
Anytime Lane-Level Intersection Estimation Based on
Trajectories of Other Traffic Participants

Annika Meyer1, Jonas Walter1, Martin Lauer2 and Christoph Stiller2

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Estimating and understanding the current scene
is an inevitable capability of automated vehicles. Usually, maps
are used as prior for interpreting sensor measurements in order
to drive safely and comfortably. Only few approaches take
into account that maps might be outdated and lead to wrong
assumptions on the environment. This work estimates a lane-
level intersection topology without any map prior by observing
the trajectories of other traffic participants.

We are able to deliver both a coarse lane-level topology as
well as the lane course inside and outside of the intersection
using Markov chain Monte Carlo sampling. The model is
neither limited to a number of lanes or arms nor to the topology
of the intersection.

We present our results on an evaluation set of 1000 simulated
intersections and achieve 99.9% accuracy on the topology
estimation that takes only 36ms, when utilizing tracked object
detections. The precise lane course on these intersections is
estimated with an error of 15cm on average after 140ms.
Our approach shows a similar level of precision on 14 real-
world intersections with 18cm average deviation on simple
intersections and 27cm for more complex scenarios. Here the
estimation takes only 113ms in total.

I. INTRODUCTION

In recent autonomous driving systems, highly precise maps
have been seen as a inevitable base for not only routing, but
also for environment perception [1][2].

Accurate maps allow to replace difficult perception tasks,
e.g. recognizing the road boundary, by simple and efficient
map lookups. However, due to construction sites or traffic
accidents, the road layout or at least the routing is prone
to changes, which leads to outdated maps and a huge effort
in updating those maps for ensuring safe and comfortable
autonomous driving. In addition, maps rely on a similarly
precise localization, which is still an active topic of research.
Recent system architectures therefore did not only rely on
map data, but also added a perception system that is able to
estimate further cues on the current road layout [3]–[9]. The
majority of these systems focused on lane detection either
on simpler (e.g. almost straight) roads or highways [6][7][9].
They leveraged probabilistic approaches for reasoning over
different straight or curved lane hypotheses and relied mainly
on visual cues like markings and curb detections as borders.
Similarly, in our previous work we applied a deep learning
approach to the problem of lane detection in images [8].

1Annika Meyer and Jonas Walter are with FZI Research Center for
Information Technology, Karlsruhe, Germany, ameyer@fzi.de

2Annika Meyer, Martin Lauer and Christoph Stiller are with the Institute
of Measurement and Control Systems, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany

Fig. 1: Intersection in Karlsruhe as an example of urban
intersections with our estimation. Aerial image source: City
of Karlsruhe, www.karlsruhe.de, dl-de/by-2-0

For estimating intersections, curbs and markings are not
sufficient because the latter usually intersect with each other,
leading to highly ambiguous hypotheses. Moreover, both
features might be occluded in heavy traffic and approaches
that utilize the image coordinate system are often imprecise
for distant areas due to perspective distortion. This makes
it especially hard to detect road areas in huge intersections
solely based on camera information, e.g. if a lane is repre-
sented by just a single pixels.

Hence, the task of estimating intersections has only been
researched in a coarse fashion. Currently, autonomous driv-
ing systems would fall back to driving with maps assuming
their correctness. Previous approaches dealing with the esti-
mation of intersections are presented in the following.

Beck [5] presented an approach that aims at ego lane
estimation, but could be extended to intersection estimation.
They applied a graph-based shortest path algorithm to find
the ego lane in an intersection, that could be applied to
all entries of the intersection in order to estimate the lane
courses at large. However, they calculated the costs based
on marking detections in the image and a coarse semantic
labeling, which limits the approach to the image domain and
its viewing angle.

Other approaches [10][11] determined, which incoming
and outgoing lanes are connected without any further as-
sumption on the geometry of the connection. Joshi and James
[10] based this kind of estimation on trajectories from other
vehicles detected with an onboard Lidar system. Likewise,

ar
X

iv
:1

90
6.

02
49

5v
2

 [
cs

.C
V

]
 7

 A
ug

 2
01

9

other approaches [11]–[13] used those trajectories for es-
timating intersections in offline scenarios. However, those
approaches used fleet data and assumed a huge number of
trajectory detections per lane. Ruhhammer et al. [11] applied
clustering algorithms, which themselves require a multitude
of trajectory data, whereas Chen and Krumm [12] calculated
a center line for each lane by fitting Gaussian mixture models
in order to create a map. Roeth et al. [13] also aimed at map
generation, but limited themselves to map graphs instead of
lane-level estimation. Their approach, however, might still be
applicable to online lane-level estimation using an extended
model. They applied a Markov chain Monte Carlo (MCMC)
algorithm, to sample intersection models that are evaluated
against the measurement data.

Similarly, Geiger et al. [4] estimated the intersection
geometry using MCMC. Based on image cues like object
detections and tracks, coarse semantic labels and vanishing
points. They estimated the intersection structure with a short
video sequence approaching the intersection, that took 1 s
for estimation. The approach achieved promising results
although the viewing angle in the dataset was limited to a
single camera and lacked sensors facing to the sides. This
might have beeen sufficient because of the low complexity
of the intersections. They published the intersection ground
truth for 113 video sequences, but the dataset also has the
limitation of a narrow field of view and the lack of lane-level
ground truth for intersections with more than a single lane
per direction.

Furthermore, the intersection model assumes some lim-
itations that are not consistent with the majority of urban
intersections. At first, they limit the approach to 7 topologies
ranging from straight roads to four-armed intersections with
only a single lane per driving direction. Additionally, the
crossing arms are forced to be collinear. Typically, big, urban
real-world intersections rather look like that in Figure 1,
which is an aerial image with our estimation of an intersec-
tion in Karlsruhe. We analyzed urban roads and highways
around Karlsruhe and found that intersections have up to 5
arms and an average of 2.5 arms. Of these, at least 20 %
have more than 3 lanes in total. It should be noted that
two structurally separate lanes are considered as two separate
arms.

Nevertheless, later works used the dataset of Geiger et
al. or their intersection model [14][15], but still could not
overcome the drawbacks, that might not hinder simple in-
tersections from being driven autonomously, but still leave
more complex ones to be a problem.

Similar to some of the previously mentioned work
[3][4][6][11][13], we base our approach on the detection
and the tracking of other vehicles passing the intersection.
Even uncommon intersection structures and spontaneous
deviations due to accidents are represented in the measure-
ments. Additionally, the use of object detections increases
the possible viewing range to more than a hundred meters,
when working with lidar or radar detections [16].

Like others before [4][13][14], we use MCMC because it
is able to work with contradicting hypotheses in a complex

model and can deliver results while approaching an intersec-
tion. Using a probabilistic sampling approach like MCMC,
we are able to incorporate measurements from different sen-
sors with different measurement uncertainties. In comparison
to all mentioned previous approaches, this work can be
applied in an incremental fashion, where the estimation is
updated with every measurement and can provide an up-to-
date estimate of the intersection at any time in a world-fixed
coordinate system (like a map). Our model also goes a lot
further compared to earlier approaches by not limiting the
number of arms or lanes and by providing the exact lane
course both within and without the intersection.

In summary, our contributions are the following:
• Estimation of intersection topology, geometry and pre-

cise lane course by observing other traffic participants
• Progressive incorporation of new measurements gener-

ating results at any time
• Use of an unrestricted model in terms of e.g. number

or collinearity of arms

II. PROBABILISTIC GENERATIVE MODELS

For our approach, we rely on the trajectories of other traffic
participants as measurements, to estimate the topology and
lane course. As depicted in Figure 2, we are able to use
measurements that come from either lidar, camera or radar.
For a detailed estimation of the intersection (including the
lane course) a tracking system has to be executed beforehand.

In order to get the best intersection estimation I based on
the detections Z, we need to calculate the posterior proba-
bility P (I|Z). The model for such an intersection becomes
quite complex when regarding each lane and its individual
course across the intersection. Because the posteriors for
those models have no simple analytical solution, we use a
sampling approach for estimating the intersection. MCMC
allows for sampling from such high-dimensional spaces and
is especially useful when there is no analytical solution to
the problem.

In the manner of MCMC we sample intersections, calcu-
late their posterior probability according to the measurements
and decide, whether we would like to retain the solution (or
not). During the process we apply simulated annealing [17]
in order to converge towards the best intersection model. To
decide, whether we want retain a new solution, we calculate
only the relation between the posterior probabilities of the
two intersections Ia and Ib according to the metropolis
algorithm [18]. By applying Bayes’ rule, we can simplify
our calculations as in (1) by removing the factor P (Z).

P (Ia|Z)

P (Ib|Z)
=
P (Z|Ia) · P (Ia) · P (Z)

P (Z|Ib) · P (Ib) · P (Z)

=
P (Z|Ia) · P (Ia)

P (Z|Ib) · P (Ib)

(1)

Assuming that our measurements zi are independent of
each other, we reformulate (1) for each intersection I as

P (Z|I) · P (I) = P (I) ·
k∏
i=1

P (zi|I). (2)

detections
=	(x,y,vDoppler)

Topology	
Estimation

Lane	Course
Estimation

Radar Lidar Camera

tracked	objects	
=	(x,y,o)

tracked	objects
=	(x,y,id)

Tracking	in	BEV

detection	with
depth	and

driving	direction
=	(x,y,d)

Object	detection

1

2

Fig. 2: Overview of the system. Either radar, lidar or camera
serve as input. For estimating the lane-level topology 1© only
point detections and a coarse driving direction are necessary.
In order to infer the lane course 2©, a tracking system has
to be added.

Thus, for our model, we need to calculate the prior P (I)
and likelihood P (zi|I) for every intersection. When having
a deeper look at the measurements in our approach, it’s
obvious that object detections are in reality not statistically
independent. They might belong to the same object and
detections belonging to the same object follow the same
movements. In order to correctly model the dependency of
detections on the same vehicle, we would need to implement
an extended object tracking algorithm to calculate the prob-
abilities on the association. We therefore decided to analyze
both options:

i) average points of trajectories (= tracked objects), where
the statistical independence can be assumed, and

ii) single object detections without tracking information,
willingly modeling the problem inaccurately.

III. INTERSECTION TOPOLOGY ESTIMATION

The approach is divided into two steps, which makes it
possible to process a broad range of sensor measurements
as depicted in Figure 2. In the first step, we estimate
the lane-level intersection topology. Here, we assume the
outgoing lanes to be straight as initial approximation for fast
convergence. In the second step, this initial result is refined
to the exact course of each lane both inside and outside of the
intersection. For the latter, we need all the input data to be
processed by a tracking system that calculates the temporal
association of the detections.

A. Preprocessing
The first step requires point detections of other traffic

participants (e.g. cars, trucks) that have at least a coarse
information about their driving direction (see Figure 2).

a1 a3

a2

a4

|Lia4 | = 2 |Loa4 | = 1

α34

ga4

w1,1

c

Fig. 3: The model is fixed at a center point and comprised of
a set of arms with assigned lanes. Each lane is assumed to
be straight for simplification and is represented by its angle.

We are able to use radar measurements, when represented
as position p = (x, y) and the Doppler velocity vDoppler
[16], since the Doppler velocity of radars can be transformed
heuristically into the necessary classification of the driving
direction d by

d =

{
vDoppler > 0 leaving
vDoppler ≤ 0 entering.

(3)

This classification assumes, that the perceiving ego vehicle
is driving on a lane of the intersection. For detections behind
the ego vehicle the classification is vice-versa.

Using a camera system we would need to preprocess
the images with an object detection system, that is able to
provide the position of the object in a world-fixed coordinate
system and a classification of the driving direction d as
entering or leaving the intersection (e.g. [19]).

When dealing with lidar detections a tracking system
is necessary in order to provide the driving direction of
the objects (e.g. [20]). Here, we can reduce the input to
detections on the vehicles p = (x, y) and the driving
direction as orientation vector ~o derived from the velocity.
Depending on the data type, a preprocessing for reducing
noise and decreasing the number of detections might be
useful. E.g. for radar measurements, filtering detections by
their compensated Doppler velocity and radar cross-section
is necessary in order to avoid static detections and clutter.

Additionally, a point reduction algorithm like voxeliza-
tion is required, which combines local neighborhoods into
a single detection. Because high resolution radars have a
considerable high number of detections on a single vehicle,
we can reduce computation times.

In case of tracked measurements, we speed up the calcula-
tions by preprocessing the associated detections. Trajectories
passing the intersection are split into two by cutting the
trajectory at the closest point to the center. Additionally, we
reduce each trajectory to its mean point and mean driving
direction, resulting in only one point per trajectory to process.

B. Intersection Model
The object detections Z are point positions p = (x, y) in

a world-fixed coordinate system and their orientation ~o or

classification of the driving direction d.
In our approach, we model the intersection I = (c, A) as

depicted in Figure 3. The model is fixed at a center point c
and comprised of a set of arms a ∈ A with a = (αab, ga, La).
We also model structurally separated lanes, e.g. by a verge or
guard rails, with a gap of width ga between lanes of different
driving directions. The angle αab specifies the angle between
adjacent arms a and b. Each lane l ∈ La can be classified
with d(l) as incoming or leaving lane. Each lane l also has
a fixed width wl assigned.

In our approach, we sample new intersections by modify-
ing a single parameter and evaluating, whether this change
should be accepted as valid sample or not. The detailed
process for generating a new sample is enlisted in Algorithm
1. We randomly decide which parameter of the intersection
is changed using predefined probabilities (sampled by ω).
We either modify the number of arms or lanes, the angle
of an arm, the center position or the medial strip. When we
add an arm, we equally likely add this arm in the largest
gap between two others or split one arm into two. For the
lanes, we add that lane either on the medial strip or at the
border of the arm. The same applies for removing a lane. For
all add / remove steps, the general geometric bounds of the
intersection are regarded (e.g. minimum number of lanes).

C. Probabilistic Evaluation

As described in Section II, each sampled intersection I
is evaluated based on the conditional probability P (I|Z)
given the measurements Z. For each detection zi, we need
to calculate the likelihood P (zi|I) and for each intersection
the prior P (I).

1) Intersection Prior: The prior probability of the inter-
section P (I) is based on the number of lanes and the number
of arms. An invalid setting of the angles between two arms
(e.g. overlapping arms) is already prevented by our sampling
procedure (see Algorithm 1).

For the number of arms and lanes, we learned a distri-
bution. The gap ga, the angle between arms αab and the
center c are modeled with non-informative priors. Thus, the
intersection prior is calculated as

P (I) = P (|A|) · P (|L|) (4)

2) Likelihoods: In order to evaluate whether the mea-
surements can be explained given the intersection model,
we calculate P (zi|I). As discussed in Section III-A, we
have positions of other vehicles p = (x, y). Each position
either has a classification of the moving direction d or an
orientation ~o, which leads to the triplet for each measurement
zi = (x, y, d) or zi = (x, y, ~o).

Independent of measurement type, we determine the clos-
est lane of the current intersection model with the same driv-
ing direction. Using d⊥(zi,Ml), we describe the orthogonal
distance between the point detection zi and the center line
Ml of that lane. Additionally, we take the angular deviation
d^(~oi,Ml) between the center line Ml and the detected
orientation ~oi, in case of tracked detections. We assume the
following distributions

Algorithm 1 Sample new intersections by modifying a single
parameter at a step.
ω ← U [0, 1]
if ω < 0.4 then

rotate a random arm by ∆α← U [−6◦, 6◦]
else if ω < 0.6 then

shift center by {∆c, φ} ← U([0 m, 6 m]× [0, 2π])
else if ω < 0.7 then

change gap by ∆g ← U [−1.8 m, 1.8 m]
else if ω < 0.85 then

θ ← U [0, 1]
if θ < 0.5 then add arm (details see text)
else remove arm a← UD(A)
end if

else
θ ← U [0, 1]
if θ < 0.5 then add lane (details see text)
else remove lane l← UD(L)
end if

end if

d⊥(zi,Ml) ∼ N (0, σ⊥)

d^(~oi,Ml) ∼ N (0, σ^).
(5)

We define an association, using the driving direction of
both the lane d(l) and the detection d(zi), as

1(zi, l) =

{
0 d(zi) = d(l)

1 d(zi) 6= d(l)
(6)

determining whether zi is assigned to lane l. When marginal-
izing over all lanes L in the model, the likelihood P (zi|I)
becomes

P (zi|I) =

L∑
l

1(zi, l) · P⊥(zi|Ml, I) · P^(~oi|Ml, I). (7)

For measurements without an orientation ~oi, we set
P^(~oi|l, I) = 1.

IV. LANE COURSE ESTIMATION

In the second step of this work, the input data needs to be
enhanced with an association of object detections of the same
vehicle. This means that every point detection gets associated
with points from other time steps, yielding trajectories of
objects. Using this information, we can connect estimated
lanes at two different arms, in order to reconstruct a path
that connects a pair of lanes on the intersection. As can be
seen in Figure 2, different environment perceiving sensor
types can be used for estimating the necessary trajectories
when fed to a tracking algorithm.

This step refines the coarse model estimated in the to-
pology estimation (see Section III) by estimating the lane
course of the intersection, but it does not change the topology
estimated before.

A. Preprocessing

First, the trajectory data has to be processed as depicted in
Figure 4. We split each trajectory into its parts as described
in Section III-A and depicted in Figure 4b. Then, our
algorithm assigns each trajectory part to the closest arm of
the estimated intersection model by searching for the lane
whose center line is the closest to the mean point of the
trajectory part (see Figure 4c). Each pair of trajectory parts
can then be used to get possible connections between lanes
(see Figure 4d).

Each lane course is represented as a lanelet [21], which
is comprised of a pair of two poly lines, the left and the
right border. Each lane in the topology model, estimated
in the first step, is converted into a lanelet representation
with equidistantly distributed support points (see Figure 5).
For every lane that is connected with another arm by a
trajectory, we also connect the lanelets in order to have a
continuous lane model within the intersection as depicted
in Figure 4d. In the preprocessing step, the connection is a
straight lanelet, but will be refined in the estimation. Adjacent
lanes can share all or a subset of the support points of the
lanelet border, depending on whether they are parallel over
the whole intersection or either of them turns into another
arm.

For the generated lanelets we further calculate a center
line for easier calculations later on. The center line Ml of
each lanelet is defined as the poly line of center points m
between opposing points on the lanelet borders b ∈ Bl. We
also double the discretization rate of the center line by adding
an additional support point between the existing ones.

We finally refine the representation using the trajectories.
Each point of the center line is moved to minimize the
distance to the assigned trajectories. As metric we calculate
the orthogonal distance of the trajectory to the center line.

(a) (b)

(c) (d)

Fig. 4: Initialization of the lanes as lanelets using the
topology estimation. (a) Input trajectories. Colors highlight
different track ids. (b) Split trajectories into two parts. (c)
Assign each trajectory part to a lane. (d) Connect lanes
assigned to the same trajectory with a straight interpolation.

Fig. 5: For the lane course estimation, the intersection is
represented as a set of lanelets with equally distributed
support points.

With this refinement we finally calculate the neighbors of
each border point that are candidates for fusing lane borders
during the sampling.

B. Intersection Model

The tracked object detections T are a set of timestamped
positions p = (x, y) in a world-fixed coordinate system and
an association that assigns multiple positions to a single tra-
jectory ti. Thus, we can additionally calculate the orientation
~o for each position.

In this step, we model the intersection I2 as set of
lanelets L as depicted in Figure 5. Each lanelet l consists
of optionally shared border points b ∈ Bl and center points
m ∈Ml. With this representation, each sampling step either
• modifies a point ml of the center line of a lane,
• splits two adjacent lanelets by generating a new border

point for one of them, which is sampled around the
original position with distance ∆b ∼ U [0 m, 0.6 m] or

• merges two neighboring lanelets la and lb by assigning
both lanelets the same border point. The new border
point is equally likely to be the one taken from la or lb.

C. Probabilistic Evaluation

For evaluating the resulting lane courses of I2 we calculate
the posterior probability P (I2|T) depending on the detected
trajectories T . As described in Section III, this is split into
calculating the prior on our model P (I2) and the likelihood
for each trajectory point as P (ti|I2).

1) Lane Course Prior: The prior is based on the number
of shared border points between two adjacent lanes and the
smoothness of the lanes s(I2)τ . The smoothness term is
applied because intersections are machine or man made and
both have a tendency to stay continuous when designing in-
tersections. Vehicles are bound to non-holonomic movements
that prevent roads from having huge curvature changes.
We calculate the smoothness of each lane individually as
sum of absolute angular errors. For each pair of three
subsequent center points {i, j, k} ∈Ml we calculate the two

TABLE I: Parameters and their definition range for generat-
ing intersections.

Parameter Definition Range

Number of arms |A| ∈ [3, 4, 5]

Lanes per driving direction |Li|, |Lo| ∈ [1, 2, 3, 4]

Angle between arms αab ≥ 45◦

Width of the gap ga < 3m

direction vectors γij and γjk and derive the sum of absolute
differences in the angle between the directions as

δl =

Ml∑
i,j,k

| arccos(〈γij , γjk〉)|. (8)

We assume this difference δl to follow a normal distribution.
Using the two metrics, the prior is calculated as

P (I2) = s(I2)τ ·
∏
l∈L

P (δl). (9)

2) Likelihood: For the fitness of the estimated lane course
and detected trajectories, the distance between the trajectory
points and the center line is calculated. We reuse the ortho-
gonal distance d⊥ from Section IV-A between a point on the
center line m ∈ Ml of lane l and a trajectory point p ∈ ti
and assume it to follow a normal distribution which leads to

P (ti|I2) =
∑
l∈L

1(ti, l)
∏
p∈ti

P⊥(p|Ml, I). (10)

V. EXPERIMENTAL EVALUATION

Because of the lack of publicly available datasets contain-
ing precise, lane-level maps, we created ground truth for 14
real-world intersections manually labeled in a map format.
We separated those into small and big intersections. For a
more meaningful, quantitative evaluation, we generated 1000
artificial intersections randomly using the parameters from
Table I.

For both simulated and real intersections, we simulated
vehicles traveling alongside the lanes, which resulted in a
maximum of six trajectories per lane. The vehicle routes
have been determined by randomly choosing two lanes in the
intersection and following the ground truth center lines. For
a more realistic simulation, we added Gaussian noise with
∆d ← N (0 m, 1 m) to every detection and some random,
false detections around the center with s ← U(0 m, 80 m),
in order to replicate sensor measurements, which are often
prone to noise.

All following experiments were conducted on a Ubuntu
system with an Intel Core i7-8750H CPU 2.20 GHz (Turbo
Boost: 4.1 GHz). The implementation has been done in the
ROS framework in C++, allowing for fast execution time.
In order to make this approach feasible for online usage,
we limit the evaluation to execution times of approximately
150 ms, which results in limiting the number of samples
that each step is allowed to generate, before the result for
evaluation is drawn.

Number of Samples

0 2500 5000 7500 10000 12500 15000 17500 20000

C
en

te
r

D
ev

ia
tio

n
(m

)

0

1

2

3

4

Detections

Tracked

Fig. 6: Topology Estimation: Influence of number of samples
on the accuracy of the intersection center.

Number of Samples

0 2500 5000 7500 10000 12500 15000 17500 20000

E
xe

cu
tio

n
Ti

m
e

(m
s)

0

50

100

150

200

Lane Estimation

Detections

Tracked

Fig. 7: Influence of the number of samples on the execution
time.

A. Topology Estimation

First, we evaluate the topology estimation. We use distance
measures on the individual parameters (see Section III-B) to
determine the quality of the estimated intersection.

We found that our approach is able to detect the topology,
describing the estimated number of arms, for all synthetic
intersections correctly although we added noise and simu-
lated false detections. Only on a single intersection (in the
raw detections experiment), we could not detect the correct
number of arms, which led to an accuracy of 99.90 %.

The more complex lane-level topology, where the number
of lanes and their direction in each arm is regarded but not
the precise course, achieved an accuracy of 92.28 % when
executed on tracked data. Based on raw detections we could
estimate the lane-level topology with an accuracy of 84.90 %.
The errors on the lane-level occurred because an additional
lane at the outer borders of the models was estimated in some
cases.

With 5000 samples we achieved an average execution
time of 55.38 ms in case of raw detections and 35.72 ms
in case of tracked objects. The difference can be explained
by the considerable reduction of points in the tracked case.
When changing the number of samples for an estimation
the accuracy of e.g. the center (see Figure 6) improves
exponentially, whereas the execution time changes linearly
(see Figure 7).

For the center of the intersections we depicted the error
distribution in Figure 8. Here, we can infer that the distri-
bution is a consequence of the noise, that we added to our
measurements. Additionally the center is prone to be wrongly

(a) Data: detections (b) Data: tracked objects

Fig. 8: Topology Estimation: Distribution of the error on the
center position after 5000 samples. For the raw detection
case, three outliers of (1,−20), (9,−19) and (1, 21) are
outside of the plot.

estimated, without leading to wrong intersections in terms
of driveability. Since moving the center of the intersection
influences the direction of the arms, a wrong center position
might compensate errors in the lane angle estimation.

For most cases of tracked data, the road angles are less
than 1◦ with an average error of 0.34◦. In the detection case,
we estimate the angle with a deviation of 0.97◦ on average.

In summary, our results show, that the topology estimation
benefits from fewer detections and a tracking in beforehand,
which increases the accuracy and speed of the approach.

B. Lane Course Estimation

For evaluating the course of the individual lanes, we used
a different measure. We calculated the orthogonal distance
between the estimated center line and the ground truth center
line for all correctly estimated lanes. The overall quality of
a lane was formulated as the mean Euclidean distance. The
execution times presented here also include the preprocessing
described in Section IV-A.

For the synthetic intersections, we achieved an accuracy
of 14 cm on average. 20 000 sample points allowed for
an execution time of 104.05 ms. With 5000 samples in
the topology estimation and 20 000 for the lane course,
we achieve an overall execution time of 140.05 ms. When
choosing fewer samples the execution time is reduced as
depicted in Figure 7, with exponentially worse results.

In the real-world scenarios we also used 20 000 sample
points and achieved an accuracy of 18 cm for the small in-
tersections and 27 cm for big ones. For smaller intersections,
we get the results after 77.5 ms on average, whereas for big
ones after 89 ms. The real scenarios could be solved quite
faster, since we usually have fewer lanes per arm, than were
simulated. For a qualitative evaluation of the real scenarios,
we depicted examples in Figure 9.

VI. CONCLUSIONS

In this work, we showed an approach for estimating
both the coarse lane-level intersection topology and the lane
course inside and outside the intersection. On simulated data,
the topology was estimated correctly in all cases based on
trajectories of other traffic participants. For simulated and
real-world intersections the lanes borders were detected with

an average error of 14 cm and 23 cm, resp. We are able to
calculate the results within 140 ms and 113 ms. However, we
chose this approach, because we can extract results at any
time during the estimation, risking, of course, a less precise
result.

Our model is able to represent a lot of different inter-
sections because it is neither limited in the number nor the
geometry of arms and their lanes. To our knowledge, similar
approaches either could not achieve comparable results or
require considerably more computation time.

Our method of estimating intersection topologies on the fly
overcomes critical limitations of state-of-the-art autonomous
diving solutions. It allows to check the validity of maps,
to update outdated maps and even to drive in unknown
environments.

Since our approach is based on trajectory data, it can
also be used in dense traffic when traditional features for
roadway recognition, e.g. markings or curbstones, fail due
to occlusions. However, we plan to extend our framework
to those traditional features in order to benefit from multiple
independent features which promises to increase robustness
even further.

REFERENCES

[1] J. Ziegler, P. Bender, M. Schreiber, et al., “Making Bertha Drive an
Autonomous Journey on a Historic Route,” IEEE Intell. Transp. Sys.
Mag. (ITSM), vol. 6, no. 2, pp. 8–20, 2014.

[2] F. Kunz, D. Nuss, J. Wiest, et al., “Autonomous Driving at Ulm
University: A Modular, Robust, and Sensor-Independent Fusion Ap-
proach,” in IEEE Intell. Veh. Symp. (IV), pp. 666–673, June 2015.

[3] A. L. Ballardini, D. Cattaneo, S. Fontana, et al., “An Online Proba-
bilistic Road Intersection Detector,” in IEEE Int. Conf. on Rob. and
Autom. (ICRA), pp. 239–246, 2017.

[4] A. Geiger, M. Lauer, C. Wojek, et al., “3D Traffic Scene Understand-
ing from Movable Platforms,” IEEE Trans. on Pattern Analysis and
Machine Intell. (TPAMI), vol. 36, no. 5, pp. 1012–1025, 2014.

[5] J. Beck and C. Stiller, “Non-Parametric Lane Estimation in Urban
Environments,” in IEEE Intell. Veh. Symp. (IV), pp. 43–48, 2014.

[6] A. Joshi and M. R. James, “Generation of Accurate Lane-Level Maps
from Coarse Prior Maps and Lidar,” IEEE Intell. Transp. Sys. Mag.
(ITSM), vol. 7, no. 1, pp. 19–29, 2015.

[7] D. Töpfer, J. Spehr, J. Effertz, et al., “Efficient Road Scene Under-
standing for Intelligent Vehicles Using Compositional Hierarchical
Models,” IEEE Trans. on Intell. Transp. Sys., vol. 16, no. 1, pp. 441–
451, 2015.

[8] A. Meyer, N. O. Salscheider, P. F. Orzechowski, et al., “Deep Semantic
Lane Segmentation for Mapless Driving,” in IEEE/RSJ Int. Conf. on
Intell. Robots and Sys. (IROS), pp. 869–875, 2018.

[9] F. Dierkes, K. Siedersberger, and M. Maurer, “Corridor Selection
Under Semantic Uncertainty for Autonomous Road Vehicles,” in IEEE
Int. Conf. on Intell. Transp. Sys. (ITSC), pp. 505–512, 2018.

[10] A. Joshi and M. R. James, “Joint Probabilistic Modeling and Inference
of Intersection Structure,” in IEEE Int. Conf. on Intell. Transp. Sys.
(ITSC), pp. 1072–1078, 2014.

[11] C. Ruhhammer, N. Hirsenkorn, F. Klanner, et al., “Crowdsourced
Intersection Parameters,” in IEEE Intell. Veh. Symp. (IV), pp. 581–
587, 2014.

[12] Y. Chen and J. Krumm, “Probabilistic Modeling of Traffic Lanes from
GPS Traces,” in SIGSPATIAL Int. Conf. on Advances in Geographic
Information Sys., pp. 81–88, 2010.

[13] O. Roeth, D. Zaum, and C. Brenner, “Road Network Reconstruction
Using Reversible Jump MCMC Simulated Annealing Based on Vehicle
Trajectories from Fleet Measurements,” in IEEE Intell. Veh. Symp.
(IV), pp. 194–201, 2016.

[14] J. Wang and J. Kim, “Semantic Segmentation of Urban Scenes with
a Location Prior Map Using Lidar Measurements,” in IEEE/RSJ Int.
Conf. on Intell. Robots and Sys. (IROS), pp. 661–666, 2017.

Fig. 9: Example results of real-world intersections. Aerial images: City of Karlsruhe, www.karlsruhe.de, dl-de/by-2-0

[15] A. L. Ballardini, D. Cattaneo, and D. G. Sorrenti, “Visual Localization
at Intersections with Digital Maps,” in IEEE Int. Conf. on Rob. and
Autom. (ICRA), pp. 6651–6657, 2019.

[16] H. Winner, “Automotive RADAR,” in Handbook of Driver Assistance
Sys.: Basic Information, Components and Sys. for Active Safety and
Comfort (H. Winner, S. Hakuli, F. Lotz, and C. Singer, eds.), pp. 325–
403, Springer Int. Publishing, 2016.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., “Equa-
tion of State Calculations by Fast Computing Machines,” The J. of
Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[19] C. Guindel, D. Martin, and J. M. Armingol, “Joint Object Detection
and Viewpoint Estimation Using CNN Features,” in IEEE Int. Conf.
on Vehicular Electronics and Safety (ICVES), pp. 145–150, 2017.

[20] A. Dewan, T. Caselitz, G. D. Tipaldi, et al., “Motion-Based Detection
and Tracking in 3D Lidar Scans,” in IEEE Int. Conf. on Rob. and
Autom. (ICRA), pp. 4508–4513, 2016.

[21] F. Poggenhans, J.-H. Pauls, J. Janosovits, et al., “Lanelet2: A High-
Definition Map Framework for the Future of Automated Driving,” in
IEEE Int. Conf. on Intell. Transp. Sys. (ITSC), pp. 1672–1679, 2018.

	I Introduction
	II Probabilistic Generative Models
	III Intersection Topology Estimation
	III-A Preprocessing
	III-B Intersection Model
	III-C Probabilistic Evaluation
	III-C.1 Intersection Prior
	III-C.2 Likelihoods

	IV Lane Course Estimation
	IV-A Preprocessing
	IV-B Intersection Model
	IV-C Probabilistic Evaluation
	IV-C.1 Lane Course Prior
	IV-C.2 Likelihood

	V Experimental Evaluation
	V-A Topology Estimation
	V-B Lane Course Estimation

	VI Conclusions
	References

