
ar
X

iv
:2

00
3.

11
76

4v
4

 [
cs

.C
C

]
 2

9
A

pr
 2

02
1

No-Rainbow Problem and the Surjective Constraint

Satisfaction Problem

Dmitriy Zhuk

April 30, 2021

Abstract

The Surjective Constraint Satisfaction Problem (SCSP) is the problem of deciding
whether there exists a surjective assignment to a set of variables subject to some specified
constraints, where a surjective assignment is an assignment containing all elements of
the domain. In this paper we show that the most famous SCSP, called No-Rainbow
Problem, is NP-Hard. Additionally, we disprove the conjecture saying that the SCSP
over a constraint language Γ and the CSP over the same language with constants have the
same computational complexity up to poly-time reductions. Our counter-example also
shows that the complexity of the SCSP cannot be described in terms of polymorphisms
of the constraint language.

1 Introduction

1.1 Constraint Satisfaction Problem

The Constraint Satisfaction Problem (CSP) is the problem of deciding whether there is an
assignment to a set of variables subject to some specified constraints. Formally, it can be
defined in the following way. Let A be a finite set, Γ be a set of relations on A, called a
constraint language. Then the Constraint Satisfaction Problem over the constraint language
Γ, denoted by CSP(Γ), is the following decision problem: given a formula of the form

R1(z1,1, . . . , z1,n1
) ∧ · · · ∧ Rs(zs,1, . . . , zs,ns

),

where R1, . . . , Rs ∈ Γ and each zi,j ∈ {x1, . . . , xn}; decide whether the formula is satisfiable.
It is well known that many combinatorial problems can be expressed as CSP(Γ) for some
constraint language Γ. Moreover, for some sets Γ the corresponding decision problem can be
solved in polynomial time; while for others it is NP-complete. It was conjectured in 1998 that
CSP(Γ) is either in P, or NP-complete [15]. In 2017 this conjecture was resolved independently
by Andrei Bulatov [4, 5] and Dmitriy Zhuk [35, 36]. Moreover, the classification of the com-
plexity for different constraint languages turned out to be very simple and was given in terms
of polymorphisms. We say that a k-ary operation f is a polymorphism of an m-ary relation R

if whenever (x1
1, . . . , x

m
1), . . . , (x

1
k, . . . , x

m
k) in R, then also (f(x1

1, . . . , x
1
k), . . . , f(x

m
1 , . . . , x

m
k))

in R. In this case we also say that f preserves R. An operation f is a polymorphism of Γ if
it is a polymorphism of every relation in Γ. An operation w is called a weak near-unanimity
(WNU) operation if it satisfies the following identities

w(y, x, . . . , x) = w(x, y, x, . . . , x) = · · · = w(x, . . . , x, y).

For instance a majority operation, conjunction, disjunction are WNU operations. Then the
complexity of CSP(Γ) is described by the following theorem.

1

http://arxiv.org/abs/2003.11764v4

Theorem 1 ([4, 5, 35, 36]). Suppose Γ is a finite constraint language on a finite set A. Then
CSP(Γ) is solvable in polynomial time if there exists a WNU polymorphism of Γ; CSP(Γ) is
NP-complete otherwise.

1.2 Surjective Constraint Satisfaction Problem

In this paper we consider a variant of the CSP with an additional global constraint saying
that a solution should be surjective. The Surjective Constraint Satisfaction Problem over a
constraint language Γ on a domain A, denoted by SCSP(Γ), is the following decision problem:
given a formula of the form

R1(z1,1, . . . , z1,n1
) ∧ · · · ∧ Rs(zs,1, . . . , zs,ns

),

where R1, . . . , Rs ∈ Γ and each zi,j ∈ {x1, . . . , xn}; decide whether there exists a solution such
that {x1, . . . , xn} = A. Here we assume that the set of variables {x1, . . . , xn} is fixed and do
not require all the variables to appear in some constraint. Unlike the complexity of the CSP,
the complexity of SCSP(Γ) remains unknown even for very simple constraint languages Γ.

1.3 Surjective Graph Homomorphism Problem

Probably, the most natural examples of the Surjective CSP are defined as the graph homo-
morphism problem. Assume that a graph H is fixed, the Surjective Graph Homomorphism
Problem, denoted by SurjHom(H), is the problem of deciding for a given graph G whether
there exists a surjective homomorphism from G to H . This problem is also known as the
Vertex-Compaction Problem [33] or the Surjective H-Colouring Problem [18]. For usual ho-
momorphism this problem is known as the H-colouring problem. Note that SurjHom(H) is
equivalent to SCSP({H}), where the graph H is viewed as a binary relation.

An interesting fact about the complexity of SurjHom(H) is that it remained unknown for
many years even for very simple graphs H . Recall that the situation was different with the
complexity of the CSP and the H-colouring problem: even though the general classification
remained open for many years, nobody could show a simple constraint language or a graph
with unknown complexity. We will discuss two popular examples of graphs with unknown
complexity of the SurjHom in more detail.

First example is the complexity of SurjHom for the reflexive 4-cycle (undirected having a
loop at each vertex), which was formulated as an open question in [12] and [16], later it was
a principal open question in [21, 20], and the central question discussed in [9] and [13]. This
problem is known as the disconnected cut problem, since it is equivalent to finding a cutset (a
set whose removal results in a disconnected graph) such that the cutset is disconnected itself,
and it has attracted a lot of interest from the graph theory community. This problem was
known to be tractable for many graph classes [9, 13, 16, 21], but in 2011 it was finally proved
that the disconnected cut problem is NP-complete [25].

Second long-standing problem is the complexity of SurjHom for the non-reflexive 6-cycle
(undirected without loops), that has been of interest since 1999 [27] when Narayan Vikas
proved NP-completeness of a similar problem for the 6-cycle, called the compaction problem.
The difference between the compaction problem and the vertex-compaction problem is that
for compaction we require the homomorphism to be edge-surjective. In 2017 it was finally
proved that SurjHom for the 6-cycle is also NP-complete [32]. It is worth mentioning that
the compaction and the vertex-compaction problems have the same complexity for all known
graphs, and it was conjectured by Winkler, Vikas, and others that these problems are poly-
nomially equivalent. For more information about the relationship between the compaction
problem and the vertex-compaction problem (and also the retraction problem) see [33].

2

Many other results on the complexity of SurjHom(H) can be found in [23, 18, 17, 30, 29,
28, 31, 19, 32, 25]. For instance, the complexity of SurjHom is known for all graphs on at
most four vertices [18]. But as far as we know the complexity remains unknown for graphs of
size 5 and even for cycles, which makes this problem very intriguing because of the simplicity
of the formulation.

1.4 The Complexity of SCSP

Let us discuss what we know about the complexity of the SCSP and the CSP. The complexity
of CSP(Γ) is known for any constraint language Γ [4, 5, 35, 36]. The complexity of SCSP(Γ)
is widely open. Since we can always add dummy variables we never use and these dummy
variables could give surjectivity, CSP(Γ) can be trivially reduced to SCSP(Γ). Also, it is
sufficient to consider the reflexive 4-cycle H to get a constraint language Γ = {H} such
that SCSP(Γ) is NP-complete but CSP(Γ) is trivial and solvable in polynomial time. Thus,
sometimes SCSP(Γ) is harder than CSP(Γ).

Another important observation is that the Surjective CSP can be reduced to the CSP
over the same language with constants (see [2, Section 2]). Adding constants is equivalent
to adding unary singleton relations {{a} | a ∈ A} to the constraint language, because using
these relations we can write xi = a. Let us show how this reduction works.

Lemma 2 ([2]). There exists a polynomial-time Turing reduction from SCSP(Γ) to CSP(Γ ∪
{{a} | a ∈ A})

Proof. Let A = {a1, . . . , an}. Suppose we have an instance I of SCSP(Γ). First, we guess
n variables xi1 , . . . , xin such that these variables give all elements of A in a solution, that is
xij = aj for every j. Then we consider the following instance of CSP(Γ ∪ {{a} | a ∈ A})

n
∧

j=1

(xij = aj) ∧ I.

If it has a solution, then I has a surjective solution.
Since we have only polynomially many choices for the variables, this gives us a polynomial-

time Turing reduction to CSP(Γ ∪ {{a} | a ∈ A}).

As a corollary we derive that CSP(Γ ∪ {{a} | a ∈ A}) and SCSP(Γ ∪ {{a} | a ∈ A}) have
the same complexity.

Recall that the classification of the complexity of the CSP for different constraint languages
was given in terms of polymorphisms (see Theorem 1). It is natural to assume that the
complexity of the SCSP can be described in a similar way. In [7] Hubie Chen asked whether
Lemma 2 holds in both directions, which would imply the characterization of the complexity
of the SCSP in terms of polymorphisms. Thus, he conjectured the following characterization
of the complexity of SCSP(Γ).

Conjecture 1. For any constraint language Γ the problems CSP(Γ ∪ {{a} | a ∈ A}) and
SCSP(Γ) are polynomially equivalent.

An operation f is called idempotent if it satisfies f(x, x, . . . , x) = x. Then, using Theorem
1 Conjecture 1 can be formulated in the following form.

Conjecture 2. For any constraint language Γ the problem SCSP(Γ) is solvable in polyno-
mial time if there exists an idempotent WNU polymorphism of Γ; SCSP(Γ) is NP-complete
otherwise.

3

As it was proved in [10] (see also [11]), Conjectures 1 and 2 hold for a 2-element domain.
Also, all known results on the complexity of the SCSP agree with these conjectures (see [2]).

Additionally, in [6] Hubie Chen confirmed that polymorphisms of Γ can be used to describe
the complexity of SCSP(Γ). For instance, he proved NP-hardness of SCSP(Γ) for Γ admitting
only essentially unary polymorphisms. For more results on the complexity of the SCSP see
the survery [2].

1.5 No-Rainbow Problem

In this paper we consider the most famous constraint language with unknown complexity of
the SCSP. Let N = {(a, b, c) ∈ {0, 1, 2}3 | {a, b, c} 6= {0, 1, 2}}. The problem SCSP({N}) is
called No-Rainbow Problem because if we interpret 0, 1, and 2 as colors then the relation N

forbids “rainbow”. Apparently, No-Rainbow Problem was first formulated under this name in
[1]. Nevertheless, this problem can be viewed as the problem of coloring of a co-hypergraph
in exactly 3 colors, and such problems were studied in many papers earlier. The notion of
coloring of a mixed hypergraph appeared in [34]. Sufficient and necessary conditions for the
existence of a k-coloring of a co-hypergraph were studied in [14]. The complexity of the
problem of such coloring was studied in [22].

Despite the simplicity of the formulation, the complexity of SCSP({N}) was an open
question for many years and was formulated many times as an important open problem [2, 7].
For example, Hubie Chen presented this problem as one of three concrete open questions at
several conferences (see [7]) emphasizing that this problem is an important step toward a full
classification of the complexity.

Note that the CSP over N is trivial because any instance has a trivial solution where all
variables are equal. But if we add all constant relations then the problem becomes NP-hard,
that is CSP({N, {0}, {1}, {2}}) is NP-complete [3].

As we mentioned earlier SCSP({N, {0}, {1}, {2}}) and CSP({N, {0}, {1}, {2}}) have the
same complexity. It is interesting to compare the complexity of the CSP and the SCSP if we
add some constant relations but probably not all of them.

Constraint Language CSP SCSP
{N} P (Trivial) ???

{N, {0}} P (Trivial) ???
{N, {0}, {1}} P (Trivial) NP-comp. [2]

{N, {0}, {1}, {2}} NP-comp. NP-comp.

For instance, as it was shown in [2] if we add just two constant relations then the CSP is still
trivial but the SCSP is already NP-complete. It can be shown that the only problems in the
table with unknown complexity, that is SCSP({N}) and SCSP({N, {0}}), are polynomially
equivalent. In fact, to reduce SCSP({N, {0}}) to SCSP({N}) we just replace all variables xi

that appear in a constraint xi = 0 by a unique fresh variable z and remove all constraints of
the form xi = 0.

2 Main Results

In this section we formulate two main results of this paper.
First, we proved that the No-Rainbow Problem is NP-hard, and therefore it is NP-

complete.

Theorem 3. SCSP({N}) is NP-complete.

4

Recently, Hubie Chen published a paper explaining the algebraic framework for proving
such hardness results [8]. He shows that this approach can also be used to prove NP-hardness
for the reflexive 4-cycle (the disconnected cut problem) and for all NP-hard constraint lan-
guages on a 2-element domain.

Theorem 3 agrees with Conjectures 1 and 2. Unfortunately, we found a counter-example
to these conjectures, which is the second main result of this paper. Let us define 5-ary and
3-ary relations on the set {0, 1, 2} (here columns are tuples):

R =

0 0 0 0 0 0
2 2 2 1 1 1
2 1 1 1 1 1
1 2 2 1 1 1
0 1 2 0 1 2

, R′ =

2 2 1
2 1 1
1 2 1

 .

Note that R′ is the projection of R onto coordinates 2, 3 and 4. Hence, every polymorphism
of R is also a polymorphism of R′.

Theorem 4. We have

(1) CSP({R, {0}, {1}, {2}}) is NP-hard;

(2) SCSP({R}) is solvable in polynomial time;

(3) SCSP({R′}) is NP-Hard.

Thus, items (1) and (2) of Theorem 4 disprove Conjectures 1 and 2. Also, comparing (2)
and (3) we derive that the complexity of SCSP(Γ) cannot be described in terms of polymor-
phisms. Hence, we need a brand new idea to describe the complexity of the SCSP for all
constraint languages.

Nevertheless, our counter-example is of arity 5 and it is important for the proof. Thus,
probably for binary relations Conjectures 1 and 2 still hold. Another way to break our counter-
example is to add all projections of relations from the constraint language to the constraint
language. For instance, we could achieve this situation by considering only Γ that are defined
as the set of all invariants of some algebra, which is a very natural way to define a constraint
language for the CSP. Thus, it is interesting to answer the following open questions.

Question 1. Do Conjectures 1 and 2 hold for Γ = {H}, where H is a binary relation?

Question 2. Do Conjectures 1 and 2 hold for Γ consisting of binary relations?

Question 3. Do Conjectures 1 and 2 hold for Γ that is closed under projections (adding
existential quantifiers)?

For an algebra A = (A; f1, f2, . . .) by Inv(A) we denote the set of all relations preserved
by every operation fi of an algebra.

Question 4. Do Conjectures 1 and 2 hold for Γ such that Γ = Inv(A) for some algebra A?

The paper is organized as follows. In Section 3 and Section 4 we give two different proofs
of Theorem 3. Both proofs are based on the reduction from an NP-hard CSP problem, the
first reduction is easier in terms of complexity (just three variables for every variable of the
original instance) but the idea of the reduction is hidden there. We hope the second reduction
is better for understanding but there we create nine variables for every variable of the original
instance. In Section 5 we prove Theorem 4.

5

3 No-Rainbow problem is NP-Hard (the first proof)

Here we present our first proof of the fact that SCSP({N}) is NP-hard. By [n] we denote
the set {1, 2, . . . , n}. Let Γ0 = {x = y ∨ z = 0, x = y ∨ z = 1, x = 0, x = 1} be a constraint
language on {0, 1}. The problem CSP(Γ0) is known to be NP-Hard [26]. Hence, to prove
Theorem 3 it is sufficient to prove the following theorem.

Theorem 5. CSP(Γ0) can be polynomially reduced to SCSP({N}).

Let us define the reduction. Let I be an instance of CSP(Γ0). Let us build an instance
J of SCSP({N,=}) such that I holds if and only if J has a surjective solution. Note that
the problems SCSP({N,=}) and SCSP({N}) are equivalent because we can always propagate
out the equalities.

The idea is to introduce constraints (see C1, C2, . . . , C10 below) such that three concrete
variables take all the values from the domain in any surjective solution. Below such variables
are x, x′, y′. Other variables still have some freedom, for instance x1, . . . , xn can be chosen
freely from {x, x′}. These variables will be used to encode the variables u1, . . . , un of the
instance I. By adding new constraints (see C11, C12, C13, C14 below) we can encode constraints
of CSP(Γ0) on the variables x1, . . . , xn. A formal construction is below.

Construction. Let u1, . . . , un be the variables of I.
Choose variables x, x′, y′, x1, . . . , xn, y1, . . . , yn, z1, . . . , zn. We define 14 sets of constraints:

• C1 = {N(x, xi, yi) | i ∈ [n]},

• C2 = {N(x′, zi, yi) | i ∈ [n]},

• C3 = {N(y′, zi, xi) | i ∈ [n]},

• C4 = {N(t1, t2, t3) | t1, t2, t3 ∈ {x, x′, x1, . . . , xn}},

• C5 = {N(t1, t2, t3) | t1, t2, t3 ∈ {x, y′, y1, . . . , yn}},

• C6 = {N(t1, t2, t3) | t1, t2, t3 ∈ {x′, y′, z1, . . . , zn}},

• C7 = {N(xi, yj, zi) | i, j ∈ [n]},

• C8 = {N(xi, yj, zj) | i, j ∈ [n]},

• C9 = {N(x, xi, zi) | i ∈ [n]},

• C10 = {N(x, yi, zi) | i ∈ [n]},

• C11 = {N(xi, xj , yk) | (ui = uj ∨ uk = 0) ∈ I},

• C12 = {N(yi, yj, xk) | (ui = uj ∨ uk = 1) ∈ I},

• C13 = {x = xi | (ui = 1) ∈ I},

• C14 = {x = yi | (ui = 0) ∈ I}.

Lemma 6. I has a solution if and only if J has a surjective solution, where J = C1∪· · ·∪C14.

Proof. Let us show both implications.
I ∈ CSP(Γ0) ⇒ J ∈ SCSP({N,=}).
Let (b1, . . . , bn) be a solution of I. Put x = 1, x′ = 0, y′ = 2, xi = bi, yi = bi +1, zi = 2 · bi

for every i ∈ [n]. Let us check that all the constraints are satisfied.

6

• C1 holds because |{1, bi, bi + 1}| < 3 for any bi ∈ {0, 1}.

• C2 holds because |{0, 2 · bi, bi + 1}| < 3 for any bi ∈ {0, 1}.

• C3 holds because |{2, 2 · bi, bi}| < 3 for any bi ∈ {0, 1}.

• C4 holds because x, x′, x1, . . . , xn are from the set {0, 1}.

• C5 holds because x, y′, y1, . . . , yn are from the set {1, 2}.

• C6 holds because x′, y′, z1, . . . , zn are from the set {0, 2}.

• C7 holds because |{bi, bj + 1, 2 · bi}| < 3 for any bi, bj ∈ {0, 1}.

• C8 holds because |{bi, bj + 1, 2 · bj}| < 3 for any bi, bj ∈ {0, 1}.

• C9 holds because |{1, bi, 2 · bi}| < 3 for any bi ∈ {0, 1}.

• C10 holds because |{1, bi + 1, 2 · bi}| < 3 for any bi ∈ {0, 1}.

• C11 holds because each constraint is equivalent to |{bi, bj , 1 + bk}| < 3 and equivalent to
(bi = bj) ∨ bk = 0.

• C12 holds because each constraint is equivalent to |{bi+1, bj +1, bk}| < 3 and equivalent
to (bi = bj) ∨ bk = 1.

• C13 holds because xi = x = 1 whenever bi = 1.

• C14 holds because yi = x = 1 whenever bi = 0.

J ∈ SCSP({N,=}) ⇒ I ∈ CSP(Γ0).
Choose a surjective solution of J . By C4 we can choose a, b ∈ {0, 1, 2} such that x = a

and {x, x′, x1, . . . , xn} ⊆ {a, b}. Since the solution is surjective, there should be an element in
the solution equal to c ∈ {0, 1, 2} \ {a, b}. Consider 5 cases.

Case 1. Assume that y′ = c and x′ = b. Note that by the definition of N for any
permutation σ on {0, 1, 2} σ applied to a solution of an instance of SCSP({N}) gives a solution
of the instance. Therefore, without loss of generality we may assime that x = 1, x′ = 0, y′ = 2
in our solution. By C4, C5, C6 we know that

{x, x′, x1, . . . , xn} = {0, 1},

{x, y′, y1, . . . , yn} = {1, 2},

{x′, y′, z1, . . . , zn} = {0, 2}.

Let us show that yi = xi + 1. If xi = 0 and yi = 2, then we get a contradiction with C1.
If xi = yi = 1, then by C2 we have zi 6= 2, by C3 we have zi 6= 0, which implies zi = 1 and

contradicts C6.
Let us show that (u1, . . . , un) = (x1, . . . , xn) is a solution of I.
C11 guarantees that all the constraints of the form (ui = uj ∨ uk = 0) hold, C12 guarantees

that all the constraints of the form (ui = uj ∨ uk = 1) hold, C13 guarantees that all the
constraints of the form ui = 1 hold, C14 guarantees that all the constraints of the form ui = 0
hold. Thus, we proved that it is a solution.

Case 2. Assume that y′ = c and x′ = a. By C5 we have {x, y′, y1, . . . , yn} = {a, c}. By
C6 we have {x′, y′, z1, . . . , zn} = {a, c}. Since the solution is surjective, there should be i such
that xi = b. By C9 we have zi 6= c, by C3 we have zi 6= a. Contradiction.

7

Case 3. Assume that y′ 6= c and yi = zi = c for some i. By C5 we have {x, y
′, y1, . . . , yn} =

{a, c}, hence y′ = a. By C6 we have {x
′, y′, z1, . . . , zn} = {a, c}, hence x′ = a. Since the solution

is surjective, there should be j such that xj = b. By C9, we have zj = a. By C7 we have yℓ = a

for every ℓ. Contradiction.
Case 4. Assume that y′ 6= c and yi = c, zi 6= c for some i. By C5 we have {x, y

′, y1, . . . , yn} =
{a, c}, hence y′ = a. By C1, we have xi = a. By C8 we obtain zi ∈ {a, c} and since zi 6= c

we have zi = a. Then by C8 we obtain xℓ = a for every ℓ. If zj = b for some j, then we
get a contradiction with C7 applied to (xj , yi, zj). Since the solution is surjective, the only
remaining option is x′ = b, which contradicts C2.

Case 5. Assume that {x, y′, y1, . . . , yn} ⊆ {a, b}. Since the solution is surjective, there
exists i such that zi = c. By C9 and C10 we have xi = yi = a. By C7 we have yℓ = a for every
ℓ, by C8 we have xℓ = a for every ℓ. By C2 we have x′ 6= b, by C3 we have y′ 6= b. Therefore
x′ = y′ = a and by C6 we obtain {x′, y′, z1, . . . , zn} = {a, c}. Hence, none of the variables can
be equal to b. Contradiction.

4 No-Rainbow problem is NP-Hard (the second proof)

Here we present another proof of the fact that the No-Rainbow problem is NP-Hard. By NAE3

we denote the ternary relation on {0, 1} consisting of all tuples but (0, 0, 0) and (1, 1, 1). The
idea is to encode an instance of CSP({NAE3}) using the relation N . We assign a binary
operation on A = {0, 1, 2} to every variable of the instance of CSP({NAE3}) and then encode
each binary operation with nine variables on {0, 1, 2}. Our plan is to write conditions that
guarantee that every binary operation depends essentially only on one variable. Later we
interpret the dependence on the first variable as 0 and the dependence on the second variable
as 1.

It is known from [26] that CSP({NAE3}) is NP-hard. Hence, to prove Theorem 3 it is
sufficient to reduce CSP({NAE3}) to SCSP({N}). We start with a few auxiliary facts. For
a relation ρ by Pol(ρ) we denote the set of all polymorphisms of ρ. We say that an operation
f depends essentially only on one variable if f(x1, . . . , xn) = g(xi) for some i and a unary
operation g, that is all variables but i-th are dummy. We will need the following properties
of Pol(N).

Lemma 7 (Section 5.2.6 in [24]). Suppose f ∈ Pol(N) then

1. f depends essentially only on one variable, or

2. | Im(f)| < 3, that is, f never returns some value a ∈ A.

We will encode each binary operation f on A via 9 variables on A, which we denote by

f(0, 0), f(0, 1), f(0, 2), f(1, 0),f(1, 1), f(1, 2),

f(2, 0), f(2, 1), f(2, 2).

For a tuple α by α(i) we denote the i-th element of this tuple. If we just write the definition
of the fact that f is a polymorphism of N we get the following lemma.

Lemma 8. f ∈ Pol(N) if and only if
∧

α,β∈N

N(f(α(1), β(1)), f(α(2), β(2)), f(α(3), β(3))).

Thus, the condition f ∈ Pol(N) can be expressed as a conjunction of relations N .
Now we are ready to prove the main theorem of this subsection.

8

Theorem 9. CSP({NAE3}) can be polynomially reduced to SCSP({N}).

Let us show how to encode CSP({NAE3}) as SCSP({N}). Consider an instance I of
CSP({NAE3}). Let x1, . . . , xn be the variables of I and T be the set of all triples (i, j, k)
such that NAE3(xi, xj , xk) appears in the instance.

As we mentioned earlier, we assign a binary operation fi on A to each variable xi, then we
encode each operation with nine variables on A, which we denote by fi(0, 0), fi(0, 1), fi(0, 2),
fi(1, 0), fi(1, 1), fi(1, 2), fi(2, 0), fi(2, 1), fi(2, 2).

We want fi to depend only on the first variable if xi = 0 and only on the second variable
if xi = 1. By I ′ we denote the following instance:

∧

i∈[n]

(fi ∈ Pol(N))
∧

i∈[n],a∈A

(f1(a, a) = fi(a, a))

∧

(i,j,k)∈T

N(fi(0, 1), fj(1, 2), fk(2, 0))

∧

i,j∈[n],a,b,c∈A

N(fi(a, b), fi(c, b), fj(a, c))

∧

i,j∈[n],a,b,c∈A

N(fi(b, a), fi(b, c), fj(a, c))

Note that by Lemma 8 the first conjunction can be written as a conjunction of relations
N . Hence, this instance can be viewed as an instance of SCSP({N}) because we use only
equalities and the relation N (the equalities can be propagated out).

Lemma 10. I has a solution if and only if I ′ has a surjective solution.

Proof. I ⇒ I ′. Suppose we have a solution (x1, . . . , xn) of I. To get a surjective solu-
tion of I ′ it is sufficient to put fi(x, y) = x if xi = 0 and fi(x, y) = y if xi = 1. Since
fi(0, 0) = 0, fi(1, 1) = 1, and fi(2, 2) = 2 the solution is surjective. Let us prove that all
the above conjunctions hold. The first conjunction holds since projections preserve N . The
second conjunction is trivial. The third conjunction holds because (x1, . . . , xn) is a solution
of I and therefore the operations fi, fj, fk cannot depend on the same variables. Let us
check the fourth conjunction. If xi = 0 then fi(a, b), fi(c, b), fj(a, c) ∈ {a, c}, if xi = 1 then
fi(a, b), fi(c, b), fj(a, c) ∈ {b, fj(a, c)}. The remaining conjunction can be verified in the same
way. Thus, we get a surjective solution of I ′.

I ′ ⇒ I. Suppose we have a surjective solution (f1, . . . , fn) of I
′. Let g(x) := f1(x, x). By

the second conjunction we have fi(x, x) = g(x) for every i ∈ [n].
Assume that | Im(g)| = 3. By the first conjunction and Lemma 7 each fi depends essen-

tially only on one variable. Assign xi = 0 if fi depends essentially on the first variable, and
xi = 1 if fi depends essentially on the second variable. The third conjunction guarantees that
fi, fj , and fk cannot depend on the same coordinate for each (i, j, k) ∈ T . Indeed, if three
operations fi, fj, fk depend only on the first variables then we get

N(fi(0, 1), fj(1, 2), fk(2, 0)) = N(g(0), g(1), g(2)),

which does not hold because g is a bijection. Thus, for each (i, j, k) ∈ T we haveNAE3(xi, xj, xk).
Hence, we defined a solution of I.

Assume that | Im(g)| = 2. If | Im(fi)| = 3 for some i then by Lemma 7 fi depends
essentially only on one variable. This means that Im(fi) = Im(g) for every i ∈ [n], which
contradicts the surjectivity of the solution.

9

Assume that Im(g) = {d}. Assume that | Im(fk)| = 3 for some k ∈ [n]. Then by Lemma 7
fk depends essentially only on one variable and Im(fk) = Im(g) = {d}, which gives us a
contradiction. Thus, | Im(fk)| < 3 for every k ∈ [n]. Since the solution is surjective, the
remaining two values from A \ {d} should appear in the images of some functions fi and fj .
To get a contradiction we use the last two conjunctions. The fifth conjunction is obtained
by a permutation of variables in fi from the fourth conjunction. Therefore, without loss of
generality we consider fi, fj and a, b, c ∈ A such that {d, fi(a, b), fj(a, c)} = A. By the fourth
conjunction we have N(fi(a, b), fi(c, b), fj(a, c)), which together with Im(fi) = {fi(a, b), d}
implies fi(c, b) = fi(a, b). Then by the fifth conjunction we get N(fj(a, c), fj(a, b), fi(c, b))
which together with Im(fj) = {fj(a, c), d} implies fj(a, b) = fj(a, c). Then by the fourth
conjunction we have (fi(a, b), fi(b, b), fj(a, b)) = (fi(a, b), d, fj(a, c)) ∈ N , which contradicts
our assumption.

5 Counter-example

Here we will prove Theorem 4 from Section 2.

Recall that R =

0 0 0 0 0 0
2 2 2 1 1 1
2 1 1 1 1 1
1 2 2 1 1 1
0 1 2 0 1 2

, R′ =

2 2 1
2 1 1
1 2 1

.

Lemma 11. CSP({R, {0}, {1}, {2}}) is NP-hard.

Proof. Note that R′ is the projection of R onto the coordinates 2, 3, and 4. We can check that
R′ is not preserved by any idempotent WNU on {1, 2}. By Theorem 1, CSP({R′, {1}, {2}})
is NP-hard. Therefore, CSP({R, {0}, {1}, {2}}) is NP-hard.

Lemma 12. SCSP({R′}) is NP-hard.

Proof. SCSP({R′}) can be viewed as the SCSP on the two-element set {1, 2} (we just add
a variable that never appears for 0 to be in a solution), which is known to be NP-Hard
[10, 11].

Lemma 13. SCSP({R}) is solvable in polynomial time.

Proof. The idea of the algorithm is very simple. To prevent our instance from having a trivial
surjective solution we have to restrict the fifth variable of every appearance of R to a smaller
domain. After we did this, we can replace R by a conjunction of easier relations. Thus, we
show that our instance has a trivial surjective solution unless all appearances of the relation
R could be replaced by easier relations.

Let σ = {(1, 1), (2, 2)}. We will prove a stronger claim that SCSP(Γ) is solvable in poly-
nomial time for Γ = {R, σ, {0}, {1}, {1, 2}}. Consider an instance I of SCSP(Γ).

First, we want to classify every occurrence of a variable in the instance. We say that an
occurrence is of the first type if the projection of the constraint onto this variable is {0}, we say
that an occurrence is of the second type if the projection of the constraint onto this variable
is a subset of {1, 2}. In all other cases we say that it is an occurrence of the third type. For
example in R(x1, x2, x3, x4, x5) the variable x1 is of the first type, the variables x2, x3, x4 are
of the second type and x5 is of the third type. In σ both variables are of the second type.
Note that the third type appears only in the relation R.

Second, we want all the occurrences of each variable to be of one type. We do the following:

10

• If a variable occurs in the first and the second types then we return “No solutions”.

• If a variable occurs in the first and third types then it should appear at the last position
of R. Then we replace the relation R by σ, {0} and {1} using the following equation

R(x1, x2, x3, x4, x5) ∧ (x5 = 0) =

(x1 = 0) ∧ σ(x2, x3)∧(x4 = 1) ∧ (x5 = 0)

• If a variable occurs in the second and third types then it should appear at the last
position of R. Then we replace the relation R by σ, {0} and {1, 2} using the following
equation

R(x1, x2, x3, x4, x5) ∧ (x5 ∈ {1, 2}) =

(x1 = 0) ∧ σ(x2, x4) ∧ (x3 =1) ∧ (x5 ∈ {1, 2})

Finally we get an instance with the same solution set such that all the occurrences of each
variable have the same type. Here we may have two cases:

Case 1. The instance I does not contain R at all. Such an instance is in fact trivial because
it contains only equality relation on {1, 2} and unary relations. Hence, we can check whether
it has a surjective solution in polynomial time. To avoid a formal explanation of how to do
this, we can reduce such SCSP to CSP. Since CSP({σ, {0}, {1}, {2}, {1, 2}}) can be solved in
polynomial time [3], by Lemma 2 SCSP({σ, {0}, {1}, {1, 2}}) is also solvable in polynomial
time. We use this algorithm for our instance.

Case 2. The instance I contains R, which means that the instance has occurrences of
variables of all three types (since all types appear in R). To get a surjective solution it is
sufficient to send the variables of the first type to 0, the variables of the second type to 1, and
the variables of the third type to 2. Since R holds on (0, 1, 1, 1, 2) and σ holds on (1, 1), this
is in fact a solution.

References

[1] Manuel Bodirsky. Constraint Satisfaction with Infinite Domains. PhD thesis, Humboldt-
Universität zu Berlin, 2004.

[2] Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homo-
morphism problems - a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012.

[3] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. ACM, 53(1):66–120, January 2006.

[4] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. CoRR, abs/1703.03021,
2017.

[5] Andrei A Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330. IEEE,
2017.

[6] Hubie Chen. An algebraic hardness criterion for surjective constraint satisfaction. Algebra
universalis, 72(4):393–401, 2014.

11

[7] Hubie Chen. Three concrete complexity questions about constraints, in search of theo-
ries. AAA98.Arbeitstagung Allgemeine Algebra - 98-th Workshop on General Algebra.
Dresden, Germany, 2019.

[8] Hubie Chen. Algebraic global gadgetry for surjective constraint satisfaction. arXiv
preprint arXiv:2005.11307, 2020.

[9] Kathryn Cook, Simone Dantas, Elaine M Eschen, Luerbio Faria, Celina MH
De Figueiredo, and Sulamita Klein. 2k2 vertex-set partition into nonempty parts. Dis-
crete mathematics, 310(6-7):1259–1264, 2010.

[10] Nadia Creignou and J-J Hébrard. On generating all solutions of generalized satisfiability
problems. RAIRO-Theoretical Informatics and Applications, 31(6):499–511, 1997.

[11] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of
boolean constraint satisfaction problems, volume 7. SIAM, 2001.

[12] Simone Dantas, Celina MH de Figueiredo, Sylvain Gravier, and Sulamita Klein. Finding
h-partitions efficiently. RAIRO-Theoretical Informatics and Applications, 39(1):133–144,
2005.

[13] Simone Dantas, FréDéRic Maffray, and Ana Silva. 2k2-partition of some classes of graphs.
Discrete Applied Mathematics, 160(18):2662–2668, 2012.

[14] Kefeng Diao, Ping Zhao, and Huishan Zhou. About the upper chromatic number of a
co-hypergraph. Discrete Mathematics, 220(1-3):67–73, 2000.

[15] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput., 28(1):57–104, February 1999.

[16] Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering
graphs with few complete bipartite subgraphs. Theoretical Computer Science, 410(21-
23):2045–2053, 2009.

[17] Jacob Focke, Leslie Ann Goldberg, and Stanislav Zivny. The complexity of counting
surjective homomorphisms and compactions. SIAM J. Discrete Math., 33(2):1006–1043,
2019.

[18] Petr A. Golovach, Matthew Johnson, Barnaby Martin, Daniël Paulusma, and Anthony
Stewart. Surjective h-colouring: New hardness results. Computability, 8(1):27–42, 2019.

[19] Petr A. Golovach, Daniël Paulusma, and Jian Song. Computing vertex-surjective homo-
morphisms to partially reflexive trees. Theor. Comput. Sci., 457:86–100, 2012.

[20] Takehiro Ito, Marcin Kamiński, Daniël Paulusma, and Dimitrios M Thilikos. On discon-
nected cuts and separators. Discrete applied mathematics, 159(13):1345–1351, 2011.

[21] Takehiro Ito, Marcin Kamiński, Daniël Paulusma, and Dimitrios M Thilikos. Parame-
terizing cut sets in a graph by the number of their components. Theoretical computer
science, 412(45):6340–6350, 2011.

[22] Daniel Král, Jan Kratochv́ıl, Andrzej Proskurowski, and Heinz-Jürgen Voss. Coloring
mixed hypertrees. Discrete Applied Mathematics, 154(4):660–672, 2006.

12

[23] Benôıt Larose, Barnaby Martin, and Daniël Paulusma. Surjective h-colouring over re-
flexive digraphs. TOCT, 11(1):3:1–3:21, 2019.

[24] D. Lau. Function algebras on finite sets. Springer, 2006.

[25] Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected
cut and 2k2-partition. J. Comb. Theory, Ser. B, 111:17–37, 2015.

[26] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226,
New York, NY, USA, 1978. ACM.

[27] Narayan Vikas. Computational complexity of compaction to cycles. In Proceedings of the
tenth annual ACM-SIAM symposium on Discrete algorithms, pages 977–978, 1999.

[28] Narayan Vikas. Computational complexity of compaction to reflexive cycles. SIAM J.
Comput., 32(1):253–280, 2002.

[29] Narayan Vikas. Computational complexity of compaction to irreflexive cycles. J. Comput.
Syst. Sci., 68(3):473–496, 2004.

[30] Narayan Vikas. A complete and equal computational complexity classification of com-
paction and retraction to all graphs with at most four vertices and some general results.
J. Comput. Syst. Sci., 71(4):406–439, 2005.

[31] Narayan Vikas. Algorithms for partition of some class of graphs under compaction and
vertex-compaction. Algorithmica, 67(2):180–206, 2013.

[32] Narayan Vikas. Computational complexity of graph partition under vertex-compaction
to an irreflexive hexagon. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François
Raskin, editors, 42nd International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs,
pages 69:1–69:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[33] Narayan Vikas. Computational complexity relationship between compaction, vertex-
compaction, and retraction. J. Discrete Algorithms, 52-53:168–181, 2018.

[34] VI Voloshin. The mixed hypergraphs. Computer Science Journal of Moldova, 1(1):1,
1993.

[35] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017, pages 331–342, 2017.

[36] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM (JACM),
67(5):1–78, 2020.

13

	1 Introduction
	1.1 Constraint Satisfaction Problem
	1.2 Surjective Constraint Satisfaction Problem
	1.3 Surjective Graph Homomorphism Problem
	1.4 The Complexity of SCSP
	1.5 No-Rainbow Problem

	2 Main Results
	3 No-Rainbow problem is NP-Hard (the first proof)
	4 No-Rainbow problem is NP-Hard (the second proof)
	5 Counter-example

