main limitation is that it is representative of
only a given set of environmental conditions and parameters,
chiefly the location within which the data were collected.
The Satory tracks are a good stand-in for rural or low-
density suburban environments, either for a main road or
a freeway, so the model will perform the most realistically
within such environments. However, it cannot be used for
an urban simulation, as it does not account for the effects
of urban canyons such as increased multi-path, scattering,
line of sight disruptions or possible focusing, as well as the
presence of many vehicles.

Because the meteorological conditions were not precisely
recorded during data collection, the impact of weather on
performance could not be assessed. As a result, if we con-
sider two vehicles that need a connection to a same roadside
unit, the first generated profile might represent conditions
measured during a dry and sunny day whereas the second
profile could represent those of a humid overcast day. While
we have been able to reconstruct the overall meteorological
conditions during each day of the data collection, they were
not varied enough to create a full spectrum of weather-based
sub-classes for the parameters.

A further limitation is with the latency model, which is fairly
simple. It does not take into account non-direct routing and
considers only frames up to 1 kB (that can typically be trans-
mitted as a single packet without fragmentation). Similarly
with other performance indicator, this latency model would
not be applicable to a situation with many IVC-equipped
vehicles and/or complex network usage.

III. IMPROVEMENTS

A. Goal

Further than the aforementioned issue of meteorological
conditions, the present model allows for two neighbouring
nodes to have vastly diverging performance when connecting
to a third same node, even if their profiles are generated
from the same speed class. This can be illustrated with
Fig. 2. Even though the average maximum range in the
[60;100] km/h class is about 600 metres, we can see that for
those 100 drawings of u, the maximum range actually varied
from 265 to 873 metres. Even it not particularly likely, it is
possible that those two bounds are picked up when creating
the profile for two neighbouring nodes. Even within those
extreme bounds, two neighbouring nodes could still have
variations of maximum range of hundreds of metres. This
might lead to one node being able to connect to the third
one, while the other cannot.

A priori, this behaviour is very unrealistic. Indeed, although
performance can vary quickly due to subtle environmental
influences (a typical example is two-ray ground interference),
we expect that two close IVC devices using similar hardware
should have similar performance. For example, two vehicles
following each other on a freeway would be able to connect

with similar efficiency (or lack thereof) to a RSU that
broadcasts speed limit and traffic information.

As such, our goal is to experimentally verify whether this
is the case and to adapt the model. If we can verify that
a group of vehicles that connect to a RSU will exhibit
similar performance, we can then generate a single profile
for this group, instead of one profile for each vehicle. By
doing so, we can reduce our model computational load, but
more importantly make it far more realistic. Additional data
collection will also help determining an adequate threshold
for a profile’s validity duration. Indeed, given a static geo-
metry, a RSU that connects to passing vehicles might not
need to generate new profiles each time a new vehicles enter
its range every few minutes. Assuming similar hardware
and vehicles, the environmental conditions might not change
quickly enough for two profiles 5 minutes apart to be
different, allowing re-using one profile more than once.

B. Experimental setup

For this test, we use a mobile emitter and two static re-
ceptors located 25 metres apart; we were forced to use this
“reversed” configuration for logistical reasons. The distance
between the two static receptors, 25 metres, is chosen for
two reasons. Firstly, they are not too close; one would expect
that there would not be much difference if the receptors are
located one metre apart (this would be more relevant to a
single vehicle with multiple antennas). Secondly, they are not
too far apart either. Larger distance, over 50 metres, would
defeat the purpose of studying the correlation introduced by
close proximity. 25 metres is a good compromise considering
the changes in relative distance that two vehicles can exhibit
when driving together.

The mobile emitter is the Clio 3, and the static receptors
are two RSU built from the same hardware used in previous
tests [8], [14]. The effect of hardware, especially antennas,
inhomogeneities is minimised by careful placement: the
maximum gain regions of each antenna are placed so that
they will face each other when the vehicle is driving toward
the two receptors. As such, we expect that the range will
be higher when moving toward the RSUs than when driving
away.

This time, the measurements are performed on Satory’s road
track “la routière”, with the RSUs placed near the centre
of the 1.1-kilometres-long straight southern section of the
track. The track’s surroundings are similar to those of the
speed track used in earlier experiments. The data collection
was done during a single day in December 2012, with cold
and overcast weather conditions.

C. Results & modelisation

In order to study the performance of nearby IVC devices,
we consider the following indicators:

1) the distance at which frame loss starts to increase (the point
described by F−E

D
in the model)



2) the distance required to reach 100% frame loss from the
previous point (i.e. 1−E

D
)

We created Generalised Linear Models (GLM) for those
indicators, using the experimental data. For both of these
indicators, we will be looking at three possible effects that
could influence them:

1) the receiving IVC device; hardware inhomogeneities might
affect the performance as in our previous data collection.

2) the direction of travel.
3) the timing; timing is expressed in terms of “lap” around

the track, and considered a factor in the GLM rather than
a time value per se, this is done because we have no a priori
assumption on the relationship between the conditions that
existed in each consecutive lap.

Let us have the two RSUs be named A and B, and “clos-
ing”referring to parts of the laps when the vehicle is driving
toward the RSUs, and “away” referring to the parts of the
laps when the vehicle is driving away from the RSUs.

At first, we analysis the distance at which frame loss starts
to increase from its plateau at low values; see Table Ia. Note
that during a closing part, this distance corresponds to the
point when the frame loss stops decreasing and reach its
stable low-plateau value; as shown from our previous data,
the driving direction’s behaviour are symmetrical.

We consider the first lap and receiver A as references; data
shows that lap #2, #4 and #7 (on a total of 9 here) are similar
to the first one, yielding an average point F−E

D at 304 metres
for the away direction. When inverting the driving direction,
the closing point F−E

D was located 133 metres further for
A, and 112 metres further for B. This confirms our previous
expectations based on the antennas’ relative orientations, as
mentioned in III-B.

In the closing direction, A sees its frame loss increase 47
metre before B, whereas B sees its frame loss increase 62
metres before A in the away direction. 25 metres are easily
explained by the distance between A and B , while the
remaining difference probably arise from a combination of
antenna effects, vehicle’s body shape and slight geometrical
effects.

While differences were observed between receivers, the
overall frame loss trend for both receivers are similar for each
lap. Half of the observed difference can be explained by the
25 meters separation between the receivers. The remaining
difference (37 m) represents approximately a 10% difference
(relative to the intercept) between the two receivers, and
therefore the same profile can be used for two receptors
located within a short distance, during the same lap.

Then, we use the second indicator (the distance to reach
maximum range τ = 1 from point 1−E

D ) to verify whether a
same profile can be used over a longer period of time; in our
setting, over several consecutive laps. Further confirmation
that a same profile can be used for nearby receptors should
also be obtained from this indicator. Data are shown in Table
Ib.

TABLE I: Factors analysis

Factors Estimate Std. error t value P (> |t|) signif.

Intercept 303.5 9.81 30.936 < 2E− 16 ***
direction: closing +133.5 13.88 9.619 2.44E− 09 ***

lap: #3 +56.3 18.26 3.083 0.00544 **
lap: #5 +49.3 18.26 2.703 0.01299 *
lap: #6 +65.9 18.26 3.613 0.00154 **
lap: #8 +43.5 18.26 2.385 0.02612 *
lap: #9 +65.9 18.26 3.610 0.00155 **

receiver: B -62.5 10.89 -5.738 9.02E− 06 ***
closing & #3 -68.9 25.81 -2.669 0.01403 *
closing & #5 -49.9 25.81 -1.936 0.0658 .
closing & #6 -63.2 25.81 -2.448 0.02281 *
closing & #8 -44.9 25.81 -1.741 0.09561 .
closing & #9 -67.7 25.81 -2.621 0.01559 *
closing & B +112.1 15.4 7.282 2.71E− 07 ***

(a) Point F−E
D

location and influencing factors

Factors Estimate Std. error t value P (> |t|) signif.

Intercept 29.78 7.81 3.806 0.000706 ***
lap: #1 +335.86 14.62 22.968 < 2E− 16 ***
lap: #4 +52.89 19.15 2.762 0.01002 *
lap: #7 +106.02 19.15 5.537 6.4E− 06 ***

away & #1 -327.32 17.48 -18.728 < 2E− 16 ***
away & #7 -99.63 24.72 -4.031 0.000387 ***

(b) Distance to reach τ = 1 and influencing factors

In most cases (only 3 laps are significantly different from
the reference), it took only 30 metres for the frame loss
to rise to 100%, for both A and B. However, data show
large variations between some consecutive laps, up to several
hundred metres from the average, as shown for example in
Table Ib for laps 1, 4 and 7. Each lap follows the previous
one by only a few minutes, so those results suggest it is not
possible to re-use the same profile for a similar location at
two consecutive timestamps. Note that while the performance
can change dramatically, weather conditions did not appear
to change much over the same time frame.

On the other hand, we note that the variations that are
measured are always found to affect both RSUs in similar
proportion. This provides further support to the use of a
single profile when considering nearby vehicles connected
to the same IVC device.

Taking the example of an RSU located by the side of a
freeway and connecting to a continuous flow of incoming
vehicles, our model would allow to generate a new profile for
small groups of vehicles that enter the RSU range together.
However, it would not allow to use a single profile for
the whole simulation, i.e. all vehicles. Indeed, the time
elapsed between two given groups of vehicles will, after
some duration threshold, be too important for conditions to
remain similar and justify keeping a single profile according
to the previous analysis. Unfortunately, the present work does
not allow setting any realistic value for said threshold.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we presented a performance model for IEEE
802.11p-based IVC aimed at higher-level simulations of Co-



operative Systems applications such as Electronic Emergency
Brake Light, Cooperative Collision Warning or Cooperative
Autonomous Cruise Control. In such simulation, the intricate
simulation of the IVC network performance is not necessary
and might prove to use resources for little gains, thus a
simple yet realistic model of IVC performance should be
deployed instead.

Our model is based on the data collected during extensive
field trials conducted over the Satory’s test tracks (presented
in a previous paper [8]), and focuses on three fundamental
metrics: range, frame loss, and latency, using only the relative
speed and distance as inputs. We use the frame loss profile
concept: one profile provides a continuous frame loss prob-
ability over the whole range, for each connection established
between two IVC devices, on-board or on the roadside.
Each profile includes a loss peak representing Two-Ray
ground interference, arising from the vehicle-RSU geometry,
followed by a linear increase of loss over a given distance,
until maximum range is reached. The profile’s parameters
are estimated from collected data to generate profiles that
reproduces those data while still allowing enough variability
for the generation of new plausible data. A simple latency
model is proposed, accounting for the effects of increased
network activity and size of the frame transmitted; this model
also uses empirical data.

Then, we explore possible improvements in terms of com-
puting performance, by looking into limiting the number
of profiles that need to be generated inside a simulated
environment. Using additional experimental data, we found
that two nearby IVC devices (located within 25-30 metres-
radius circle) can use the same profile to connect to a
single other device. This would potentially allow to limit
the number of connection that have to be simulated in a
crowded road environment; indeed, otherwise if there are
n active devices in the simulation, the maximum number
of active connections would be n(n−1)

2 . However, our data
does not allow for the same profile to be re-used when con-
sidering a same IVC device pair but taken at two consecutive
timestamps separated by a few minutes; our data suggest that
variations in the communications’ performance can be very
large within only a few minutes, even though the weather
remains similar.

Future work should concern the collection of more data
covering a wider range of weather conditions, especially
humidity. The data collection is planned to take place in
Australia (in south-eastern Queensland) over the course of
2013, in order to maximise the chance of obtaining diverse
conditions ranging from dry sunny days to wet colder ones,
and all combinations in-between. We will also look into
quantifying the performance difference that may arise from
hardware inhomogeneities. This should allow a more realistic
simulation of larger groups of IVC-equipped vehicles whose
hardware’s quality might vary depending on the vehicle’s age
and maintenance.
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