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Abstract—This letter proposes a novel relaying framework,
semantic-forward (SF), for cooperative communications towards
the sixth-generation (6G) wireless networks. The SF relay extracts
and transmits the semantic features, which reduces forwarding
payload, and also improves the network robustness against intra-
link errors. Based on the theoretical basis for cooperative commu-
nications with side information and the turbo principle, we design
a joint source-channel coding algorithm to iteratively exchange
the extrinsic information for enhancing the decoding gains at the
destination. Surprisingly, simulation results indicate that even in
bad channel conditions, SF relaying can still effectively improve
the recovered information quality.

Index Terms—Semantic-forward, cooperative communications,
semantic communications, relaying systems, side information.

I. INTRODUCTION

Cooperative communications are acknowledged schemes to
improve the transmission quality. One of the most important
categories of cooperative communications is in the form of
relaying. Although relaying requires extra energy and time
slot, it is an effective solution when the path-loss of the
direct link is very large. On the other hand, with the research
trend towards the sixth-generation (6G) wireless networks
[1], various transmission technologies have been invented,
among which semantic communications [2] are considered to
have a great potential in media transmissions. The semantic
encoder extracts the semantic features for transmissions [3],
while the semantic decoder works in a similar way to the
generative artificial intelligence (AI) [4]. Inspired by the prin-
ciple of semantic communications, this letter proposes a novel
framework, semantic-forward (SF) relaying, for cooperative
communications.

There have been already diverse relaying schemes in the
literature [5]. One simple relaying scheme is amplify-and-
forward (AF), in which the relay directly amplifies the signals
received from the source and then forwards to the destination.
In 1979, Cover and El Gamal [6] established the fundamental
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theorems of relaying systems, and proposed the decode-and-
forward (DF) and compress-and-forward (CF) schemes. In the
DF scheme, the relay decodes the received signals at the first
step, and then the recovered information sequence is forwarded
or discarded, respectively, depending on the recovery is error-
free or not. In the CF scheme, the relay quantizes and
compresses its received signals into the relay information to be
transmitted to the destination. Beyond DF, lossy-forward (LF)
[7] was proposed to overcome the drawback of DF, where
the communication resources are completely wasted once
errors occur in the relay information. In the LF scheme, the
relay always forwards the relay information to the destination
regardless of whether or not intra-link error is detected at the
relay. At the destination, a joint decoder recovers the source
information with the help of the relayed information, based
on the principle of correlated sources transmission.

Nevertheless, the previous relaying schemes are designed
for general types of information, which do not exploit the
features of information to improve the information efficiency.
By adopting the semantic communications, the system adap-
tively exploits diverse types of information. Hence, we aims
at designing a relaying systems where the relay forwards the
semantic information to the destination, i.e., SF relaying, so
that the destination can utilize the semantic information to help
recovering the source information.

The terminology of SF has been used for the first time in
[8], up to the authors’ maximum knowledge, where the source
transmits semantic information to the relay, and the relay
translates and forwards the processed semantic information to
the destination. However, there is no direct source-destination
link in [8].

Different from the relay-assisted semantic communications
in [8], this work proposes a semantic-assisted relaying system.
In our proposed SF relaying system, the relay reconstructs
the information received from the source at the first step.
Then, in spite of whether or not the reconstruction error-free,
the relay extracts the semantic information and sends it to
the destination. The semantic coding achieves robustness of
the relaying system against errors, and hence can reduce the
payload in the relay-destination (R-D) link. At the destination,
a joint decoder performs iterative decoding utilizing the Turbo
principle [9] that exchanges the extrinsic information between
the lossy information of the source-destination (S-D) link and
the semantic information of the R-D link. In this way, the
SF relaying can help for the lossless recovery of the original
information at the destinations, even in bad channel conditions.
With the pre-trained semantic encoder/decoder, the SF relaying
can reduce the payload of the R-D link in practical systems.
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Fig. 1. The principle of SF Relaying.

The contributions of this letter are summarized as follows:
• We propose a novel relaying framework, i.e., SF relaying,

which adopts semantic communications at the relay and
the destination to reduce the payload of the R-D link.

• We design a joint source-channel coding algorithm for
SF relaying systems, where the destination can losslessly
recover the source information with the assistance of the
semantic information received from the relay.

• We conduct a series of simulations with image transmis-
sions to evaluate the performance of SF relaying. The
simulation results demonstrate that SF relaying systems
can exploit the semantic information to reduce the Eu-
clidean distance (ED) and improve the image quality.

Notation. Capital letters X,Y, V, U denote the random vari-
ables for constructing information sequences. M represents
the codeword satisfying the link rate constraint R.

II. THE PRINCIPLE OF SEMANTIC-FORWARD RELAYING

This section explains the principle of SF relaying, and
then analyzes the rate constraints on the rates for losslessly
recovering the source information.

A. Framework Structure

As illustrated in Fig. 1, the SF relaying system contains one
source, one relay and one destination. The source is nothing
specific than a common source in conventional relaying sys-
tems. It broadcasts the original information to the relay and the
destination at the first time slot. For semantic communications,
the media type of the original information could be image,
audio, video, text, etc., and combinations of multimedia.

After receiving the signals from the source, the relay re-
constructs the source information as high fidelity as possible.
However, due to the unavoidable channel fading, the recon-
structed information may not be lossless. It is noticed that in
semantic communications, the transmitted information is the
extracted features of the original information. This indicates
that semantic coding is robust against the noise to a certain
extent. Hence, the relay utilizes a semantic encoder to extract
the semantic information based on a common knowledge base

shared with the destination. Then, the semantic information is
sent to the destination at the second slot.

Once the destination receives all the signals sent from the
source and the relay, it initiates the process for reconstructing
the original information by a joint decoder with the assistance
of the semantic information, based on the information theo-
retic principle of cooperative communications with correlated
sources. If the channel conditions of the three links can satisfy
the lossless reconstruction requirements at the destination, the
destination can recover the original information loslessly.

Remark 1: The source can broadcast the semantic informa-
tion instead of the original information. However, the recovery
at the destination is not easy to be lossless in practical, because
it equivalently requires the semantic decoder to losslessly
recover the original information by only utilizing the semantic
encoded information.

Remark 2: In general, the semantic communications aims
to transmit much less payload than the original information,
while maintaining a relatively high quality of the recovered
information. Thus, given the total transmit energy constant,
the transmit energy per bit of the R-D link can be higher than
the S-D link.

B. Theoretical System Model

For theoretical analysis, we can rely on the system model
illustrated in Fig. 1 in either symbol-wise or bit-wise. We
assume the system to be bit-wise hereafter for simplicity
without loss of generality. Xn denotes the original information
sequence, with n being the information sequence length. Y n is
the lossy information sequence recovered at the relay. Hence,
Y can be represented by Y = X ⊕ E, where E ∼ Bern(ρ)
is the corrupting error with ρ being the crossover probability
between X and Y . Due to the rate constraint R1 supported by
the channel capacity on the S-D link, Xn may not be losslessly
transmitted to the destination. Therefore, the transmission
on the S-D link can be equivalently regarded as the lossy
compression from Xn to codeword M1 by encoder (ENC) 1.
Similarly, Y n is also equivalently encoded into codeword M2

by ENC 2 to satisfy rate constraint R2. V n represents the side
information provided by the semantic knowledge, which is
commonly shared by the relay and the destination. Un stands
for the lossy compressed version of Y n reconstructed from
codeword M2. Finally, the joint decoder (DEC) reconstructs
X̂n based on codewords M1 and M2 with the assistance of
the side information V n. In this letter, we aim at the lossless
recovery of Xn, while the recovery X̂n can be either lossless
or lossy in general systems.

C. Achievable Rate Analysis

Form the Shannon theory, the rate constraint on the source-
relay (S-R) link is

R0 ≥ I(X;Y ). (1)

For the rate constraints on the S-D and R-D links, we need
to consider from the viewpoint of the joint DEC for losslessly
reconstructing X̂n. First, if without the side information V n,
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Fig. 2. The system structure of joint source-channel coding for SF relaying.

the coding rates need to satisfy the conditions for lossless
source coding with a helper [10, Theorem 10.2], as

R1 ≥ H(X|U), (2)
R2 ≥ I(Y ;U). (3)

Then, if the side information is available at both ENC 2 and
joint DEC, the R-D link will be reduced by the conditional
version of the mutual information without side information
[10, Eq. (11.2)], i.e.,

R2 ≥ I(Y ;U |V ). (4)

Furthermore, considering that the side information is available
at joint DEC but unavailable at ENC 1, the structure is a
Wyner-Ziv problem [11] because the side information provided
by the semantic knowledge is noncausal. Hence, the rate is
reduced by condition on V , as

R1 ≥ H(X|U, V ). (5)

In summary, the achievable rate region for lossless trans-
missions with SF relaying is the combination of (1), (4) and
(5). The difference between SF and other relaying systems
can be observed from (4) and (5). By introducing a common
knowledge base, the required rates in the S-D and R-D links
can both be further decreased by the side information V . If
the Shannon rate limit is found to be lower than the link
payload, we update the knowledge base to further reduce the
rate requirements.

Besides the conventional information theory, we can also
apply the metrics of semantic information theory [12], such
as semantic entropy and semantic distortion, to evaluate the
semantic performance.

Note that when designing the optimal encoder and decoder,
the distributions of the variables need to be known, which is
internally estimated by the deep neural network (DNN).

III. JOINT SOURCE-CHANNEL CODING DESIGN

Fig. 2 illustrates the general system structure of joint source-
channel coding for SF relaying. In practical systems, the
quantization process may be needed if the media is transmitted
in using symbols with finite alphabet.

Before the channel coding, the media information is quan-
tized and represented by binary sequence with length n in
bits, as stated before. After the channel decoding, the media
information is recovered from the received binary sequence.
Therefore, we focus on bit-wise joint decoding algorithms

in this letter, and the design of symbol-wise joint decoding
algorithms is left as the future work.

Hereafter, we utilize images as the examples for introducing
the joint source-channel coding design of the media transmis-
sion with SF relaying. One image pixel in each color channel is
represented by 8 bits. For conciseness, the quantization process
is omitted in description while implicitly used for converting
the image pixel between analogue values and binary sequence.

At the source, information sequence Xn is channel encoded
by channel ENC 1, and then broadcast to the relay and the
destination. Then, the relay receives and decodes the source
signals by channel DEC 1 to recover the source information
sequence. Due to the possible intra-link errors, the recovered
sequence Y n may not be exactly the same as Xn. Neverthe-
less, the relay continues encoding and transmitting the relay
information to the destination. The image feature is extracted
by the semantic ENC, and further encoded by channel ENC
2 before transmitted to the destination.

At the destination, the received signals at the first slot are
first decoded by channel DEC 1 to output the a posteriori
LLR (LLRp

1) of Xn. The received signals of the second slot
are successively decoded by channel DEC 2 and the semantic
DEC to output the a posteriori LLR (LLRp

2) of Y n.
Then, the extrinsic LLR (LLRe

i ) representing the decoding
gain is calculated by LLRe

i = LLRp
i − LLRa

i , for i ∈ {1, 2},
where LLRa

i is the a priori LLR, the initial value of which
is all set at 0. The extrinsic LLRs are then exchanged by
the extrinsic information exchanger (Ex-Info-Ex). Based on
the correlation model of correlated sources [13], the extrinsic
LLRs of Xn and Y n are exchanged by the LLR updating
function fc(·) [14, Eq. (10)] to update the a priori LLR.

In the next round of decoding iteration, the updated LLRa
1

is directly utilized as the a priori information for channel DEC
1. However, the updated LLRa

2 needs to be further encoded
as the a priori LLR (LLRs

2) of the semantic information, and
then input into channel DEC 2.

Finally, if the iteration round reaches the maximum times,
the latest LLRp

1 is utilized to reconstruct X̂n by hard decision.
At the cost for reducing the link payload, SF requires

relatively higher computational complexity than other relaying
schemes, due mainly to the semantic encoder/decoder in the
relay and the destination. This algorithm presented in this letter
can be further extended to the system with multiple relays. The
example Python codes of the proposed SF relaying system are
provided in [15].

IV. PERFORMANCE EVALUATION

A. Semantic Encoder/Decoder Structure
Since the objective of this letter is to evaluate the per-

formance gain of SF relaying, we design the structure of
semantic encoder/decoder based on convolution and transpose
convolution for simplicity.

In general, the design of neural network structures is
affected by datasets. The simulation images are randomly
selected from the CIFAR-10 dataset [16]. Thus, the neural
network structures of the semantic ENC/DEC are designed as
shown in Table I, where the padding is set at 0 and omitted for
all convolutional layers, and transpose convolutional layers.
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TABLE I
NEURAL NETWORK STRUCTURE OF THE SEMANTIC ENC/DEC

Layer type Parameters Output shape

ENC

Input None 3× 96× 96
Conv2D Filters: 16, Size: (2,2), Stride: 1 16× 95× 95
Conv2D Filters: 16, Size: (3,3), Stride: 2 16× 47× 47
Conv2D Filters: 16, Size: (3,3), Stride: 2 16× 23× 23

DEC

Input None 16× 23× 23
TranConv2D Filters: 16, Size: (3,3), Stride: 2 16× 47× 47
TranConv2D Filters: 16, Size: (3,3), Stride: 2 16× 95× 95
TranConv2D Filters: 3, Size: (2,2), Stride: 1 3× 96× 96

For the semantic ENC, the input is a three-channel im-
age with its width and height both being 96 pixels. The
3 × 96 × 96 pixel values are input into a two-dimensional
(2D) convolutional layer (Conv2D) with 16 filters, (2, 2)-sized
kernels, and a stride of 1, to extract the image features into
16 channels. Subsequently, the features of 16 channels are
successively compressed by two concatenated Conv2Ds with
16 filters, (2, 2)-sized kernels, and a stride of 2. Therefore,
the final output of the semantic ENC is the features of 16
channels with the size in each channel being 23 × 23. It is
easy to calculate the compression rate of the semantic ENC
as (16× 23× 23)/(3× 96× 96) ≈ 0.306.

The semantic decoding process is the inverse of the semantic
encoding process. Therefore, for the semantic DEC, the input
of the (16 × 23 × 23)-sized features is decompressed by
two concatenated 2D transpose convolutional layers (Tran-
Conv2Ds) with 16 filters, (3, 3)-sized kernels, and a stride
of 2. Finally, the 96 × 96 image pixels in the 3 channels
are reconstructed by TranConv2D with 3 filters, (2, 2)-sized
kernels, and a stride of 1.

B. Simulation Settings

In the simulations, we assume line-of-sight (LoS) compo-
nents dominate the channels for simplicity. Compared to the
source, we assume the relay is closer to the destination, and
hence the signal-to-noise ratio (SNR) γ2 in the R-D link is
relatively higher than the SNR γ1 in the S-D link. We simply
set γ2 = 20 dB which is sufficiently large for losslessly
transmitting the semantic information, while γ1 varies from −5
dB to 9 dB. Additive white Gaussian noise (AWGN) channels
are adopted for the S-D and R-D links. For the S-R link, we
utilize the crossover probability ρ between the quantized bits
Xn and Y n to represent the channel conditions for simplicity.

The low-density parity-check (LDPC) codes [17] are uti-
lized as the channel codes, with the codeword length being set
at 900. There are 3 bits in the same parity-check equation, and
each bit is associated with 2 parity-check equations. To satisfy
the LDPC codeword length, the information bits are divide
into groups, and the last group is padded by zero bits. The
maximum number of the local decoding iteration for LDPC
codes, and that of the global decoding iteration are set at 1 and
7, respectively. Before the first global iteration, we need one
round of initial LDPC decoding for obtaining non-zero LLRs,
and hence the ensemble number of LDPC decoding iterations
is equal to 8.

-5 -3 -1 1 3 5 7 9

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 3. Euclidean distance with diverse ρ.

The loss function for training the semantic neural network
is defined as Loss = min[αFMSE(X, X̂) + βFCE(Z, Ẑ)],
where X and X̂ are the input and output image matrix,
respectively. Z and Ẑ are matrices for distinguishing dif-
ferent categories with the same batch size as X and X̂ .
We use FMSE and FCE to evaluate mean square error and
cross entropy, respectively. The hyper-parameters α and β
are used to balance the proportion of FMSE and FCE. The
initial parameters of the semantic neural network are set as
follows. The hyper-parameters α and β are set at 1.5 and
0.56, respectively. The Adam optimizer [18] is adopted with
a learning rate of 0.001. Moreover, we employ a batch size of
64 and 200 epochs for training.

C. Simulation Results

To quantify the similarity between the original and recon-
structed images, we use the ED as a reliable metric. Due to
the page limit, the comparison with other relaying systems
is left as the future work. Fig. 3 plots the ED curves for
diverse ρ. Obviously, the joint decoding with SF relaying
always outperforms the independent decoding, which verifies
the effectiveness of SF. Another observation that justifies our
intuition is that, the ED reduces as the quality of the relay
information increases, i.e., smaller ρ. Notice that the perfor-
mance gain decreases as the SNR of the S-D link increases.
This is because the LDPC codes have a greater capability
for increasing coding gains and hence the independent LDPC
decoding has already corrected most of the errors, when the
S-D link SNR becomes larger. In particular, the ED of the
independent decoding decreases to 0 when γ1 ≥ 8 dB.

We utilize the original and error-free semantic images
shown in Fig. 4(a) as an example for displaying the re-
constructed images. Figs. 4(b)-4(d) depicts the reconstructed
images. Clearly, the image quality increases as the round of
global iterations (Iter) increases. It is found that no more image
quality improvement can be achieved when Iter changes from
4 to 7, and hence Itr= 7 is enough in this system setup.

In Fig. 4(b), it is clearly found that the images of joint
(Jnt) decoding have a higher visual quality than the images
of independent (Ind) decoding. The images of semantic (Sem)
decoding also becomes clearer by exchanging the extrinsic
information obtained via the S-D link.
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Fig. 4. Comparison of the reconstructed image qualities.

Fig. 4(c) shows the results in very bad channel conditions.
Surprisingly, although the initial semantic image is unresolv-
able, it exhibits a relatively clear shape of the object after joint
decoding. Due to the exchange of the extrinsic information, the
image quality of joint decoding also improves dramatically.

By comparing Figs. 4(c) and 4(d), we can conclude that the
image quality is higher in better channel conditions. Moreover,
the semantic image is recovered very similar to the case with
ρ = 0 shown in Fig. 4(a).

V. CONCLUSION

We have proposed a novel concept of SF relaying, which
is suitable for 6G media transmissions and adaptively accom-

modates various types of information. The principle of SF
relaying has been explained in detail, and its achievable rate
constraints for lossless recovery at the destination have been
analyzed. In addition, we have designed a joint source-channel
coding scheme for SF relaying, and further implemented the
SF relaying technique in image transmission simulations. The
simulation results indicate that the SF relaying system can
adequately eliminate the effect of intra-link errors by utilizing
the semantic decoder, reduce the payload in the R-D link, and
achieve lossless transmissions in the worse channel conditions.
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