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ABSTRACT

One of the most challenging scenarios for smart speakers is

multi-talker, when target speech from the desired speaker is

mixed with interfering speech from one or more speakers. A

smart assistant needs to determine which voice to recognize

and which to ignore and it needs to do so in a streaming, low-

latency manner. This work presents two multi-microphone

speech enhancement algorithms targeted at this scenario. Tar-

geting on-device use-cases, we assume that the algorithm has

access to the signal before the hotword, which is referred to

as the noise context. First is the Context Aware Beamformer

which uses the noise context and detected hotword to deter-

mine how to target the desired speaker. The second is an

adaptive noise cancellation algorithm called Speech Cleaner

which trains a filter using the noise context. It is demonstrated

that the two algorithms are complementary in the signal-to-

noise ratio conditions under which they work well. We also

propose an algorithm to select which one to use based on es-

timated SNR. When using 3 microphone channels, the final

system achieves a relative word error rate reduction of 55% at

-12 dB, and 43% at 12 dB.

Index Terms— multi-talker, array, beamformer, noise

cancellation

1. INTRODUCTION

Automatic speech recognition (ASR) has shown robustness

in the presence of noise largely due to the adoption of neural

network based acoustic models [1, 2, 3, 4],large scale training

[5, 6, 7], and improved data augmentation strategies [8, 9, 10].

Multiple speaker scenarios, however, still pose a challenge

[11, 12]. This is particularly true for smart speakers where it

is desired to respond to one of the speech sources and not the

others. In addition, smart speakers require streaming, low-

latency solutions so the desired speaker needs to be quickly

determined and isolated from the other sources.
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Solutions aimed at separating multiple speakers have been

proposed using either a single [13, 14, 15] or multiple micro-

phones [16, 17] are often designed for separating the multiple

voices rather than identifying one target. Filtering based on a

targeted speaker has shown success but that targeted speaker

needs to have registered with the device. [18]

A method which has shown considerable improvement

isolates the desired source using a time-frequency mask and

then uses the statistics of that masked source to steer a beam-

former [19, 20]. While effective in non-speech noise, it en-

counters challenges deciding between one or more voices.

The entire utterance is usually used to steer the beamformer so

the streaming, low-latency requirements of the smart speaker

are not met. When operating under such constraints, these

techniques have had difficulties [21, 22].

Two techniques are studied to address speech-based noise

while meeting streaming, low-latency criteria. The device is

assumed to trigger on a wakeword or hotword phrase such

as “OK Google” or “Alexa” that precedes the user request or

query. The desired speaker is, by definition, the one speak-

ing the hotword. These techniques function on device, which

enables them to make use of the signal that occurs directly

before the hotword, referred to as the noise context.

The first is the Context Aware Beamformer (CAB) which

uses the noise context and the detected hotword to determine

the steering vector. The second is an adaptive noise can-

cellation algorithm called Speech Cleaner. It has resulted

in significant improvement in hotword recognition in noisy

environments[23, 24]. Here it is applied to the query as well.

Both will be compared to a beamformer steered with an ideal

mask.

The rest of the paper is organized as follows. An overview

of the system is given in Section 2. In Section 3, we describe

context aware beamforming. Section 4 will describe the adap-

tive noise cancellation algorithm called the Speech Cleaner.

Section 5 will describe the data used and the experimental

setup. Evaluations will be provided in Section 6.

2. SIGNAL MODEL

Each received utterance consists of a hotword followed by

the query as well as some audio before the hotword. The

received short-time Fourier transform (STFT)-processed M
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microphone signal is written as

Y(k, n) , [Y0(k, n), Y1(k, n), ...Y(M−1)(k, n)]
T , (1)

where Yi(k, n) is the signal from microphone i at frame n for

frequency subband k. The received signal can be written as

the summation

Y(k, n) = X(k, n) +V(k, n), (2)

where X(k, n) is a vector of the M reverberant desired speech

signals and V(k, n) corresponds to the noise signals which

may also include interfering speech. Because all enhance-

ment is conducted independently for each frequency subband,

the frequency index n shall subsequently be omitted.

3. CONTEXT AWARE BEAMFORMING

A beamformer is a spatial filter applied to the M -microphone

input signal to get an estimate of the desired signal

X̂(n) = W
H
Y(n), (3)

where W is a vector of the M coefficients of the beamformer

and X̂(n) is a single channel estimate of the desired signal.

Perhaps the most challenging aspect of beamforming,

especially in reverberant and multi-talker environments, is

initializing the steering vector. using the principal eigenvec-

tor of the spatial correlation matrix of desired signal, which

will collect the most energy of the desired signal, has been

shown to be successful in reverberation[25, 26]. In mask-

based beamforming[20, 16], neural networks are used to

estimating this correlation matrix. Multi-talker conditions,

where there is one desired speaker and one or more interfer-

ing speakers, present challenges to ascertain which speaker

it should be targeting. Doing so in a streaming, low-latency

manner increases those challenges.

The Context Aware Beamformer utilizes the hotword and

the noise context to target the desired speaker. The spatial

correlation matrix of the desired speaker X(n) is defined as:

ΦXX = En[X(n)X(n)H ]. (4)

This can be estimated by taking the difference between the

correlation matrix calculated when there is both noise and sig-

nal and the correlation matrix when there is only noise:

Φ̂XX ≈ ΦYY −ΦVV, (5)

wherein it is assumed that the desired signal and the noise are

uncorrelated [27].

In order to make use of this approximation, time periods

that are only noise and that are signal plus noise must be iden-

tified. To that end, this work makes uses of the hotword.

When the device identifies the hotword, it is, by definition,

the desired speaker saying the hotword. Because noise will

likely also be present, the period of time that is detected as

containing the hotword can be used to estimate ΦYY .

Targeting on-device application, we assume that the

model has access to the noise context, the period of time

before the hotword. This segment of time can be assumed to

contain only noise and that noise will have similar statistics to

the noise in the hotword. This can be used to estimate ΦVV.

With these two estimates, Equation (5) can be applied to

obtain an estimate of the spatial correlation of the desired sig-

nal. The principal eigenvector of this matrix is then used as

the initial beamformer coefficients:

Ŵ = Pr{Φ̂XX}, (6)

where, Pr{�} signifies finding the principal eigenvector of

the matrix. The beamformer coefficients can then be adapted

using least mean squares (LMS) in accordance with the min-

imum variance distortionless response (MVDR) criterion

[28].

4. SPEECH CLEANER

Speech Cleaner (SC), an adaptive noise cancellation algo-

rithm, is summarized in this section[23, 24]. In previous

works, it has been shown to result a significant increased in

robustness to noise in hotword detection. Here, it is to applied

it directly to the target query in addition to the hotword.

A finite impulse response (FIR) filter with a tapped delay

line of length L is applied to the signals from all microphones

except for one. The summed output of these is subtracted

from the received signal at the first microphone:

Zm(n) = Y0(n)−
M−1∑

m=1

Um
H
Ỹm(k, n), (7)

where,

Ỹm(n) = [Ym(n), Ym(n− 1), · · ·Ym(n− (L− 1))]T , (8)

is a vector of time delayed STFT-processed input for micro-

phone m and,

Um(k) = [Um(k, 0), Um(k, 1), · · ·Um(k, L− 1)]T (9)

is a vector of the filter coefficients to be applied to micro-

phone input m. The filter coefficients are specified as those

that minimize the power of the enhanced output

Ûm = argmin
Um

En[|Zm(n)|2]. (10)

The minimization is done through adaptation during the

noise context, when it is assumed there is no desired speech

present. In this way, the filter becomes trained to cancel out

the noise sources. When the hotword is detected, the filter co-

efficients are frozen. The last coefficients before the hotword



detection are then applied to the query:

X̂(n) = Y0(n)−

M−1∑

m=1

Û
H

mỸm(k, n− l) (11)

to obtain a single channel estimate of the desired signal. In

this way, the filter works to cancel the noise, as it was trained,

and not the desired signal, which was not present during train-

ing. Unlike the beamformer, Speech Cleaner has no constraint

as to the amount of speech distortion introduced.

5. EXPERIMENTAL SETUP

This study uses data re-rerecorded in a living-room lab with

no sound treatment. Desired speech and noise were recorded

separately with a three microphone array with two micro-

phones on the top spaced 7.1 cm apart with a third was on

the front. The queries were played r from 7 different speaker

positions at a height of 1.5m and at 4m from the array. From

each location 100 different queries prefaced with the hotword

“OK Google” or “Hey Google” were played at a volume of

40 dB over ambient room noise. Two types of noise, speech-

based from a movie and non-speech pink noise, were sepa-

rately played through a loudspeaker from the same 7 loca-

tions.

Speech and noise were mixed at several different SNR

values ranging from -12 to 24 dB as well as a set with no

added noise. In all cases, the recordings contain whatever

ambient noise was in the room during recording. They were

mixed such that the speech and noise did not originate from

the same speaker position and with 8s of noise recorded be-

fore the hotword commenced. The multi-channel input was

processed by the specified enhancement algorithm to produce

one channel of output which was then passed onto an ASR

model.

A state-of-the-art end-to-end recurrent neural transducer

model is used for evaluations[29]. The model was trained

using anonymized, hand-transcribed English utterances from

domains like VoiceSearch, Farfield, Telephony and YouTube.

Data augmentation was applied via a room simulator[8] to

model reverberation times from 0 ms and 900 ms and SNRs

from 0 dB to 30 dB. Consequently, this model is relatively

robust to moderate noise conditions.

6. RESULTS

6.1. Context Aware Beamformer

CAB was tested with multi-talker noise datasets using two

and three microphone configurations. No adaptation was

done on the beamformer coefficients after the initialization

with principal eigenvector. The word error rate (WER) results

are presented for the two channel case in the third column of

Table 1 and the three channel case in Table 2. An SNR value

of Clean indicates the case where there was no added multi-

talker noise. Also added for comparison is the baseline case

Table 1: Two Channel Results

SNR Baseline CAB SC SNR Oracle

(dB) Sel. Bmfm

-12 100.2 95.4 64.5 68.0 95.7

-6 83.0 56.6 43.6 48.8 66.0

0 48.7 34.4 24.7 28.3 29.7

6 20.5 17.9 12.0 12.4 11.7

12 9.2 6.8 7.6 5.6 5.3

Clean 3.0 1.9 3.0 1.9 1.8

Table 2: Three Channel Results

SNR Baseline CAB SC SNR Oracle

(dB) Sel. Bmfm

-12 100.2 93.0 42.0 45.4 92.6

-6 83.0 66.2 28.9 33.0 60.4

0 48.7 31.7 16.6 20.1 25.3

6 20.5 11.6 10.9 11.1 10.1

12 9.2 4.6 8.0 5.2 4.3

Clean 3.0 1.4 3.9 1.4 1.6

where the ASR model was applied directly with no enhance-

ment. In addition, there is an Oracle case where the spatial

correlation matrix of the desired signal is calculated directly

from the isolated desired signal. This is the ideal case for

mask-based beamforming.

It can be seen that at the lowest SNR values the beam-

former provided little benefit. In these cases, where the noise

power is much larger than the signal, it can be difficult to

get an accurate approximation for the desired signal correla-

tion from 5. In contrast, at 6 dB and above the relative WER

improvements approach 50% where it approaches the perfor-

mance of the Oracle. Going from two to three microphones

provides a notable improvement.

6.2. Speech Cleaner

The fourth column of Tables 1 and 2 show the performance

of Speech Cleaner with the multi-talker data sets using two

and three microphones, respectively. The filter length was

L = 3 with adaption using recursive least squares (RLS) [24]

during the 8s noise context. The coefficient values at the de-

tected hotword start time are then used to filter the hotword

and query.

The Speech Cleaner gives the most improvement at the

lower SNR values where it significantly outperforms the Or-

acle beamformer. At -12dB, there is a 40% relative WER im-

provement with two microphones, improving to 60% with a

third mic. However, at the higher SNR values, improvement

is lower and pales in comparison to the beamformer. In the

no added noise case, adding an additional third microphone

actually causes a performance degradation. Speech Cleaner,

unlike CAB, does not contain any constraints with regard to

signal distortion. In lower noise, the noise cancellation bene-

fits are outweighed by the signal distortion.



6.3. SNR Based Selection

The third and fourth columns in Tables 1 and 2 show the CAB

and Speech Cleaner to be complementary in the SNR ranges

at which they best perform. Therefore, it is desirable to select

the appropriate algorithm in the corresponding conditions.

A simple method to estimate the SNR of the utterance is

used. That estimate is used to select between the two enhance-

ment techniques. The SNR estimate is obtained by separately

measuring the power in the hotword segment and the power in

the noise context. Because the hotword contains both signal

and noise, its power is an estimate of the power of the signal

plus that of the noise. The context power is an estimate of the

noise power. Consequently,

ŜNR =
σ2
hotword

σ2
context

− 1 =
σ̂2
X
+ σ̂2

V

σ̂2
V

− 1. (12)

If ŜNR is less than a threshold γ then the Speech Cleaner

will be used otherwise CAB will be applied.

The fifth column of Tables 1 and 2 shows results for the

two microphone array with γ at 6 dB. With the SNR-based

selector, performance approaches that of the Speech Cleaner

for SNR values of 6 dB and below. Above 6 dB, performance

approaches that of CAB. This yields better than a 30% and

43%WER improvement across the considered SNR range for

two and three channels, respectively.

6.4. Non-Speech Noise

To consider performance in non-speech noise, Table 3 presents

WER for pink noise with three channels. The SNR-based se-

lection tracks the performance of the Speech Cleaner past the

6dB threshold leading to some undesired results. This sug-

gests that either the the thresholds could benefit from more

tuning, or alternative methods of selection between the tech-

niques should be considered. We leave that to future work.

6.5. Impact of Context Length

The results thus far used all 8s of noise context. In Table

4, WERs are shown across the SNR range for shorter noise

context lengths. It can be seen that, particularly at the higher

SNRs where CAB is more effective, reducing the noise con-

text to 1s still captures the bulk of the improvements. Benefits

are still seen if only 0.25s of context is available.

Table 3: Three Channel Pink Noise Results

SNR Baseline CAB SC SNR

(dB) Sel.

-12 100.2 100.0 42.2 42.2

-6 98.9 89.3 25.5 25.5

0 80.1 53.0 18.0 18.0

6 42.2 18.0 12.3 12.3

12 12.4 5.3 8.8 9.1

18 3.3 2.5 8.6 5.6

24 1.7 1.5 8.3 1.6

Table 4: Impact of Noise Context Length on CAB

Length -12dB 6dB 0dB 6dB 12dB ∞

Baseline 101.6 81.6 46.2 19.3 7.7 1.9

All(8s) 95.7 71.5 33.9 12.7 5.6 1.9

3s 95.7 71.8 34.3 13.7 5.9 1.9

1s 97.3 74.5 36.6 14.0 6.0 1.9

0.5s 98.0 75.3 37.6 14.0 6.0 1.9

0.25s 98.6 76.5 39.1 14.9 6.2 2.1

6.6. Impact of Desired Speaker in Context

It has been assumed that the desired speaker is not present

during the noise context. While that is valid often, it will not

always be the case. Here, the algorithms operate with the de-

sired speaker talking throughout the context period. To sim-

ulate this, part of the query is appended before the hotword.

In Table 5 the impact on the performance of CAB and Speech

Cleaner for these cases with the two channel array is shown.

These results demonstrate the importance of ensuring that

this assumption holds or allowing for the disabling of these

algorithms when it does not.

Table 5: Impact of Desired Speaker in Context

SNR Baseline CAB Speech

(dB) Cleaner

-12 101.6 97.9 77.8

-6 81.6 82.0 69.9

0 46.2 53.3 66.1

6 19.3 28.8 67.8

12 7.7 15.5 75.2

Clean 1.9 4.6 91.0

7. CONCLUSION AND FUTURE WORK

Two techniques were presented to help address the multi-

talker scenario on smart speakers. The Context Aware Beam-

former used the noise context and detected hotword to deter-

mine how to target the desired speaker. CAB was shown to

enable WER reduction across the SNR range, but it was most

effective at higher SNRs. We also present an adaptive noise

cancellation algorithm called Speech Cleaner trained using

the noise context. This algorithm was shown to be very ef-

fective at SNRs below 6 dB where it outperformed an oraacle

mask-based beamformer, but could degrade performance at

higher SNRs. It was demonstrated that the two algorithms

are complementary in the conditions under which they work

well. To that end, an algorithm to select which algorithm to

use based on estimated SNR estimation was demonstrated.

With the SNR-based selection, relative error rates reductions

of more than 30% were demonstrated for a two microphone

array, improving to more than 43% for three microphones.
Future work will encompass more advanced techniques to

select between the two algorithms and the original raw audio.
Identifying conditions when the target speaker also appears
in the noise context is another interesting direction for the
future.
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