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Multiscale Event-Based Mining in Geophysical

Time Series: Characterization and Distribution of

Significant Time-Scales in the Sea Surface

Temperature Anomalies Relatively to ENSO

Periods from 1985 to 2009

Bertrand Saulquin, Ronan Fablet, Grégoire Mercier, Hervé Demarcq, Antoine Mangin, 
and Odile Hembise Fanton d’Andon

Abstract—In this paper, one-dimensional (1-D) geophysical time
series are regarded as series of significant time-scale events. We
combine awavelet-based analysis with aGaussianmixturemodel to
extract characteristic time-scales of 486 144 detected events in the
Sea Surface Temperature Anomaly (SSTA) observed from satellite
at global scale from 1985 to 2009. We retrieve four low-frequency
characteristic time-scales of Niño Southern Oscillation (ENSO) in
the 1.5- to 7-year range and show their spatial distribution. High-
frequency (HF) SSTA event spatial distribution shows a depen-
dency to the ENSO regimes, pointing out that the ENSO signal also
involves specific signatures at these time-scales. These fine-scale
signatures can hardly be retrieved from global EOF approaches,
which tend to exhibit uppermost the low-frequency influence of
ENSO onto the SSTA. In particular, we observe at global scale a
major increase by 11% of the number of SSTA HF events during
Niño periods, with a local maximum of 80% in Europe. The
methodology is also used to highlight an ENSO-induced frequency
shift during the major 1997–2000 ENSO event in the intertropical
Pacific. We observe a clear shift from the high frequencies toward
the 3.36-year scale with amaximum shift occurring 2months before
the ENSO maximum of energy at 3.36-year scale.

Index Terms—Distribution of the sea surface temperature
anomalies events related to the ENSO periods, event-based
mining in large geophysical datasets (big data), geophysical time
series as series of significant time-scale events.

I. INTRODUCTION

M ANY INFORMATION sources, including instrumental

in situ data records and satellite observations, highlight

the great variability and the nonstationarity of the earth’s climate

over a wide range of time-scales from months to decades. The

most widely used technique to investigate the spatiotemporal

variability of climate-relevant time series, such as temperature

[1] and wind [2], relies on the empirical orthogonal functions

(EOFs) [3], also referred to as principle component analysis

(PCA) in the literature. This method combines the extraction of

the main deformation modes of the covariance (correlation) of a

univariate or bivariate [singular value decomposition (SVD)]

datasets and the analysis of the time correlation of these principal

modes with potential causing factors. An introduction to univar-

iate and multivariate EOF analysis may be found in [4] and a

thorough review of advanced EOF-based methods along with

intercomparisons is presented by Bretherton et al. [5]. These

EOF-based analyses, however, suffer from intrinsic limitations,

the main one being the assumption that the considered processes

are stationary. Nevertheless, geophysical dynamics widely in-

volve nonstationary processes (e.g., emergence of extreme

events including, e.g., large Niño events, time shifts of seasonal

cycles, propagation phenomena, and trends), which may hardly

be characterized as stationary. Environmental data also involve

strong autocorrelation level [6]. For instance, a positive anomaly

in the observedwind or temperature at a given day (week) is often

associated with similar conditions the following days (weeks).

This natural autocorrelation is the result of short time and local

events but also of large-scale signals such as, e.g., the well-

known El-Niño/La-Niña oscillation [7], [8]. Such autocorrelated

level clearly affects the determination of correlation significance

level used as input of the EOF [9]. Both nonstationarity and

autocorrelation may affect the interpretation of the extracted

principal modes. Nevertheless, these aspects are often overlooked

byEOF-based approaches.Besides, EOF is also known to be prone

to outliers [9] and can hardly reveal fine time-scales signatures,

which typically involve greater nonstationary variabilities.

Wavelet analysis is particularly appealing to address these

issues. In contrast to EOF-based approaches, wavelet analysis
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actually addresses the decomposition of the fluctuations exhib-

ited by nonstationary signals. An introduction to wavelet analy-

sis related to climate research is given by Torrence and Compo

[7]. Wavelet analysis has been used to investigate global climate

changes in sea surface temperature (SST) [10], [11] and inter-

actions between physical parameters such as SST and sea surface

height (SSH) [12]. While EOF-based schemes aim at extracting

the main patterns of the covariance (or correlation) structure,

wavelet analysis identifies and characterizes local time-scale

patterns. The correlation between two processes can also be

decomposed in the time-scale domain based on the wavelet

coherency spectrum [7], [13].

In this paper, we further investigate wavelet analysis for

geophysical time series to develop an event-based representation

and analysis of a geophysical dataset. Formally, we regard a time

series as a collection of significant elementary time-scale events

and use an unsupervised clustering method, namely a Gaussian

mixture mode (GMM) [14], to characterize the significant time-

scales of the dataset.

To illustrate our approach, we study the SST anomalies

(SSTAs) observed over the globe from 1985 to 2009. First, we

characterize four characteristic low-frequency patterns in the

SSTA time-scale distribution and study their space and time dis-

tribution regarding the ENSO modes. We also focus onto the

high-frequency (HF) SSTA and show a strong spatial signature

of ENSO.Usually, only the low frequency in the SSTA (from 1.5

to 8 years) is attributed to ENSO [8], [15] and previous works

(e.g., Enfield [15]) use an EOF decomposition of the filtered

SSTA in the 1.5- to 8-year range. We underlie here that ENSO

events also depict HF signatures in the SSTA. This paper does

not support a full description of the ENSO phenomenon, but it

uses knowledge on its interactions with the SSTA to illustrate the

added value, compared to standard methods, of both the decom-

position of the time series using an events-based framework and

the proposed data mining approach.

II. EVENT-BASED ANALYSIS OF GEOPHYSICAL TIMES SERIES

A. Wavelet-Based Extraction of Elementary Time-Scale Events

Wavelet analysis aims at characterizing nonstationary sig-

nals, i.e., signals whose statistical characteristics (e.g., mean

and variance) may change over time. From the decomposition

of a one-dimensional (1-D) signal in the time-scale domain,

significant frequencies can be detected in any given time

interval. Such decompositions typically achieve a better detec-

tion and description of the characteristic time-scale variabilities

of the observed phenomenon [7] and represent a real added

value to unmix nonstationary scale-dependent processes com-

pared to classical covariance-based analysis (e.g., EOF-based

schemes [3] and autoregressive models [16]). Formally, the

wavelet transform of a 1-D signal consists in computing the

complex wavelet coefficients as the projection of

the signal onto scaled and translated versions of the selected

mother wavelet [17]

where s is the time-scale, t and T time instants, and stands

for the conjugate complex of the mother wavelet . Since the

wavelet transform computes the similarity between the wave-

lets and the signal, the choice of the mother wavelet is impor-

tant. SST is often modeled using harmonics [19] and Gu and

Philander [17] suggest that the ENSO signalmay be represented

by sinusoids. This supports the choice of the Morlet wavelet,

stated as a time-windowed pure harmonic component. The

wavelet power spectrum of the time-scale decomposition (1)

is defined as

Here, we propose to model the studied geophysical process

as a collection of significant elementary time-scale events.

Formally, this amounts to viewing the spectrum as a sum of

K individual events and a red noise

where is the detected event j, , a theoretical

red noise Fourier power spectrum [7], whose relevance,

compared to the white noise model, is acknowledged for

geophysical processes (a positive anomaly in the observed

temperature on a given day is often associated with similar

conditions the following days). The first-order red noise is

characterized as

where is the lag-1 autocorrelation, i.e., the mean correlation

between samples at the current and preceding time steps. is a

white noise process with zero mean and variance . If

(4), it resorts to the white noise model. For a given time series,

we use a robust estimation of the noise model parameters,

i.e., autocorrelation coefficient [20] and variance [21].

Regarding the significance level, we follow Torrence and

Compo [7] who showed that if the original signal’s Fourier

components are normally distributed, then the wavelet power

spectrum P is distributed. The associated 95% confidence

level is then obtained using

>

where is the variance of the noise model (in practice, we used

a robust estimation of the variance of the time series) and is

the chi-square distribution with two degrees of freedom.

is the theoretical Fourier power spectrum of the red

noise

Fig. 1 shows the distribution of the theoretical Fourier power

spectrum (6) for both a red ( , red curve) and a white

noise ( , blue curve). Their corresponding dashed lines

represent the 95% confidence level (5) for value set to 1. As

illustrated (Fig. 1), if the autocorrelation of the noise is ignored

in the analysis, it typically leads to an over-detection of the
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low-frequency component of the signal and an under-detection

of its HF component.

To match the time-scale dimension of the wavelet power

spectrum (2), the theoretical 1-DFourier power spectrum

(6) is expanded for each time step t

Our implementation of the wavelet analysis involves 69

time-scales ranging from 0.2 to 8.5 years:

with (2months) and the time step

(1 month) determine the smallest time-scale (2 months) and J the

largest scale (8.5 years).

The determination of the elementary time-scale events from

the wavelet spectrum [22] (see Section III-C for an

example of wavelet power spectrum) involves the extraction of

local regions of interest as maximal level-sets [23], [24], i.e.,

areas of thewavelet spectrumwhich depict an energy level above

the significance level [6]. In our implementation, we first detect

all the significant local maxima [22] in the valid part of the

wavelet spectrum, i.e., out of the cone of influence [7], and then

determine their associated maximal level-set. A maximal level

set is the largest time-scale area in the spectrum, which contains

only onemaximum of energy. Finally, an ellipse is fitted onto the

selected spectrum area (event).

Each ellipse is described by its time and time-scale extensions

and the position of its center (local maximum of energy). Ellipse

axes refer to the main axes of the time-scale covariance, which

are, even if not addressed in this paper, directly linked to the

frequency modulation observed during the propagation of the

event [13].

B. Event-Based Mining of the Event Database

Our event-based mining strategy involves an unsupervised

analysis of the time-scale distribution of the elementary events.

This distribution is modeled as a mixture of Gaussian modes. By

nature, when considering time-scale analysis, occurrences of

HF events are greater than those at low-frequencies. This natural

distribution of the scale of the events is referred in the literature

as a fractal distribution [25]. To account for this scale-dependent

sampling, the mixture model involves a scale-dependent nor-

malization factor. Formally, the considered normalized mixture

model resorts to

where is the scale-related normalization accounting for

the global scale-dependent sampling of the elementary

events, I is the number of modes (Gaussians), the prior of

the mode i of the mixture, N the normal probability density

function (PDF) of the time-scale events with mean , and

standard deviation

An exponential distribution for is proven meaningful

(see Section IV-D)

To infer the parameters of the mixture model, we first fit the

normalization factor and in a second step, mixture model

parameters and are estimated using an EM (Expectation–

Maximization) procedure [26], which aims at maximizing

(9) or minimizing the log likelihood

For a given initialization for model parameters, the EM

procedure iterates expectation steps (E-step), which compute

the posterior likelihoods given current model parameters,

and maximization steps (M-step) to update the model para-

meters given the posteriors. The algorithm iterates until

numerical convergence < . The esti-

mation of the number of modes of the mixture model proceeds

as follows: given 15 initial modes in the mixture model, only

the modes with > year are kept in the model after each

EM step.

III. APPLICATION TO THE SATELLITE-DERIVED SSTA

OBSERVED FROM 1985 TO 2009

A. Pathfinder Dataset

Satellite-derived SST data are extracted from the global

AVHRR Pathfinder SST v5.2 [27] daily gridded product

(http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/). To

avoid diurnal effect, we used the data acquired at nighttime.

A quality control was performed by selecting pixels with a

quality flag level greater than 3. This quality flag is provided

in the Pathfinder v5.2 product, and its level was determined using

Kilpatrick studies [28]. First, the estimation of the SSTA in-

volves the estimation of monthly mean SST fields at 36 km

Fig. 1. Theoretical Fourier spectrum (6) as a function of the period for a white
noise (blue curve) and a red noise (red curve), this latest being the representative
of a geophysical time series. In dashed lines, the corresponding 95% confidence
levels (5).
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resolution. Aminimum of 30 observations per grid cell is used to

estimate the average. The seasonal signal (climatology) must be

then removed from the SST to obtain the SSTA. The harmonic-

based estimation of a climatology of is more accurate than the

simple average estimation [30]. Hence, for each time series, a

local climatology composed of four harmonics and a linear

trend [29] is estimated and subtracted from the SST to remove 12,

6, 4, and 3 months periodicities

Finally, SSTA monthly fields were spatially averaged on a

grid. The resulting studied SSTA dataset is a

matrix. We removed land cells and obtained 32 047

continuous time series of 300 months (no missing data) with

a view to characterizing the spatiotemporal variability of the

SSTA at global scale from 1985 to 2009. Fig. 2 shows the

standard deviation of the monthly SSTA for the 1985–2009

period. It highlights three types of regions of low-frequency

variability: the equatorial pacific up to (and in a less

pronounced way the equatorial Atlantic), the temperate regions,

mostly of the northern hemisphere, with a maximum amplitude

in the north Pacific gyre and the north-western Atlantic gyre, and

the equatorial borders of the major upwelling areas.

B. Multivariate Enso Index

The Niño/La Niña events have been thoroughly addressed in

the literature and the readermay refer to ñhttp://elNiño.noaa.gov/

as an interesting entry point to understand the ENSO and its

regional impacts. The low-frequency variability in the SSTA can

be associated with low-frequency atmospheric climatic varia-

tions. As a peculiar example, El-Niño-La-Niña events relate to

oceanic-atmospheric oscillations of the equatorial Pacific [8].

Among the numerous ENSO-related indexes, we consider the

Multivariate ENSO Index (MEI, http://www.esrl.noaa.gov/psd/

enso/mei/), which is based on six observed variables over the

tropical Pacific: sea-level pressure, zonal and meridional com-

ponents of the surface wind, SST, surface air temperature, and

total cloudiness fraction of the sky. As suggested by the NOAA

(http://www.esrl.noaa.gov/psd/enso/mei/rank.html), Niño re-

gimes were defined as the periods for which the MEI index

value exceeded the percentile 30 of the positive values and

conversely, La Niña regimes as significantly negative periods

(below percentile 30 of the negative values).

C. Event Detection Examples in SSTA Time Series

Fig. 3 shows two SSTA time series (top) and the correspond-

ing wavelet power spectrum (bottom) in the East Pacific. We

superimposed the Niño periods (pink) and Niña periods (light

blue) onto the SSTA time series (top of Fig. 3). The detected

events in the power spectrum are delimited using ellipses. Events

refer to wavelet spectrum areas where the energy levels are

significantly greater, at 95% of confidence, than the local red

noise theoretical power spectrum (5) (Fig. 1).

In the eastern Pacific (Fig. 3), at , (center of Niño 3

region, http://upload.wikimedia.org/wikipedia/commons/9/9d/

Enso-index-map.png), 14 significant events were detected. Two

major events occur at the 3.36-year scale from 1986 to 1990 and

1998 to 2000. These two periods correspond to two well-known

major ENSO events, each characterized by a succession of a

strong Niño and Niña periods, the second period corresponding

to the strongest Niño-Niña event recorded. As expected, the

variability of the SSTA at low frequency is thus related to the

ENSO signal.

D. Characteristic Time-Scales of SSTA Elementary Events

From the 32 047 SSTA time series, we extracted 486 144

significant elementary events with estimated mean scales from

0.2 to 8 years. Fig. 4(a) shows the time-scale distribution of

these events. The exponential distribution [red curve, Fig. 4(a)]

is the normalization factor used to account for the scale-

dependent sampling (11). Fig. 4(b) shows the normalized

time-scale distribution. We divided our dataset of events in two

main categories

1) Events with mean time-scale lower than 0.4 year showed a

uniform normalized-scale distribution and were gathered

in a single category, referred to the HF category.

Fig. 2. The standard deviation of the monthly SSTA for the period 1985–2009
(source: Pathfinder v5.2).

Fig. 3. Illustration of the event-based analysis of SSTA time series. Top: SSTA
time series observed at and , i.e., in the eastern equatorial Pacific
known to be strongly affected by ENSO processes. Bottom: the corresponding
wavelet power spectrum and the detected significant elementary events delimited
by ellipses with the corresponding maximum of energy indicated by a cross. See
Section II-A and [23], [24] for details on the detection of the elementary events as
local significant spectrum areas with respect to the theoretical energy depicted by
a red noise with the same correlation and variance statistics than the considered
series.
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2) Events with scale greater than 0.4 year showed significant

Gaussians modes in the normalized-scale-distribution. We

fitted a Gaussian mixture model (9) to this dataset. The

parameter estimation needed 400 EM iterations, using as

convergence criterion a log likelihood threshold value of

. The estimated model involved seven Gaussian

modes [Fig. 4(b)].

Modes 3 and 4 showed mean scale of 0.70 and 1.54 years,

respectively. They both refer to the interannual variability, the

seasonal component (mainly the energy at a 1-year scale), being

removed in the SSTA. Modes 5–7 at scales 3.36, 5.03, and

7.11 years, respectively, contain the very low-frequency changes

in the SSTA caused by large space-time climatic signals such as

ENSO and are therefore considered as the three characteristic

low-frequency time-scales of ENSO influences onto the SSTA.

We will see later that the spatial distribution of the 1.54-year

scale events also relates to ENSO region of influence. For this

reason, we consider this scale as an additional characteristic

ENSO time-scale. Table I summarized the characteristics (mean

and standard deviation) of the Gaussian distributions for the

four low-frequency reference time-scales of the SSTA. Standard

deviations for reference scales greater than 1.54 are relatively

low ensuring a narrow distribution and a very good confidence in

these three classes.

E. Spatial Distribution of the SSTA Characteristic Scales

We investigate the spatial distribution of both the HF and

the low-frequency characteristic time-scales. From the inferred

Gaussian mixture model, we can evaluate the posterior member-

ship probability of the th event with a

mean time-scale to be assigned to the category

The spatial distribution of the given event category is

estimated for each pixel (time series) using the mean number

of events for

where K is the number of detected events in the time series. Fig. 5

shows the estimated for both the HF category [ <

year, Fig. 5(a)] and the characteristic time-scales at 1.54, 3.36,

and 5.03 years [Fig. 5(b)–(d)].

The HF events [Fig. 5(a)] contributed for 61% of the total

number of the detected events. Overall, the mean number of

detected HF events is of 10.1 over the globe for the considered

25-year period. Local maxima of 18 detections are observed on

the Peruvian shores, in the South-Eastern part of the Niño3

reference area, the western Mediterranean Sea, the Arabian Sea

and the Okhotsk Sea. The Arabian Sea is strongly affected by

monsoon winds reversal, whose effect on SST variability from

climatology is already known [32], whereas the high-latitudinal

areas are commonly affected by winter storms that increase the

SST variability, probably enhanced by the presence of the

continents. No similar pattern is observed in the high latitudes

of the southern hemisphere, probably because of the low inter-

ference of continental masses and the regularity of the circum-

polar winds. A minimum of three events are observed in the

equatorial part of the Eastern Pacific from 160 to , where

the variance in the SSTA ismostly driven by the low frequency at

1.54 and 3.36-year scale [Fig. 5(b) and (c)].

Fig. 4. Time-scale distribution and characteristic time-scales of the elementary
events extracted from the SSTA dataset. (a) The initial distribution across scales
of all of the extracted elementary events and the fitted exponential decay (11)
corresponding to the natural fractal distribution of the event time-scales [25].
(b) The observed normalized distribution (9) with the seven Gaussian modes
[(10), blue] found in the SSTA time-scale distribution. In red, the mixture model
(9) fitted onto the distribution.

TABLE I
MEAN AND STANDARD DEVIATION OF THE GAUSSIAN DISTRIBUTIONS FOR THE FOUR
LOW-FREQUENCY REFERENCE TIME-SCALES OF THE SSTA FROM 1985 TO 2009
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Events at 1.54-year scale [Fig. 5(b)] represent 11% of the total

number of events and show a mean number of two detected

events over the globe for the 1985–2009 period. Local maxima

were observed in the eastern part of the Niño3 area underlying

the signature of ENSO at this scale onto the SSTA. Local patches

clearly appear at this scale in the Gulf of Mexico, the North

Atlantic, the Namibian shores, the western Mediterranean Sea,

and the Okhotsk Sea. Eastern boundary systems (Humboldt and

Benguela coastal upwelling regions) specially show a higher

number of events, probably caused by a high interannual

variability.

The 3.36-year event category [Fig. 5(c)] accounts for 4% of all

elementary events with a mean number of 0.8 event over the

globe from 1985 to 2009. Its spatial distribution highlights

regions known to be strongly affected by ENSO: the central

equatorial Pacific, the central Humboldt system, and the northern

IndianOcean [3], [8], [32]–[34]. In the IndianOcean, we observe

that the low-frequency signature of ENSO onto the SSTA is also

observed at this time-scale. This influence of ENSO on the

monsoon in this region has been largely documented [32]–[34]

but often without time-scale analysis [34] or at multidecadal

time-scale [33].

The 5.03-year event category [Fig. 5(d)] represents 1.5% of

the elementary events with a mean number of 0.3 event over the

globe. The highlighted areas are the Western part of the Pacific

Ocean, the central Humboldt and southern Argentinian shores,

as well as, in general, the boundaries of the regions detected at

3.36-year scales.

ENSO signal is known to propagate [15] and, e.g., ENSO

signal generally occurs 4months after it starts in theWest of Peru

[15] and until 9 months in the Philippines [15]. Fig. 5(b)–(d)

suggests that the propagation of the ENSO signal includes

time-scale shifts as already envisaged by Torrence and Webster

[33]. As a peculiar example, in the Eastern intertropical Pacific

[Fig. 5(c)], the detected events at 5.03-year scale [Fig. 5(d)]

geographically surround the detected 3.36-year scale events

suggesting the shift between frequencies during the ENSO

propagation. We note that the proposed methodology (compare

Section II-B) suits well to address such hypothesis compared to

EOF method that does not involve such an explicit scale-related

analysis [15].

F. Density of HF and 1.54-Year Events With Respect to

ENSO Modes

To address possible HF signatures of ENSO from the analysis

of the space-time distribution of HF and 1.54-years event cate-

gories, we analyze the distribution of both HF and 1.54-year

event categories conditionally to the three ENSO conditions.We

use the estimation of the starting and ending times of the events

of category C to analyze their density D relatively to the ENSO

regime for normal, Niño, and Niña periods (compare

Section II-B for the ENSO mode definition)

where is the number of months spent in events of class

during period and the number of months of period

. The density is a time and energy normalized

representation of the energy observed for each and ENSO

mode. It aims at estimating the number of months where the

energy is significant at this time-scale compared to the local

conditions.

During normal periods, i.e., out of ENSO periods, the HF

[Fig. 6(a)] and the 1.54-year frequency events [Fig. 6(b)] show,

respectively, a global mean density values of 0.19 and

. Local maximum values of HF density

are observed in the West of Peru, in an extended area of the

Peruvian-Chile upwelling cell, i.e., for most of the Humboldt

upwelling system [43], in the Arabian Sea and the Okhotsk Sea.

The lowest density value ( ) is reached in

the eastern part of the Pacific Ocean. At the 1.54-year scale

[Fig. 6(b)], the West African Benguela region ( ;

) [37], characterized by a strong upwelling, displays a

high density of , whereas the East equatorial

Fig. 5. Spatial distribution of the estimated SSTA characteristic time-scales.
Mean number of events by time-scale categories from 1985 to 2009. (a) For the
HF event category ( < ); (b)–(d) for characteristic
time-scales of, respectively, 1.54, 3.36, and 5.03 years.
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Pacific shows similarly high values ( > ), but on a relatively

moderate extent. The Okhotsk and Mediterranean Sea show a

high density of event at the 1.54-year scale, whose origin is

probably linked to their specific regional climate and proximity

to anticyclonic areas of St. Helen and Libya [38].

To highlight the ENSO impact onto the time-scale distribution

of the SSTA, event density anomaly maps are computed for both

scales during Niño [Fig. 6(c) and (d)] and Niña periods [Fig. 6(e)

and (f)]. Fig. 6(a) and (b) being taken as the reference state.

During Niño periods [Fig. 6(c) and (d)], the intensity of the

easterlies decreases, and the warm pool of SST, usually observed

in the middle of the intertropical Pacific, moves Eastward. We

observe globally an increase by 11% and 6% of the HF and

1.54-year frequency events with respect to the density outside

ENSO events. A large positive anomaly in the HF density of

is observed over the East equatorial Pacific

from to [Fig. 6(c)], in the South Atlantic, the

Agulhas current [37], and inNewZealand. The last three patterns

correspond to the border of the southern ocean anticyclonic

regions, except for the eastern pacific, where the ENSO effects

dominate. A large positive anomaly of ,

i.e., an increase by 80%compared to the normalHF conditions, is

observed in the North East Atlantic. This is in agreement with a

known influence of El Niño in the North Atlantic [35], [39].

Negative anomalies in the HF density [Fig. 6(c)] are observed in

an extended area of the Chile-Peruvian upwelling system, sug-

gesting that the decrease in the easterlies intensity, and the

resulting decrease in the upwelling intensity, tends to reduce

the number of observed HF events in this area.

Niña periods [Fig. 6(e) and (f)] are characterized, in average,

by a moderate positive anomaly of 8% for HF events and an

increase by 6% for the 1.54-year scale, with nevertheless specific

spatial patterns. In contrast to Niño phases, the easterlies strength

increases during Niña periods [Fig. 6(e) and (f)] and the inter-

tropical Pacific surface warm waters move westward. The sig-

nature of the southern Humboldt upwelling is clearly visible at the

1.54-year scale, with a positive anomaly of

but off the stronger Peruvian upwelling. In the Guinea gulf and

Benguela upwelling ( and ), Niña periods

are characterized by a large negative anomaly in the SSTA events

at 1.54-year scale. In this region, the SSTA is mostly dependent

on the upwelling intensity, suggesting a specific stabilization of

its variability during Niña periods compared to normal periods

[Fig. 6(b)]. Off South Africa, we observe a clear opposite

influence onto the SSTA between the West and the East shores

for both Niño and Niña periods and both scales, a difference

already highlighted by Rouault et al. [37].

It is obvious that we cannot interpret all the local differences

observed in the time-scale distributions of the SSTA anomalies.

ENSO phenomena are particularly complex and involve both

atmospheric and oceanic processes, the SSTAbeing the resulting

interaction between these two factors.Other large scale processes

such as the Pacific Decadal Oscillation (PDO) [40], [41] and the

Atlantic Multidecadal Oscillation (AMO) [42] also affect the

Fig. 6. Observed spatial distributions of HF and 1.54-year scale event density for normal conditions [(a) and (b)], Niño [(c) and (d)], and Niña conditions [(e) and (f)].
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SSTA. It appears nevertheless that significant differences are

found in the observed distributions of the HF and 1.54-year

events time-scales SSTA between, on the one hand, the ENSO/

normal periods, and the other hand, the Niño and Niña phases.

This observation emphasizes the interest of dedicated time-scale

decomposition methods to improve our understanding of pro-

cesses at various spatiotemporal scales, the reference scales

exhibited from the GMM [Fig. 4(b)] being used to choose the

time-scales to be studied and discretize the dataset in an optimal

way (compared to the standard wavelet analysis).

G. Investigating Frequency Shifts in the SSTA and the

Intertropical Pacific During the ENSO 1997–2000 Event

Time-scale changes during Niño-Niña periods are suspected

to occur [33], [36], [44]–[46] and Compo et al. [44] underlined

that ENSO time-scale variability at decadal scales may differ

substantially from one ENSO event to another. An and Wang

[47] also showed a significant relationship between the observed

ENSO frequency and observed SSTA structures, underlying the

influence of these frequency shifts. To investigate the time-scale

variability of ENSO, we focus on the 1997–2000 ENSO major

event in the intertropical Pacific, the strongest ever recorded.We

clearly see in Fig. 5(c), the strong signature of this ENSO event in

the intertropical Pacific at 3.36-year scale. Fig. 7(a) shows the

distribution of the observed mean time (center of the events) at

3.36-year scale. The maximum in the distribution is observed in

August 1999, i.e., approximately in the middle of the Niño

period. To investigate frequency shifts during we estimate the

distribution of the variables and

where T3.36, T1.54, and THF are, respectively, the position

(time) of the event centers (maximum of energy) at 3.36-years,

1.54-years, and HF, collocated in the same spectrum. Fig. 7(b)

shows the probability density functions of both and ,

estimated using, respectively, 1302 and 1474 pairs of events.

In Fig. 7(b), we observe a clear increase in the number of 1.54-

to 3.36-year pair of events, with a maximum observed 2 months

later than the maximum at 3.36-years. Conversely, we observe a

decrease in the number of HF to 3.36-year pair of events in the

intertropical Pacific during the maximum of the ENSO 1997–

2000 event with a minimum observed 2 months before the

maximum at 3.36 years. This underlies the time-scale shifts

fromhigh to low frequencies during this ENSO. This observation

motivates the determination of both the reference scales and their

relative distribution to characterize ENSO compared to a classi-

cal sum of the spectrum energy between the 1.5- and 7-year

scales [8]: even if the 1.5–7 year sum of energy is constant in

time, the shift between scales provides a significant signature of

ENSO 1997–2000.

IV. CONCLUSION AND FUTURE WORK

We propose in this paper an event-based mining of geophys-

ical time series. We regard a time series as a collection of

significant elementary time-scale events complemented by a red

noise process. Our approach resorts to a normalized representa-

tion in variance of a time series through the detection of signifi-

cant time-scale events. This is of key interest for SST anomalies

that show a high spatial and temporal variability of the variance.

The estimation of the threshold in energy to detect a significant

event accounts for the autocorrelation and noise level of the local

time series. This is also a key issue for geophysical time series,

which depict naturally large autocorrelation noise levels (typi-

cally from 0.3 to 0.7 in the monthly SSTA dataset studied here).

Themethod is applied to the global SSTA observed from 1985

to 2009. We use a mixture of Gaussian to identify four reference

time-scales at 1.54, 3.36, 5.03, and 7.11 years. The spatial

distribution of these low-frequency reference scales highlights

the intertropical Pacific, the West of Peru, the Indian Ocean, and

the South of the Atlantic, regions known as being strongly

influenced by ENSO. In addition, we reveal that ENSO modes

are also characterized by significant space-time differences in the

distribution of HF events (typically, with characteristic time-

scale below 4months). We show that the HF event density of the

Fig. 7. (top) Temporal distribution of the maximum of energy (event centers)
observed in the intertropical Pacific at 3.36-year scale [knownas being a reference
time-scale for ENSO, compare Fig. 5(b) and [7]]. Highlighted in pink are theNiño
periods and light blue are the Niña periods. (bottom) Distribution of the observed
time shifts between the maximum of energy of the events at 3.36 and 1.54 years
(blue) and 3.36 and HF (red).
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SSTA increases by in mean 11% over the globe during Niño

events, with a maximum of 80% in the North East of Europe and

6%duringNiña periods. Even if all thisHF variabilitymay not be

attributed to ENSO, this large increase is a significant signature

of the Niño periods and is minimized by the EOF approach,

which tends to exhibit by construction the low-frequency corre-

lation modes. Our method also allows identifying times-scale

shifts in the energy spectrum in the intertropical Pacific during

the major 1997–2000 ENSO event with a maximum shift from

the HF toward the reference (3.36-year scale) observed 2 months

before the maximum of energy at the 3.36-year scale.

Compared to EOF-based time series analysis, the key contri-

bution of the proposed event-based approach is to account for

signal nonstationarity and noise autocorrelation in the time-

scale decomposition of geophysical processes variability. While

EOF-based schemes mainly reveal low-frequency patterns,

our wavelet-based approach can identify both low-frequency

and HF signatures and investigate their respective space-time

distribution.

Compared to classical wavelet approach, our main methodo-

logical contribution lies in the characterization of significant

times-scales in the SSTA taking into account the spatially

varying variance and the autocorrelation of each time series.

The classical wavelet approaches [7], [33] usually consider a

time-scale sum of the energy between 1.5 and 7 years to depict

the ENSO signatures in the SSTA [33]. Nevertheless, even if the

1.5- to 7-year sum of energy may be constant in time, the shift

between scales is also a significant signature of ENSO 1997–

2000 [Fig. 7(b)]. Compo [33] already pointed out that ENSO-

induced changes in extratropical 500-mb height variability are

time-scale dependent and An and Wang [47] showed also a

relationship between ENSO frequency changes and observed

structure in the SSTA, raising the crucial question of the choice of

discrete frequency bands. The present methodology addresses

this question providing a quantitative mean to unmix the pro-

cesses and study their time-scale relationships [Fig. 7(b)]. These

time-scale dependencies may evolve in time, which make them

particularly difficult to deal with from an extension of the cross-

wavelet spectrum [7].

Our event-based methodology opens new perspectives for the

analysis of multivariate time series such as wind and SST, light,

and chlorophyll-a. While we consider here the interaction be-

tween elementary events at different characteristic scales of the

same geophysical variable, this methodology could be applied to

two or more variables. Besides, the event-based detection could

also be considered to address long-term trend estimation [29] and

correlation analysis while being robust to the presence of low-

frequency nonstationary signals such as ENSO.
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