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Abstract— A core aim of neurocritical care is to prevent 

secondary brain injury. Spreading depolarizations (SDs) 
have been identified as an important independent cause of 
secondary brain injury. SDs are usually detected using 
invasive electrocorticography recorded at high sampling 
frequency. Recent pilot studies suggest a possible utility of 
scalp electrodes generated electroencephalogram (EEG) 
for non-invasive SD detection. However, noise and 
attenuation of EEG signals makes this detection task 
extremely challenging. Previous methods focus on 
detecting temporal power change of EEG over a fixed high-
density map of scalp electrodes, which is not always 
clinically feasible. Having a specialized spectrogram as an 
input to the automatic SD detection model, this study is the 
first to transform SD identification problem from a detection 
task on a 1-D time-series wave to a task on a sequential 2-
D rendered imaging. This study presented a novel ultra-
light-weight multi-modal deep-learning network to fuse 
EEG spectrogram imaging and temporal power vectors to 
enhance SD identification accuracy over each single 
electrode, allowing flexible EEG map and paving the way for 
SD detection on ultra-low-density EEG with variable 
electrode positioning. Our proposed model has an ultra-
fast processing speed (<0.3 sec). Compared to the 
conventional methods (2 hours), this is a huge 
advancement towards early SD detection and to facilitate 
instant brain injury prognosis. Seeing SDs with a new 
dimension – frequency on spectrograms, we demonstrated 
that such additional dimension could improve SD detection 
accuracy, providing preliminary evidence to support the 
hypothesis that SDs may show implicit features over the 
frequency profile. 

 
Index Terms—Electroencephalogram (EEG), Deep 

Learning, Spreading Depolarization (SD), Traumatic Brain 
Injury (TBI)  

I. INTRODUCTION 
NE of the core aims of neurocritical care for severe acute 
brain injury patients is to minimize the occurrence of 

secondary brain injury [1].  Any secondary injury is likely due 
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to expansion from the initial primary traumatic or ischemic 
injury region into surrounding brain tissue where blood flow is 
typically compromised and unreactive. Spreading 
depolarization (SD), was first reported by Leao et al [2] as a 
depression of high frequency local field potential activity that  

O 

  
Figure 1. Challenges and our solutions to non-invasive detection of 
spreading depolarization (SD). (A) SD-specific features in the AC band 
tracing and power of EEG. (B) Challenges in defining SDs in EEG and 
limitations of the current methods [30], [33]: The conventional method 
which determines SD based on reduction of power temporally is prone to 
often fluctuating EEG AC power offsets in real-world patients, producing 
many false positives, where additional dimension for observation is 
needed. Previous methods also mandate a fixed map for network input 
[33] and high density of EEG scalp electrodes [34], where both are rarely 
possible in the clinical setting. (C) Our solutions: We present a novel 
approach to resolve the power spectrum over the frequency domain in 
additional to the time, allowing more features for exploitation. Our model 
incorporates the spectrogram imaging with conventionally used power 
vector for better accuracy, where we consider each node separately 
without any constraints on density and positioning of EEG. It also supplies 
confidence scores to further support clinical decision making. 
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moved slowly across the rabbit cortex, It was first reported in 
TBI patients [1], [3], [4] aneurysmal subarachnoid haemorrhage 
(aSAH) [5], malignant hemispheric stroke (MHS) [6] and 
intracranial haematoma (ICH) [7]. Specifically, the SD is a 
pathophysiological wave of mass depolarization of neurons in 
the cerebral grey matter [8]–[11]. It originates from neurons 
[12], [13] in the initial focal lesion and is characterised by 
abrupt, near-complete and sustained massive propagating 
breakdown of neuronal transmembrane ion gradients [14]. Such 
massive ion shifts impede the gradients to be quickly restored 
to its usual distributions. If failed to be restored, particularly 
under the poor blood flow conditions of brain injury patients, 
they would initiate a cascaded chain of reactions and would 
contribute to cerebral tissue necrosis [11], [15], [16]. The 
relationship between the occurrence of SDs and poor patient 
outcome from TBI has been clearly demonstrated and 
established [17], [18]. This has led SD to be considered a key 
driver of secondary brain injury. 

The significant and diverse nature of the disruption brought 
by SDs [19] gives us many options to capture them [20], [21] 
in animal models. However, in the clinical context of 
neurocritical care for live patients, only observation of neural 
electrophysiology changes can be used routinely for reliable 
and reproducible bed-side monitoring of SDs. The signals of 
electrocorticogram (ECoG) are generated through strip 
electrodes placed on the cortex or through intracortical 
electrodes inserted through a burr hole  [22], [23]. The 
occurrence of a SD can be seen in ECoG as (a) a large negative 
slow potential change (SPC) in the extracellular direct coupled 
(DC) potential (Figure 2(a1)) and then (b) depressed 
electrophysiological activities (Figure 2(a2)). Although the 
ECoG has been superior in monitoring SD occurrences and has 
been considered as the ‘gold standard’ for the bed-side 
monitoring of SDs, the invasiveness of ECoG monitoring 
allows only a small proportion of patients with brain injury to 
benefit from it [16].  

As the disruptive electrophysiological effects from the SDs 
are significant, some studies also suggested that we could see 

SD-induced electrophysiological changes from 
electroencephalogram (EEG) [24], [25], showcasing the 
potential of the non-invasive diagnostic tool EEG for SD 
screening. However, others have found that it was not possible 
to detect ECoG verified SD with EEG using conventional 
methods [26], calling for approaches using trained 
computational EEG analytics. EEG’s advantage of non-
invasiveness potentially enables intraoperative monitoring 
during carotid endarterectomy and SD screening for delayed 
cerebral ischaemia after aSAH and more importantly SD 
monitoring for millions of stroke patients [25]. However, in 
EEG, the signature negative near-DC/DC (0.0001-0.01Hz) 
SPCs observable in ECoG are often hard to be observed [27]–
[29], as (a) the capacitance in the skin acts as a DC remover to 
attenuate SPCs and (b) the usually applied pre-processing 
techniques such as signal high pass modules and drifting 
remover often silence these near-DC/DC components [30] 
(Figure 2(b1)). However, the electrophysiological activities 
with faster frequencies in the alternating current (AC) range of 
0.5-45Hz offer us another chance to monitor SDs by looking at 
the signal power within this frequency range, where the 
signature SD-induced drop in signal power is visualised in the 
delta band (0.5-4Hz). Nevertheless, as the brain activities 
captured through EEG are confounded by many other signals 
such as electromyography (EMG) from the muscle on the scalp 
and are attenuated by the skull, it may be worth remarking that 
the AC EEG is much more chaotic, and thus it is very hard to 
find SDs from EEG AC reliably by traditional methods such as 
thresholding. In addition, it is concerned that the much noisier 
EEG may not perform well in excluding SDs for negative 
control subjects. Also, the poor signal quality of EEG leads to 
concerns over its accuracy in SD detections particularly for TBI 
patients where EEG electrodes could be insulated by the 
subcutaneous air introduced by the original or (more likely) 
surgical trauma. 

A. Our Contribution 
Currently available methods only employ the 1-D time series 

of EEG for either identification of DC changes for SPC or 
signal power changes, where their limited success is prone to 
the incorrect assumption that EEG AC power offset is always 
constant (Figure 1B). It may worth noting that, for brain trauma 
patients, their frequency axis may exhibit specific changes at 
the time of SDs [29], [31], where additional considerations of 
power changes resolved over the frequency axis may offer us a 
new prospective for SD identification, particularly when the 
SPC or power changes are not visually significant over noise 
(Figure 2). This will give us a new modality – spectrogram 
imaging for SD detection. To consider the conventional 1D time 
series feature along with our proposed 2D spectrogram 
imaging, we employed an image-vector fusion module to read 
features from both spectrogram imaging and EEG power vector 
(Figure 1C).  

To demonstrate the detection model’s performance for more 
generalised use, where the model may see EEG AC power 
offset alternating, based on real-world EEG data collected from 

 
Figure 2. Examples of a SD occurrence in (1) near-direct current 
(DC)/DC (0.0001-0.01Hz) and (2) alternating current (AC) (0.5-45Hz) 
bands of (a) an EEG tracing and (b) an ECoG tracing for an SD 
occurrence. Axes: Time (Horizontal) and Power/mV (Vertical). A SD 
can be clearly identified from ECoG DC as a large negative slow 
potential change (SPC) and from ECoG AC as a drastic amplitude 
and power reduction. However, from the largely attenuated and noisy 
EEG, it remains unclear if the SPC can be reproducibly seen in EEG 
DC and remains challenging to differentiate the SD-specific EEG AC 
power reduction from other non-pathological power change. 
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patients, we simulated a wide range of SD-carrying EEG 
tracings where it contains different levels of noise and SD 
characteristic AC power suppressions and offsets. 

 Previously proposed methods often assume a fixed map of 
multiple electrodes. However, this is not often clinically 
feasible. Particularly, for ICU trauma post-surgery cases, it 
would be extremely difficult to fix multiple electrodes on the 
operated patient’s scalp reliably, and obviously a fixed map of 
EEG electrodes cannot be assumed for all patient populations 
[28], [32]. This calls for a method allowing more versatile 
electrode setup. To expand the generalisability of the detection 
method and allow more flexibility in the number of electrodes 
over the EEG map, instead of assuming a fixed EEG map, this 
paper focuses on accurate detection of the SD over a single EEG 
electrode.  

We then built a novel network (Figure 3) to combine the 2-
D spectrogram imaging input with the 1-D EEG AC power 
wave input to enhance the performance of SD identification and 
demonstrated its success on our datasets. Through further 
ablation tests, where we tried to input the model with only EEG 
spectrogram or the 1-D EEG AC power wave, we found that the 
model performs better when input with the spectrogram 
compared to the power wave. This demonstrated success of 
EEG spectrogram as a stand-alone independent biomarker for 
SD, which could offer better SD detection performance from its 
additional axis in frequency. 

To enable further expanded clinical use and benefits, real-
time detection of SD is the key for early SD detection and 
prognosis of secondary brain injury. However, all previously 
proposed algorithm failed to demonstrate its ability for real-
time detection of SD under standard clinical setting where no 
GPU is available [30], [33], [34]. The conventional methods 
proposed by Chamanzar et al. required 2 hours for processing 
over CPU [30], [33], and their proposed deep learning methods 
required GPU for processing [34], where GPU is not always 
available in bed-side machines for expanded clinical use. In this 
study, our ultra-light deep learning model is specifically 
designed to enable itself to be continuously inferred over a CPU 

with a dramatically reduce processing time (<0.3 sec per each 
hour of EEG), which is a huge advancement for expanded 
clinical use and translation compared to the processing time of 
the conventional methods.  

Conventional methods need 30-hour EEG [30], [33] for 
decisions, not feasible clinically. Our model uses 30-minute 
window, reducing pressure for monitoring and aiding patients 

Existing deep learning methods for SD lack transparency. By 
linking confidence scores with outputs, our model enhances 
model trustworthiness and explainability and clinical decision-
making. 

The key merits of this paper are that we  
(1) simulated EEG tracings for SD patients carrying altering 

AC power offsets from clinical cases,  
(2) built a novel ultra-light-weight deep learning model 

fusing features in both EEG spectrogram and EEG power wave 
for more accurate SD detection with confidence scores for more 
explainable decisions, 

(3) dramatically reduced the processing time (<0.3 sec per 
each hour of EEG) by the model’s ultra-light weight and 
became the first real-time SD monitoring framework on CPU 

(4) dramatically reduced time window (30 minutes vs. 
(conventional) 30 hour) for final decisions, enabling quicker 
delivery of decision, reduced bed-side monitoring pressure and 
easier and expanded use, and, 

(5) through the deep learning network’s performance, 
demonstrated the efficacy of spectrogram as an independent 
imaging biomarker for more accurate SD identification. 

As the method reported in this paper allows detection of SDs 
through individual scalp electrodes with no limitation of their 
amounts or positions (Figure 1C), we consider our paper to be 
the first step towards detecting SDs over ultra-low-density 
EEGs of variable positions, allowing more flexibility and much 
lower density in the clinical installation of EEG for non-
invasive SD detection. More importantly, the ultra-short 
processing time and the light weight of the model framework 
makes it the first real-time non-invasive SD detection 
framework for expanded clinical use and translation. 

 
Figure 3. The general framework for identification of SD over an EEG tracing from a single electrode.  
(Stage 1) The EEG of a scalp electrode first (A) undergoes bandpass to obtain (Stage 2) its AC segment and then calculated for (Stage 3) its (3.1) 
spectrogram images and (3.2) signal power vectors by (B.1) short-time Fourier transform and (B.2) overall power calculations in AC band respectively. 
These spectrogram images and signal power vectors were partitioned by 30-minute sliding windows. The partitioned images and power vectors were 
input into the (C) deep learning convolutional neural networks (C.1) 2-D image path and (C.2) 1-D vector path respectively before merged through (C.3) 
a feature merging block. The model would then produce (Stage 5) a series of binary outcome on whether there is any SD 30 minutes around each time 
point or not. This series of binary outcome would then be (D) summed through a 30-min sliding window to get (Stage 6) the confidence scores for the 
SD detection results and highlight the time position of the SD depression peak. 
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II. RELATED WORK 
EEG is a critical tool in diagnosing neurological diseases [35]. 

Due to the scarcity of human experts and the increasing demand 
for EEG interpretation [36]–[38], there has been a significant 
push for automated EEG analysis [39]–[41]. This automation 
aims to broaden and accelerate access to EEG's benefits, where 
multiple conventional strategies such as wavelet analysis, 
machine learning methods such as support vector machine, and 
advanced deep learning methods such as convolutional neural 
networks have been widely adopted [42], [43]. Specifically, in 
the realm of electrophysiology and disorders like epilepsy, 
machine learning and deep learning models have shown 
considerable promise. They have been extensively researched 
for various applications, such as differentiating between normal 
and abnormal EEG recordings [44], detecting seizures [45]–
[47], and identifying interictal epileptiform discharges (IEDs) 
[48]. These models have been particularly effective in detecting 
IEDs [49]–[52], with publicly available data aiding in their 
training and validation [53]. A recent publication has further 
expanded the scope of EEG analysis in epilepsy detection [54], 
showcasing a comprehensive approach validated across a 
broader patient population. This advancement marks a 
significant step in the field, enhancing the robustness and 
applicability of EEG-based diagnostic methods for epilepsy. 

However, it's important to note that spreading depolarization 
(SD) is distinct from these neurological diseases commonly 
addressed by these automated detection methods, in terms of 
their drastically different electrophysiological event timescales 
and features [55]–[57]. This prevents the wide success of 
machine learning and deep learning model developed for other 
diseases to be directly applicable, transferrable to, or 
benchmarked in non-invasive SD detection in EEG. 

In the specific context of non-invasive SD detection in EEG, 
there is no publicly available dataset and the reliable concurrent 
acquisition of EEG and ECoG from TBI patients are 
particularly difficult. Recent studies showed limited success 
using unrealistic assumptions, through adaptive thresholding 
via power envelopes [30], [33] or a ResNet-graphical neural 
network combo [34] on EEG power traces. This lack of 
extensive research in the field, rather than being a drawback, 
actually highlights the novelty and significance of our article's 
contribution in such emerging neurology field. Chamanzar et al 
[30], [34] achieved SD detection in simulations, but their fixed 
high-density EEG setup (40 electrodes per patient) isn't always 
feasible. Particularly, for ICU trauma post-surgery cases, it 
would be extremely difficult to fix multiple electrodes on the 
operated patient’s scalp reliably, and obviously a fixed map of 
EEG electrodes cannot be assumed for all patient populations 
[28], [32], which calls for a method allowing analysis per each 
single electrode without restricting electrode setup. Their 
method relies on constant EEG AC power offset [30] and SD 
signature power suppression, which clinical cases don't always 
follow. Despite validation on a small patient group [33], their 
power envelope-optical flow method overlooked broader 
clinical complexities, being sensitive to EEG amplitude outliers 
and causing many false positives (Figure 1B). 

For prompt SD detection and injury prognosis, real-time 
detection is vital. Past algorithms failed to deliver real-time 
results in standard clinical setups without GPUs [30], [33], [34]. 
Their power-based and optical flow approach takes 2 hours per 
CPU inference, delaying reporting. Use of GPU was able to 
accelerate the processing time to 5 minutes [33], but remained 
costly and not widely available for bedside clinical use. 

Moreover, their power envelope and optical flow approach 
[33] needs a 30-hour EEG window for decisions. Yet, gathering 
such extended, uninterrupted EEG of high quality for the 
model's inputs is impractical in real-world clinical settings. 

III. METHODS 
To address the need for more adaptive SD detection 

framework with the extra observation dimension and the 
primary goal for early SD detection and to facilitate instant 
brain injury prognosis, we developed the general framework for 
generation of the frequency band restricted spectrograms and 
identification of SD over an EEG tracing from a single electrode 
as described in this section (Figure 3).  

A. Generation of Frequency band restricted EEG 
Spectrogram and Temporal Power tracing 

Currently available methods only employ the 1-D time series 
of EEG for either identification of DC changes for SPC or 
signal power changes, where their limited success is prone to 
the incorrect assumption that EEG AC power offset is always 
constant (Figure 1B). It may worth notice that, for brain trauma 
patients, their frequency axis may exhibit specific changes at 
the time of SDs [29], [31], where additional considerations of 
power changes resolved over the frequency axis may offer us a 
new prospective for SD identification, particularly when the 
SPC or power changes are not visually significant over noises 
(Figure 2).  

The key impression of SDs in AC (0.5-45Hz) range is its 
sudden neural electrophysiological silence, which could be 
characterized by the signal power over time. To further exploit 
its implicit features over different frequencies, we resolve the 
EEG signal by short-time Fourier transform (STFT) to form 
spectrograms. 

STFT is a time-frequency analysis tool for non-stationery 
signal analysis, which partitions signals into temporal segments 
by windowing and apply Fourier transform on these. STFT of a 
signal 𝑠𝑠(𝑡𝑡) can be denoted as ℱ(𝜏𝜏,𝜔𝜔), as per Equation (1). 

ℱ(𝜏𝜏,𝜔𝜔) = � 𝑠𝑠(𝑡𝑡)ℎ(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑
∞

−∞
 (1) 

, where ℎ(𝑡𝑡) is the windowing function. The power spectral 
density over the spectrogram can then be defined as per 
Equation (2), which represents the power of EEG resolved at 
different time 𝜏𝜏 and frequency 𝜔𝜔. 

𝑃𝑃𝑠𝑠(𝜏𝜏,𝜔𝜔) = | ℱ(𝜏𝜏,𝜔𝜔)|2 (2) 
For this study, Hanning window was used in STFT for 

spectrogram rendering, with the time resolution set as 1 minute 
(to alleviate computing pressure in subsequent models while 
maintaining its latent information as SDs are usually much 
longer than that [23], [30], [34]) and at a frequency resolution 
of 1 Hz (to allow sufficient differentiation between frequency 
bands). (Figure 4A). Upon formation of the spectrogram, we 
then examined the signal power at different frequency bands. 
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Confirmed by the persistence spectrum of the signal (Figure 
4B), which shows the distribution of signal power at different 
frequencies, the EEG signals are much stronger in the delta 
frequency band (0.5-10Hz), which is a common feature of the 
brain injury [25]. This can be explained by the preserved but 
abnormal synaptic activity due to structural damage or 
reduction of cerebral blood flow [25]. Particularly, our data has 
its highest power around 1 Hz (Figure 4B). Thus, we extracted 
specifically the power arrays for the frequencies between 0.5 
and 1.85 Hz for evaluation of the frequency band carrying the 
greatest power spectrum with the greatest power changes while 
entering the SD. 

The generation of the temporal EEG power follow the same 
windowing function as STFT, where the total power within the 
AC frequency range in each time window is calculated. 

B. Windowing of the spectrogram and power vectors for 
model analysis 
For input into the model, we crop the spectrograms and the 
power vectors by a 30-min moving window for input into the 
model in Stage 3 (Figure 3.3), as it could usually cover most 
of each SD episode [32], so the model can consider if there is a 
SD within the given 30-min time window around each time 
point. Upon cropping, the frequency restricted spectrogram 
images become a series of 30 × 30 image arrays, and the power 
vectors become a series of 1-D arrays of size 30 

C. Network architecture and settings of the ultra-light-
weight SD detection model  

Upon generation and normalization of the spectrogram 
images and temporal power vectors, they got input into a series 
of convolutional neural networks (CNN) (Figure 3C).  

The clinical need for real-time online processing over bed-
side clinical machines mandates the light weight of the model 
and instant processing of results without high-end hardware 
such as GPU, which is not generally available in bed-side 
monitoring devices. Although Transformer or attention-based 
models may boost the model detection performance, large 
complex model is not appropriate for use in this clinical 
scenario, where they require GPU over the bed to process all 
these high frequency sampled EEG. For our developed model, 

the average inference time per each hour of EEG is 4 msec if 
with a GPU or 0.13 sec if with a CPU only, which fulfils the 
requirement for real-time bed-side processing. Even if adding 
the preprocessing time (0.08 sec per each hour of EEG in 
average), the total processing time is still less than 0.3 sec in 
average per each hour of EEG if with a CPU only. Further 
discussions of the model inference time are elaborated in 
IV.D.3). 

Inspired by a recent success in image-text embedding [58], 
we adopt similar network architecture for initial image and 
vector processing. The spectrogram images are input into 3 
blocks of 2D convolution layers with a kernel size of 3×3, a 
stride of 1×1 and the ReLU [59] activation function and a Max 
Pooling Layer with a stride of 2×2 (Figure 3C.1). Similarly, 
the power vectors are input into 3 blocks of 1D convolution 
layers with a kernel size of 3, a stride of 1 and the ReLU [59] 
activation function and a Max Pooling Layer with a stride of 2 
(Figure 3C.2).  

To merge the outcome of the image 2-D CNN chain and the 
vector 1-D CNN chain, the 
image 2-D CNN chain got 
reshaped into 1-D before it 
is concatenated with the 
final CNN of the vector 
CNN processing chain 
(Figure 3C.3). A further 
CNN is attached after 
concatenation for fusing 
features in spectrogram 
imaging and power vectors 
(Figure 3C.3). A summary 
of tensors in this CNN 
chain can be found in 
Figure 5.  

A binary outcome at Stage 5 is produced after the CNN fusion 
layer (Figure 3.4 and 3.5) and then analyzed through the 
method detailed in III.E. 

D. Restoration of windowed outcomes and generation of 
confidence scores 

It is often complained by the clinicians that they often fail to 
understand the rationale of decisions made by deep learning 
models. To support such need for clinical decision making 
further, in line with [60], we supply quantitative confidence 
scores in addition to the qualitative detection outcomes, which 
all previous methods fail to provide. 

As explained in III.C, each binary outcome refers to the 
existence of SD within 30min around that time point. 
Accordingly, for a SD peak, we would expect positive binary 
outcomes within the 30-min time frame around that peak, where 
a sliding summing window could help to highlight the position 
of the peak. Upon gathering all detection outcomes in a time 
series in Stage 5 (Figure 3.5), we use another 30-min moving 
window to add up the binary outcomes around each time point 
(Figure 3D). This will also create a 0-30 score at Stage 6 
(Figure 3.6) to give an impression of the model’s confidence of 
its SD recognition at a given time point on the EEG. 

  
Figure 5. Parameter details of the 
CNN detailed in Figure 3(C) 
 

(A) Spectrogram (B) Persistence Spectrum 

  
Figure 4. (A) Spectrogram of SD occurrences, where the power 
suppression could be seen clearly on the spectrogram (near 5th, 7th, 9th 
hour), and where a differential frequency profile could be observed 
during the SD-specific suppression and recovery of signal power. (B) 
Persistence Spectrum of a typical SD carrying EEG recording (Upper 
right corner: a zoomed in view for frequency band [0, 4] Hz). We could 
observe the signal power is the highest around 1 Hz. For both (A) the 
spectrogram and (B) the persistence spectrum: frequency limits: [0, 45] 
Hz; frequency resolution: 1 Hz; time resolution: 1 min 
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IV. PATIENT STUDIES 

A. Datasets and Experiment Details 
1) Patient Recruitment and Data Collection 

Two patients were enrolled at King’s College Hospital 
(London, UK). Inclusion criteria were the clinical decision for 
the neurosurgical craniotomy and age 18-80 years. Patients with 
Glasgow Coma Scores (GCS) under 4 with bilateral fixed and 
dilated pupils are excluded, as research monitoring in such 
patients is ethically inappropriate.  Patients were all in 
pharmacologically induced coma after sedation for ventilation 
and monitoring [63]. As patients were all in coma at the time of 
admission, written assent for study participation was sought 
from legally authorized representatives. Consents were 
subsequently acquired from the patients once their mental 
capacity was restored when followed up. This study was 
approved by the KCH Research Ethics Committee 
(Cambridgeshire South; 05/MRE05/7) and the UC Institutional 
Review Board (2016-8153). The research was conducted in line 
with the Declaration of Helsinki.  

As we need to have both EEG and ECoG connected to eligible 
patients, this added extra difficulty for the data collection. 
Although we attempted to collect EEG data from 9 patients, we 
only succeeded in acquiring EEG and ECoG data 
simultaneously from 2 patients, whereas the remaining patient 
population either had air injected subcutaneously or electrodes 
detaching during EEG monitoring, preventing reliable data 
collection. The patient demographics are described as below: 

Patient #1 is a 28-year-old female who had a road traffic 
accident and suffered TBI, who had been confirmed to have 17 
SDs while being monitored by ECoG. Patient #1 had been 
recorded for ECoG and EEG for 39 hours. Patient #1 recovered 
well with an extended Glasgow Outcome Scale of 6. Patient #2 
is a 48-year-old male who had an MHS, who had been 
confirmed not to have any SDs while being monitored by ECoG. 
Patient #1 had been recorded for its ECoG and EEG for 22 
hours. Patient #2 died. Although two subjects had different 
types of injuries, they had the same operation of craniotomy 
with their skull removed while being monitored. 

When concluding the surgery, a subdural electrode strip 
consisting of 6 platinum electrodes (10mm centre-to-centre, 
Adtech, Racine, WI, USA) was placed on the surface of the 
cortex. Subsequent to the conclusion of the surgery, EEG 
electrodes were placed as a dense array over the lesion region. 
Following the completion of the surgery, the probes were 
connected to monitoring in the intensive care unit (ICU) where 
data acquisition started. ECoG data was acquired through the 
amplifier Neuralink [64] (USA). ECoG and EEG data were 
recorded with LabChart software (ADInstrument, Sydney, 
Australia). At the of monitoring, both strips and depth 
electrodes were removed at the bedside using gentle traction. 
No complication was found to be associated with the placement 
or removal of the electrodes. 

We took signals from 2 ECoG electrodes and 4 EEG 
electrodes of Patient #1 and signals from 2 ECoG electrodes 
and 2 EEG electrodes of Patient #2 for the analysis below. Upon 
removing the EEG/ECoG segments with significant sudden 
drifting and artefacts, we have obtained a SD carrying 4-
channel EEG recording along with a 39-hour 6-channel ECoG 

from a TBI case (Patient #1). In Patient #1, we could label 12 
SD occurrence found in EEG with reference to the high 
resolution ECoG recording, as confirmed by the clinical 
electrophysiologist. We also have a 17-hour 12-channel EEG 
recording excluded from SD from a case with MHS (Patient #2), 
as confirmed by the clinical electrophysiologist. 

 
2) Pre-processing 

 The signature negative near-DC/DC (0.0001-0.01Hz) SPCs 
observable in ECoG are often hard to be observed [27]–[29], as 
(a) the capacitance in the skin acts as a DC remover to attenuate 
SPCs and (b) the usually applied pre-processing techniques 
such as signal high pass modules and drifting remover often 
silence these near-DC/DC components [30] (Figure 1(b)). We 
then only considered the AC frequency band (0.5-45Hz) for 
analysis, where frequencies higher than 45Hz are removed as 
well since it is close to the 220 Volt power supply’s 50 Hz 
frequency. Thus, we imposed a bandpass for all signals with its 
lower limit as 0.5Hz and its higher limit as 45Hz. Its high pass 
modules also remove the drifting of the EEG signal. We then 
removed any abnormally high spikes over the EEG tracings, 
which is usually considered as signal artefacts. The signal is 
then normalized before further processing to ensure the 
generalizability of the method. 

 
3) SD detection performance over augmented SD 
carrying EEGs 

As discussed in IV.A.1) it remains difficult to obtain co-
registered EEG and ECoG data from further patients, for the 
purpose of this paper, we need to generate further data through 
augmenting from these 2 EEG recordings to demonstrate the 
performance of our model. We took 6 SD carrying segments for 
augmenting the data for the training purposes and 6 SD carrying 
segments for augmenting the data for the testing purposes. Each 
generates 1,700 hours (containing 918 SDs) of EEG training 
data and 1,700 hours (containing 951 SDs) of EEG testing data. 
The exact strategy to augment these data is as detailed below. 

The simulated EEG data presented in previous studies either 
refer to the mathematical model of SD or is based on full band 
signal power suppression [30], [34]. Either of these two 
approaches failed to mimic the true SD profile over the 
frequency domain and is unlikely to truly reflect the fluctuating 
background noise of EEG. To generate SD carrying EEG series, 
we used the non-SD EEG tracing as the basis and add the SD 
signature AC power drop profile onto it by multiplying the SD 
carrying EEG segment onto the non-SD EEG in a weighted way 
with noises added on.  

For each segment of EEG to be augmented by the SD specific 
power suppression, the simulated SD carrying EEG segment 
can be denoted as 𝑠̂𝑠𝑠𝑠 as detailed in Equation (3). 

𝑠̂𝑠𝑠𝑠 = 𝐵𝐵𝐵𝐵𝐹𝐹0.5−45𝐻𝐻𝐻𝐻 �
1

1 + 𝛽𝛽
�
𝑠̂𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛼𝛼𝑠̂𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑠̂𝑠𝑆𝑆𝑆𝑆|

1 + 𝛼𝛼
+ 𝛽𝛽𝑛𝑛��� (3) 

, where 𝑠̂𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 refers to the normalized non-SD carrying EEG 
tracing, 𝑠̂𝑠𝑆𝑆𝑆𝑆 refers to the normalized SD carrying EEG segment, 
𝑛𝑛� refers to the normalized random noise and 𝐵𝐵𝐵𝐵𝐹𝐹0.5−45𝐻𝐻𝐻𝐻 refers 
to the bandpass limiting signal frequency between 0.5 and 45 
Hz. By calculating the weighted average across the SD 
attenuated EEG 𝑠̂𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑠̂𝑠𝑆𝑆𝑆𝑆| and noises 𝑛𝑛� through constants 𝛼𝛼 ∈
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[0,0.3] and 𝛽𝛽 ∈ [0,0.2], we then obtain a segment of non-SD 
EEG undergoing weighted attenuation by a true SD EEG power 
reduction profile with noises added on through a statistical 
weighted approach. The rest of the non-SD carrying EEG 
segments are also mixed and normalized with the noise with its 
weight constant 𝛽𝛽 ∈ [0,0.2].  

By doing so, the generated simulation of SD carrying EEG 
segments would exhibit different levels of SD signature power 
suppression and scalp mediated noises through alteration of the 
weighting constants, which ensuring the non-SD-specific EEG 
suppression can be inherited in the generated EEG for improved 
specificity analysis. 

To validate the genuinity of the simulated EEG segments, in 
reference with COSBID consensus guidance [20] in 
identification of SD in electrophysiology and in line with other 
common approaches in validating the simulated SD carrying 
EEG segments [30], [61], we plotted the EEG tracing on time 
domain and the leaky integral of the EEG power for 
examination of their features in line with COSBID guidance 
[20]. The electrophysiological features observed in the EEG 
wave and leaky integral of EEG power tracing satisfy the 
COSBID guidance prescribed features for a SD carrying EEG 
tracings [20], with the clinical electrophysiologists confirming 
of the validity of the generated SD carrying EEG segments 
(Figure 6).  

4) SD detection performance over non-SD EEGs but with 
brain injury 

Apart from testing over the augmented SD carrying EEGs, we 
also test the model over non-SD carrying EEG tracing, where 
these augmented EEGs are based on. We evaluated the model 
over these clinically acquired non-SD carrying EEG (17 hours 
× 6 channels) with alternating AC power offset to assess the 
model’s ability to differentiate between the SD specific power 
changes and non-SD neural signal changes, to establish its 
specificity over negative controls. 

5) Ablation test: Significance of employing both 
spectrogram imaging and power vectors for SD detection 
with high accuracy 

To further assess the necessity of inputting both spectrogram 
imaging and power vectors, we performed training and testing 
through either only the imaging path (Figure 3C.1, inputting 
just the spectrograms) or only the vector path (Figure 3C.2, 
inputting just the conventionally used power vectors) and 
computed evaluation metrics for each of them. This will also 
allow us to assess if the frequency band restricted spectrogram 
imaging can be used as a standalone biomarker. 

B. Evaluation metrics 
We evaluated the performance by 3 key metrics. 

1) Stage 5 binary outcome evaluation 
For stage 5 of the framework (Figure 3.5), where it generates 

a series of binary detection outcomes as to if there is a SD in the 
30-min time window around each time point, we calculated the 
specificity, sensitivity and accuracy of the generated binary 
results compared to the ground truth, as per Equations (4-6). 

, where TP=true positive, TN=true negative, FP=false positive 
and FN=false negative. 
2) Stage 6 confidence score evaluation 

For stage 6 of the framework (Figure 3.6), where it adds up 
surrounding binary results through the 30-min sliding window 
as per III.E, we calculated the Euclidean distance between the 
generated series of confidence scores and the expected series of 
confidence scores. The Euclidean distance 𝑑𝑑(u, v) between two 
1-D arrays u, v can be calculated as per Equation (7). 

𝑑𝑑(u, v) = ��|u𝑖𝑖 − v𝑖𝑖|2
𝑖𝑖

 (7) 

As discussed earlier, the expected series of confidence scores 
would have 30 at the peak of SD suppression and linearly 
descent to 0 15mins before and after the peak point. 
3) Stage 6 confidence peak visual comparison 

We also carried out visual inspection to count the true positive 
peaks (detection result peaks overlapping with the ground truth 
peaks), false negative peaks (where no detection result peak 
associated with a ground truth peak) and false positive peaks 
(where a standalone detection result peak is found with no 
ground truth peak associated) (Figure 7). With counts of true 
positives and false negatives, the specificity rate of detection 
result peaks could also be calculated from there.  

Sensitivity = TP/(TP+FN) (4) 
Specificity = TN/(TN+FP) (5) 
Accuracy = (TP+TN)/(TP+FN+TN+FP) (6) 

Classification examples for detection result peaks 
 (A) True Positive (B) False Negative (C) False Positive 
(1)  
Detection 
result 
peaks 

   

(2)  
Ground 

truth peaks 

Figure 7. Examples of classifications of (A) true positive peaks 
(detection result peaks overlapping with the ground truth peaks), (B) 
false negative peaks (where no detection result peak associated with 
a ground truth peak) and (C) false positive peaks (where a standalone 
detection result peak is found with no ground truth peak associated). 
 

(A) EEG with no SD (B) After augmenting SDs onto (A) 

    
(C) Leaky integral of power of (B), 
in line with COSBID consensus 
guidance [20] 

   
Figure 6. A typical example of (A) an EEG with no SD and (B) EEG 
augmented with SDs, following the method in IV.A.2). We could see 
variable AC power offsets in EEGs with no SD (A), where a specific 
identification of SD characteristic SD depression is the key to ensure SD 
detection specificity. (B) The generated SD carrying EEG simulated the 
typical clinical scenario where non-SD specific power offset fluctuations 
mixed up with the SD specific ones, reflecting more realistic 
observations of EEG over patients experiencing SDs. The time points of 
the SD start (STARTx) and end (ENDx) and the SD depression peak 
(SDx) are labelled on (B). (C) Leaky integral of power of (B), in line with 
COSBID consensus guidance [20] 
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C. Model Training Strategy 
The model is trained by Adam optimizer [62] and the loss of 

binary cross-entropy [63]. The hyperparameters were set as: 
learning rate= 0.001, 𝛽𝛽1=0.5, 𝛽𝛽2=0.5. All models are trained on 
a NVIDIA A100 GPU for 20 epochs with a batch size of 320. 

D. Results 
1) SD detection performance over augmented SD 
carrying EEG 

The performance of the ablated standalone image path model 
and the ablated standalone power vector path model over the 
augmented EEGs with SDs are shown in Table I. Visualization 
of the confidence scores generated are displayed in Figure 8A.  

 It suggested that our model has high specificity (0.9155), 
sensitivity (0.7095) and accuracy (0.8567) in producing binary 
outcomes for SD detection in Stage 5, although the ablated 
model with only spectrogram imaging input can offer higher 
sensitivity (0.8325). Our model offered the lowest Euclidean 
distance (1898.4) in confidence score generation in Stage 6. 
When viewed from the visualization of confidence score peaks, 
our model offered similar sensitivity (0.9848) in highlighting 
SD depression peaks in Stage 6 to the highest performing 
ablated model (0.9978) and the fewest false positive peaks.  

In Figure 8A, we could observe seldom appearance of false 
positive peaks of moderate confidence scores in our model, 
while the ablated ones gave much more false positive peaks and 
more false negatives. 
2) Model performance in excluding SDs over the non-SD 
EEG but with brain injury 

The performance of our model, the ablated standalone image 
path model and the ablated standalone power vector path model 
over the EEG with no SD can be found in Table II. 
Visualization of the confidence scores generated can be found 
in Figure 8B.  

It is suggested that our model performed the best with the 
highest specificity (0.9369) in producing binary outcome series 
in Stage 5, smallest Euclidean distance (363.4), and the fewest 
false positive peaks (31) in Stage 6. 

In Figure 8B, we could observe seldom appearance of false 
positive peaks of moderate confidence scores in our model, 
while the ablated ones gave much more false positive peaks. 
3) Ultra-Quick Inference Time 

 To demonstrate the light weight of the model to fulfil the 
clinical objective of instant processing and real-time monitoring. 
We re-run the model inference on a GPU of a lower 
specification, NVIDIA T4 16 GB, which is more widely 
available, to assess model’s performance for more expanded 
use. A batch size of 30 is selected as the model require a 
detection outcome array of 30 minutes for Stage 6 confidence 
score calculations.  

To further simulate the real-world clinical setting, we also 
infer the model over the machine without the use of GPU, where 
our machine is equipped with a CPU of Intel Xeon CPU of 2.20 
GHz. The batch is reduced to 1 to further save CPU memory. 

The model was input with 98,900 minutes of EEG, where we 
took their average time of processing. The results can be found 
in Table III. We could observe that all model cost very little 
time for processing using a low specification GPU, 3-4 
milliseconds per each hour of EEG in average. Even without a 
GPU, all model’s average inference time are below 0.2 second.  

 Even adding up with the average preprocessing time of 0.08 
second per each hour of EEG, the total processing time to 
process each hour of EEG remain less than 0.3 second, which 
is extremely fast and almost instant. Such ultra-quick 
processing time showcased its potential for expanded clinical 
use and implementation of such algorithms. 

V. DISCUSSION 
This study introduces a novel ultra-light-weight dual-path 

model for non-invasive SD detection from EEG using 
frequency-restricted 2-D spectrogram images and 1-D power 
vectors. Our method performance surpasses conventional EEG 
signal power vectors. Unlike prior approaches [30], [33], [34], 
our model adopts a single electrode approach, accommodating 
flexible EEG map positioning without density assumptions or 
AC power offset. Notably, our efficient model processes in <0.3 

TABLE II 
PERFORMANCE OF THE MAIN MODEL AND OTHER ABLATED STANDALONE MODELS 

OVER EEG WITH NO SD 
Model inputs Stage 5 

binary results 
Stage 6 

confidence scores 
Stage 6 

confidence score peaks 
Specificity Euclidean Distance False positives 

Spectrogram imaging only 0.8570 605.2 53 
Power vector only 0.8850 550.7 39 

Spectrogram image + 
power vector 

0.9369 363.3 31 
 

TABLE III 
PREPROCESSING AND INFERENCE TIME OF THE MODEL FRAMEWORK IF 
WITH NVIDIA T4 GPU AND IF WITH CPU ONLY OVER EEG INPUT OF 
98,900 MINUTES. 
 Total (98,900 mins) Average time per hour 
Preprocessing 129 sec 0.08 sec 
Model inputs With NVIDIA T4 GPU CPU only 

Total (98,900 
minutes) 

Average 
per hour 

Total (98,900 
minutes) 

Average 
per hour 

Spectrogram imaging 
only 

5 sec 3 msec 190 sec 0.12 sec 

Power vector only 5 sec 3 msec 141 sec 0.086 
sec 

Spectrogram image + 
power vector 

6 sec 4 msec 220 sec 0.13 sec 
 

 

TABLE I 
PERFORMANCE OF THE MAIN MODEL AND OTHER ABLATED STANDALONE MODELS OVER AUGMENTED SD CARRYING EEG 
Model inputs Stage 5 binary results Stage 6 confidence scores Stage 6 confidence score peaks 

Specificity Sensitivity Accuracy Euclidean Distance No. of True 
positives 

No. of False 
Negatives 

No. of False 
positives 

Sensitivity 

Spectrogram imaging only 0.8078 0.8325 0.8148 2364.2 949 2 155 0.9978 
Power vector only 0.8559 0.6175 0.7879 2655.7 893 58 185 0.9390 
Spectrogram image + power vector 0.9155 0.7095 0.8567 1898.4 941 10 113 0.9848 
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sec per EEG hour, with just 30 mins of monitoring required for 
a decision. This offers broader clinical access for EEG-based 
SD detection compared to lengthy methods [34]. 

A. Performance Analysis 
This dual-path model has been evaluated on SD carrying EEG 

and EEG with no SD. We found the method exhibits extremely 
high specificity and competent sensitivity for EEG based non-
invasive SD detection (Table I, Figure 8A). On EEG with no 
SD, the dual-path model showed high specificity, 
demonstrating its ability to differentiate between SD-specific 
and non-SD-specific EEG power change (Table II, Figure 8B), 
which is the usual limitation of previous method with only 
power vector input [33]. 

The model's lightweight nature extends its use on diverse 
bedside machines, benefiting more patients. Unlike prior 
models, ours achieves real-time SD detection without needing 
high-end hardware like GPUs. It makes decisions in <0.3 sec 
(average per EEG hour), with just 30 mins of continuous 
monitoring. This contrasts with the conventional method's 2-
hour inference and 30-hour EEG requirement. Our model 
represents a significant step towards real-time non-invasive SD 
monitoring. 

B. Significance of employing both spectrogram imaging 
and power vectors for model input  

Through comparing our image-vector dual-path model with 
the two ablated models (each with either the 2-D spectrogram 
image or the 1-D power vector as the sole input), we 
demonstrated the superiority of the dual-path model over 
single-path models for its higher specificity and accuracy and  
competent sensitivity (0.9848) for SD depression peak 
visualization and its shortest Euclidean distance to the expected 
confidence score distribution in Stage 6 (Table I, Figure 8A). 
When assessed over EEG with no SD, the dual-path model 

exhibited the highest specificity and the smallest confidence 
scores for false positives, demonstrating its high specificity 
over SD detection (Table II, Figure 8B). 

C. EEG spectrogram as a new reliable independent 
biomarker for SD 

This also demonstrated the ability of the spectrogram imaging 
as a standalone biomarker for SD detection with the highest 
sensitivity (0.9978) for SD depression peak visualization, 
although with a much lower specificity. When compared with 
the conventionally used power vector when it is used as a 
standalone biomarker, the spectrogram imaging showed a much 
higher sensitivity and accuracy in SD detection and a lower 
Euclidean Distance to the expected confidence score 
distribution (Table I). Although the model with spectrogram 
input alone led to a lower specificity rate when generating Stage 
5 binary outcome series, the subsequent summation windowing 
process made its count of false positive peaks to be lower than 
the output from the model with power vector alone at Stage 6. 
With a lower count of false positive peaks and higher sensitivity 
in confidence peak generation at Stage 6, by this study we can 
safely suggest the superiority of spectrogram imaging over the 
conventionally used power vector. This can be seen in the 
visualization of the confidence scores generated (Figure 8A). 

Although Table II showed the model with standalone 
spectrogram image input had more false positive peaks and 
longer Euclidean distance from the expected confidence score 
distribution, if we calculate the average Euclidean distance per 
false positive peaks, we found the average Euclidean distance 
per false positive peak is lower for the model with standalone 
spectrogram inputs (11.4) than the one with the standalone 
power vector input (14.1). This illustrated the spectrogram 
image input model’s lower confidence towards its false positive 
result peaks, making the false positive peaks easier for 
exclusion upon further thresholding.  

 
Figure 8. (a-f) Visualization of confidence scores of example cases for (A) EEG with SD and (B) EEG with no SD through ablated models with 
either (1) only spectrogram image input or (2) only power vector input, (3) our designed model combing both image and vector inputs, 
compared to the visualization of the (4) expected confidence scores, and (5) EEG of these example cases. 
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D. Towards balancing specificity and sensitivity of SD 
detection and illustrating the strength and time duration of 
each SD: thresholding on the confidence scores 

The continuity of the confidence scores generated offer 
clinicians extra support when assessing the detection outcomes, 
while giving us another opportunity to re-analyze the results 
and to re-balance the specificity and sensitivity of SD detection 
through setting thresholds over the confidence score generated. 
In Figure 9, we can see that, if a typical confidence score series 
is thresholded, thresholding confidence scores can help to 
calibrate the position of the SD peak, improving localization of 
the peak point (Figure 9: Red and white arrows). Thresholding 
can also filter out low-confidence false positive peaks (Figure 
9: Pink and yellow arrows), which can also be seen when the 
models were tested over EEGs with no SD (Figure 10). 
However, thresholding of an inappropriately higher level can 
turn true positive peaks of moderate confidence levels into false 
negative results (Figure 9: Green and blue arrows), where a 
more careful choice of a fixed threshold level upon further 
expanded studies is recommended. 

Beyond binary SD detection, thresholding can reveal SD 
duration (or width) for each episode. Where more adaptive 
thresholding methods should be used to define SD width 
considering score trend and strength. Confidence scores can 
also relate to AC power depression and SD strength, pending 
validation on larger datasets. 

E. Clinical contribution, limitation, and future work 
This model provides a computationally light-weight 

processing method for real-time detection of SDs over EEG, 
which has demonstrated its efficacy for SD detection.  

In the clinical context of neurocritical monitoring, real-time 
SD monitoring and instant brain injury prognosis is the key. The 

ultra-short processing time of <0.3 sec per each hour of EEG in 
average and the light weight of the model framework makes it 
the first real-time non-invasive SD detection framework for 
expanded clinical use and translation. 

Our single electrode approach also provides early evidence 
that multiple electrodes may not be necessary for SD detections. 
As part of the proposal, we introduced a new biomarker – 
spectrogram for additional dimension for consideration and 
processing, which outperforms the conventionally used 1D 
series power vectors in SD detections per our results. We would 
then recommend the use of spectrogram to extract extra SD 
specific features over the feature axis.  

We showed that, with a non-standard dense map of EEG 
electrodes, SDs should be present in recorded EEG signals in a 
clearly defined way. Furthermore, the proposed detection 
model showed that SDs can be clearly identified specifically. 
Therefore, in principle the model should be easily transferable 
for screening other patients. For the model’s further 
generalizability and transferability, the following extensions 
will need to be made – (1) having patient populations with more 
diverse injury types (TBI, MHS, and aSAH cases); (2) 
obtaining data from different vendors (i.e., different kinds of 
electrodes from different manufacturers and different 
amplifiers); (3) evaluating our method with multiple clinical 
centers (to account for variations in clinical practice). This 
would then need to be repeated in a larger number of patients to 
build a compelling clinical case for the use of our methods.  

In this study, we calculated the evaluation metrics for all SDs 
without further classifying SD subtypes. We anticipate further 
study will calculate their evaluation metrics for each type of SD 
(isolated, continuous and intermediate [25]) to facilitate a more 
extensive understanding of the model’s prediction outcome. 

We recognise that the craniectomy (i.e. removal of the bone 
flap before surgical closure) of the patients may have facilitated 
the cortical potentials reaching the scalp electrodes and thus 
discovery of these SD signature events in EEG. However, the 
breach effects associated with the craniectomy for amplification 
of EEG signals is of concern more for higher frequency 
activities such as in alpha frequency band (8-12 Hz) [64], [65], 
whereas we only used the frequency band between 0.5 and 1.85 
Hz as described in III.B, so we do consider the aforementioned 
concern unlikely. In contrast, the craniotomy (where the bone 
flap is replaced) will most likely leave a substantial volume of 
air beneath the bone flap, insulating scalp electrodes from brain 
electrophysiology, which may bring challenges to read EEG 
from these patients. 

It should also be noted that in this study the EEG electrodes 
were placed on the sculp with the underlying skull removed 
during the data acquisition, which might facilitate the EEG 
signals as well and enhancing the results. However, as there is 
abundant evidence suggesting that the key EEG suppression 
pattern can still be observed in EEG even though the skull is 
intact [29] or bone flap is restored [24], [25], we are confident 
that the model will work for patients with intact or restored 
skull, despite of possible extra training and fine tuning. 

In this study, we only had patients with low GCS scores 
enrolled. We are also keen to understand the effects of SD for 
patients with high GCS and for patients who are not in drug 
induced coma, as their EEG distribution across different 

 
Figure 10. Number of false positive result peaks (Stage 6) if 
thresholded with different levels 

 
Figure 9. Visualization of confidence scores thresholded at different 
levels for potential improvement of specificity and sensitivity. (a) Red 
and white arrows: Thresholding confidence scores can help to 
calibrate the position of the SD peak, improving localization of the 
peak point. (b) Pink and yellow arrows: Thresholding can also filter out 
low-confidence false positive peaks. (c) Green and blue arrows: 
However, thresholding of an inappropriately higher level can turn true 
positive peaks of moderate confidence levels to false negative results. 
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frequency bands will be markedly different. By having higher 
GCS scores, voluntary movements may affect the EEG tracings, 
which we may need to re-train the model or even adopt an even 
more complex model for SD identifications. 

Moreover, more data from patient with no SDs may be 
needed, for further justification of the specificity of the model 
for clinical use. 

VI. CONCLUSION 
This study presents a novel image-vector dual-path model that 

simultaneously processes 2-D EEG spectrogram imaging and 
1-D EEG temporal power vector for non-invasive SD detection 
from EEG. A unique approach transforms 1-D EEG into 2-D 
spectrogram, boosting detection efficacy with an added 
frequency axis. Unlike prior methods [30], [33], [34], our 
technique doesn't constrain EEG mapping, density, or assume 
AC power offset. Our lightweight model is a first step for real-
time monitoring and instant SD detection, benefiting broader 
clinical use. We highlight frequency-restricted spectrogram 
imaging's superiority as a standalone biomarker compared to 
conventional EEG signal power vectors. Recommending its use 
for EEG-based SD detection, it adds a frequency dimension to 
SD observation. 
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