
Interactive Perception for Deformable Object Manipulation

Zehang Weng∗,1, Peng Zhou∗,†,2, Hang Yin1, Alexander Kravberg1,
Anastasiia Varava1, David Navarro-Alarcon2 and Danica Kragic1

Abstract— Interactive perception enables robots to manip-
ulate the environment and objects to bring them into states
that benefit the perception process. Deformable objects pose
challenges to this due to significant manipulation difficulty
and occlusion in vision-based perception. In this work, we
address such a problem with a setup involving both an active
camera and an object manipulator. Our approach is based on a
sequential decision-making framework and explicitly considers
the motion regularity and structure in coupling the camera
and manipulator. We contribute a method for constructing
and computing a subspace, called Dynamic Active Vision
Space (DAVS), for effectively utilizing the regularity in motion
exploration. The effectiveness of the framework and approach
are validated in both a simulation and a real dual-arm robot
setup. Our results confirm the necessity of an active camera and
coordinative motion in interactive perception for deformable
objects.

I. INTRODUCTION

Interactive Perception (IP) exploits various types of force-
ful interactions with the environment to facilitate perception
[1]. Specifically, interaction allows for jointly considering
acquired sensor information and actions taken over a time
span. Despite the high dimensionality of the augmented
space, the causal relation between sensation and action gives
rise to structure for perceiving environment properties in a
predictive and dynamical manner. Such structure is called
Action Perception Regularity [1], and is believed to be the
key for IP to reveal richer signals, which is impossible
for passive and one-shot perception. IP has been shown
effective in exploring and exploiting object and environment
properties, with the main focus on rigid and articulated
objects [2], [3], [4], [5], [6].

Deformable object manipulation (DOM) adds to the com-
plexity of this identified interactive perception problem (e.g.,
clothes or bags manipulation). The space where the per-
ception process resides in is further enlarged with much
more degrees-of-freedom (DOFs) of the deformable mate-
rials. Establishing the predicative relation between action
and sensation is challenged by an underactuated system.
Moreover, significant occlusions may present due to material
flexibility and fail an interaction strategy without an actively
controlled camera. An example is shown in Fig. 1, where
an active camera called perceiver is necessitated for a better
observation of an object in a bag while the bag is opened by
another manipulator called actor. This will again add more

∗Authors with equal contribution. † Corresponding author.
1The authors are with CAS/RPL, KTH, Stocholm, Sweden.

{zehang,hyin,okr,varava,dani}@kth.se
2The authors are with The Hong Kong Polytechnic University, KLN,

Hong Kong. {jeffzhou@hku.hk, dnavar@polyu.edu.hk}

Actor

Perceiver

Fixed

Deformable object

Fig. 1. An example of Interactive Perception. The perceiver (camera) is
moved to a new viewpoint while the actor (end-effector) opens the bag for
better perception of in-bag object.

DOFs to the problem. Lastly, deformable environments might
entail a perception process consisting of multiple steps: the
robots need to take actions for better perception which in
turn bases a better action decision to take. How to effec-
tively coordinate the perceiver and the actor to shorten this
interactive process can thus be a key to efficient perception.

To this end, we propose to address interactive perception
for deformable objects in a partially observable Markov
Decision Process (POMDP) framework. We focus on bag-
like objects and a dual-arm agent setup with an active
camera similar to Fig. 1. Our aim is to study the feasibility
of solving DOM for IP under the POMDP formulation
and whether active vision can facilitate the solution. To
leverage the regularity in coupling the perceiver and the actor,
our approach proposes to dynamically construct a motion
subspace, Dynamic Active Vision Space (DAVS), based on
object features for an efficient search. Specifically, we intro-
duce a manifold-with-boundary formulation to characterize
a compact camera action subspace to constrain the poten-
tial next view. We provide detailed algorithms to calculate
the manifold and integrate it into a general action search
framework such as reinforcement learning (RL) in solving
the POMDP. The simulation results highlight the importance
of active vision capability from the controlled camera and
the superior performance due to DAVS compared to baseline
methods. DAVS shows its strength in generalizing to unseen
dynamics and shapes. Finally, we show the proposed method
is robust for a successful transfer to the real hardware with
a moderate fine-tuning on a dual-arm setup.

In summary, our main contributions are:
• We propose a formulation involving both an active

camera and a highly deformable object, which to our
knowledge is the first in the context of interactive

ar
X

iv
:2

40
3.

05
17

7v
2

 [
cs

.R
O

]
 1

1
Ju

n
20

24

perception.
• We present a novel method that constructs the camera

action space as a manifold with boundary (DAVS),
based on Structure of Interest (SOI).

• We conduct extensive studies in both simulation and
real-world experiments to demonstrate the effectiveness
of our methods in challenging DOM scenarios, We
show that our method generalizes well to objects with
different dynamical properties and unseen shapes.

II. RELATED WORK

Interactive Perception and manipulation of deformable
objects [7], [8], [9], [10] are commonly studied as two
separate problems in the robotics community. In this work,
we aim to develop a framework that allows for a more
effective perception in a manipulation task performed on
a deformable object. Our work relates to concepts such as
hand-eye coordination [11], visual servoing [12], active
perception [13], [14], [15], [16], [17], [18] and interactive
perception [1], but none of these fully addresses all the three
aspects in a single framework: a deformable object, moving
camera, and a robot interacting with the object.

Recent work on learning policies in the context of IP
focuses mostly on rigid objects and RL [2], [3]. Works
considering deformable objects and a moving camera reside
commonly to active vision and do not address the interaction
aspect [19], [20], [21], [22]. RL is again employed in the
recent work of [23] but the focus is kept on resolving
the observation for better human pose estimation with no
interactive aspect. IP in the context of deformable objects
has mainly been considered using a static camera [7].
The most important aspect of these works is to address
the dimensionality in terms of perception using a latent
representation and then devising action planning in a lower-
dimensional space [24], [25], [26]. Notably, advancements
in complex 3D deformable bag manipulation have been pre-
sented [27], [28], [29], [30], [31]. These works have shown
significant progress in the domain but do not incorporate
an active movable camera for task achievement. The recent
benchmarks that build upon advanced simulation engines
again focus primarily on a static camera setup [32], [33].

The work in [11] learns hand-eye coordination for grasp-
ing, using deep learning to build a grasp success predic-
tion network, and a continuous servoing mechanism to use
this network to continuously control a robotic manipulator.
Similarly to our approach, it uses visual servoing to move
into a pose that maximizes the probability of success on a
given task. However, the application is bin-picking, using
a static camera, and no deformable objects are considered.
As per technical methods, we also follow a decision-making
formulation and reinforcement learning as [2], [3]. Our work
differs by contributing a factorization of the policy action
space and algorithms that leverage the dependency between
the camera and object for efficient search. The proposed
structure is shown to be critical to addressing challenges
faced by [2] in deformable object scenarios.

In summary, we contribute a formulation of an inter-
active perception approach that relies on a manifold-with-
boundary representation to address the high-dimensionality
of the perception-action problem and efficiently encode the
coupling between the perceiver, deformable object, and the
actor.

III. METHODOLOGY

We formulate interactive perception involving deformable
objects as a POMDP (S,O,A,T,R,γ), with state s ∈ S
denoting the configuration of robotic end-effector, camera,
and object, and corresponding observation as o ∈ O. State
transition model T (s′ | s,a) characterizes the probability of
transitioning to state s′ from taking action a ∈ A under
state s. The action space is comprised of desired camera
and end-effector poses, represented as a Cartesian product
A = Acam × Ae. R(s) ∈ R is a state reward function, and
γ ∈ [0,1) is the discount factor.

Our core idea to tackle the problem is constructing a
subspace of A for efficient action search and maximizing
the accumulated reward. An overview of the framework
components is depicted in Fig. 2. Specifically, the subspace
is built upon certain object features, which are called the
structure of interest (SOI). The geometry of this structure is
coupled with the end-effector action. The structure is used
to generate the temporally varying boundary of a manifold,
which is called dynamic active vision space. In the end, the
camera actions are projected to the constructed space in a
reinforcement learning process. We detail the mathematical
representation of the manifold and the development of each
component in the following sections.

A. Action Space Factorization and Manifold with Boundary

Given the IP task in Fig. 1, we need to propose the
camera action acam

t and end-effector action ae
t given the

observation ot−1. A naive solution is to factorize the action
space as π(acam

t ,ae
t |ot−1) = p(acam

t |ot−1)p(ae
t |ot−1) with the

assumption of conditional independence, which however
results in high dimensionality for action exploration. In this
work, we consider that the camera action space should
also depend on the previous end-effector action, resulting in
π(acam

t ,ae
t |ot−1)= p(acam

t |ae
t−1,ot−1)p(ae

t |ot−1). This implies
the possibility of sampling acam

t from a subspace depending
on ae

t−1, thereby enabling efficient exploration of the original
action space. We use the manifold with boundary M [34] as
a tool to describe this subspace and its construction.

The introduction of M essentially imposes constraints, and
thus structure/regularity, on the original camera action space.
To this end, we augment the POMDP (S,O,Z,T,R,γ), such
that z∈ Z =M×Ae is the constrained action space subjecting
to M. The new constrained IP problem can be written as

max
θ

Est ,zcam
t ,ze

t

[
T

∑
t=0

γ
tR(st ,zcam

t ,ze
t)

]
,

s.t. zcam
t ∈M(ze

t−1) : {IntM,∂M}
(1)

with θ as the learning parameters of model M and π(ze|o).

Fig. 2. [Left] Illustration of the proposed framework — a subspace of camera action is constructed and represented with manifold
with boundary, accounting for the coupling with end-effector motion via the structure of interest (SOI) on deformable objects. [Right]
Illustration of state action transition of the proposed framework.

B. Manifold with Boundary-based DAVS

The manifold with boundary specifies a compact subspace
of the original camera action space. We adopt a half spherical
space as the original space, which is often assumed in
active perception research [35], [36], [23]. Specifically,
the spherical space is defined by viewpoint centroid, V0
and a viewpoint radius r, with both as known parameters:
S2(r) = {p ∈ R3 | ∥p−V0∥= r,z≥ 0}.

We seek to identify a subspace of S2 to exploit the
regularity of camera action space. This subspace is called
Dynamic Active Vision Space (DAVS) for its dependency
on the observation and end-effector action at each time step.
To model such a dependency, we propose to use object
features as an intermediary which are in turn influenced by
end-effector actions. Specifically, we consider a set of key-
points X(t) = [X1(t),X2(t), · · · ,XN(t)]

T with Xi(t) ∈R1×3 as
a representation of task-dependent features, such as garment
opening and handle loop in Fig. 2, which are named as
structure of interest (SOI). SOI can be acquired by using key-
point extraction techniques [26], [37] or predicative models
[38], [27].

To focus on the contributed method, we assume anno-
tated key-points that can be readily retrieved from a model
fSOI(ot). We expect SOI to resemble a single loop structure
for the computation in subsequent implementation. This can
be satisfied by design in the cases of, for instance, vertices on
bag openings. To ensure such a structure, we process raw SOI
key-points X(t) by first projecting them on a middle sphere
with a radius r∗ = max(∥Xi(t)−V0∥), with the projected
points defined as:

X̄(t) =V0 +
(V0−Xi(t))r∗

∥Xi(t)−V0∥
| Xi(t) ∈ {X1(t),X2(t), . . . ,XN(t)}= X(t)

(2)

Selecting the projected points X∗(t) on the convex hull of
X̄(t), we obtain a SOI polygon with desired loop structure.

We construct DAVS based on this SOI polygon to compute
a subset of the original camera action space S2. A subset of
S2 at each time step is built by projecting key-points X∗(t)
to X′(t) with a ray-tracing model, as shown in Fig. 3:

X′i(t) =V0 +
(V0−X∗i (t))r
∥X∗i (t)−V0∥

| X∗i (t) ∈ {X∗1 (t),X∗2 (t), . . . ,X∗n (t)}= X∗(t)
(3)

By connecting the n projected SOI points in their respec-
tive order with N geodesic paths, we generate a manifold
M′ with boundary ∂M′ (which is part of S2) consisting of
the piecewise geodesic paths. In our implementation, we
represent the geodesic path as a discrete set of path points
within a certain density range to accelerate the computation
process [25].

Algorithm 1: Action Exploration with DAVS
Input: Observation, o; Camera position, P0;

Viewpoint centroid, V0; Viewpoint radius, r.
Output: Camera action policy, αcam

k ; End-effector
action policy, αe

k ;
1 for each episode do
2 Initial feasible state s0 ;
3 Initial parameter setting for active vision ;
4 for each time step k do
5 SOI Modeling X(t)← fSOI(ok−1) ;
6 Sample policy end-effector action

αe
k ∼ π(· | ok−1) ;

7 Based on X(t), P0, V0, and r, compute DAVS
using Alg. (2) to get M with its boundary
∂M ;

8 Compute direction vectors v1 and v2 based on
geodesic paths on γP0P1 and γP0P2 ;

9 Sample policy camera action
αcam

k ∼ π(· | ok−1,v1,v2,v0,ω) ;
10 Apply the control camera action αcam

k to the
environment ;

11 Construct action tuple αk = (αe
k,α

cam
k) ;

12 Get next observation ok+1 and reward rk from
the environment ;

13 Provide the transition tuple (ok−1,αk,ok,rk)
to the RL algorithm ;

A DAVS for the current camera pose is constructed by
finding a centroid on M′(t), which is calculated as the
Karcher mean of the boundary points X′(t), see Fig. 3.
Formally, (M′,d) defines a complete metric space and d

Fig. 3. Illustration of the process of dynamic active vision space (DAVS) generation. [Left] We extract the SOI points at each time step t and convert
them to projected 3D SOI (blue) points through ray tracing, on the original camera action manifold. [Right top] The manifold with boundary based on
projected SOI and current camera position by Algorithm 2 [Right bottom] Parameterized exploration space.

Algorithm 2: Dynamic Active Vision Space (DAVS)
Generation

Input: SOI set (ring vertices), X(t); Camera
position, P0; Viewpoint centroid, V0;
Viewpoint radius, r.

Output: Manifold M with boundary ∂M representing
the reshaped camera action space

1 Compute X′i(t) with ray tracing model using Eq. (3) ;
2 Generate refined active vision space, M′(t) and its

boundary ∂M′(t) ;
3 Compute centroid O0 using the trust-region method

with Eq. (5) ;
4 Compute P1 and P2 s.t. GeodesicP1P2 ⊥GeodesicP0O0 ;
5 Form manifold with boundary M s.t. boundary

∂M = {p | p ∈ γ ⌢
P0P1

,γ ⌢
P1P2

,γ ⌢
P2P0
} (each p has a

neighborhood homeomorphic to an open subset of
closed n-dimensional upper half-space Hn.

denotes the geodesic distance in this metric space. For any
position p in M′, the Fréchet variance Ψ is defined to be the
sum of squared distances from p to the X ′i and is minimized
as:

fO0(p) = argmin
p∈M

Ψ(p) = argmin
p∈M

N

∑
i=1

d2 (p,Xi) (4)

To efficiently solve this problem, we follow [39] to transform
it into a trust-region subproblem on Tpk M′. Given the cost
function fO0 : M′ → R and a current iterate pk ∈ M′, we
use retraction Rpk to locally map the minimization problem
for f on M into a minimization problem for its pullback
f̂O0(pk) : TpkM′ → R, with which the trust-region problem
reads:

min
η∈Tpk M

f̂pk(η) = f (pk)+ ⟨grad f (pk) ,η⟩

+
1
2
⟨Hk[η],η⟩s.t. ⟨η ,η⟩pk ≤ ∆

2
k

(5)

For the symmetric operator Hk we use Hessian
Hess f (x)[ξ] = ∇ξ grad f (x). A trust region is specified by
∆k for the validity of ambient space approximation.

In addition to the centroid, we find two points P1 and P2
on ∂M′(t), such that the geodesic path passing through them

is locally perpendicular to the one passing through P0 and
O0. As a result, the DAVS is obtained by enclosing the three
paths, γ ⌢

P0P1
,γ ⌢

P1P2
,andγ ⌢

P0P2
. The full process is summarized as

Algorithm 2. Additionally, we introduce a ω to parameterize
the exploration space of the camera’s action. As illustrated
in Fig. 3, consider the tangent space TP0M at the current
camera position P0 to a DAVS. Here, the local geodesic
paths γ ⌢

P0P1
, γ ⌢

P0P2
, and γ ⌢

P0O0
are projected onto this tangent

space, resulting in vectors v1, v2, and v0. Let us assume
that angles θ1 and θ2 are formed between v1 and v0, and v2
and v0, respectively. By introducing a parameter ω ∈ [0,1],
we gain control over the camera action exploration within
the range [θ2(1−ω),θ2 +θ1ω] (v2 as zero-degree axis). In
our manuscript, we select the action space with ω = 1 to
provide a broader space for exploring effective policies in
complex scenarios. By reducing ω , we can narrow the action
sampling space and enforce a preference for alignment with
v0, which corresponds to the direction along the geodesic
path γ ⌢

P0O0
. Reducing ω to 0 causes the camera action policy

to strictly follow the geodesic path γ ⌢
P0O0

, leading directly to
the centroid of DAVS.

C. Exploiting DAVS in Action Exploration

The construction of DAVS provides a subspace that as-
sociates promising camera actions to task-relevant object
features under the end-effector action. To this end, we
propose to exploit this space to bias the search of camera
action in IP, e.g., in reinforcement learning. As shown in
Fig. 2, we determine two tangent directions, v1 and v2, based
on the boundary of DAVS at the current camera position.
The camera action is sampled with a direction between v1
and v2. This biases the action exploration towards the DAVS
and as such can boost search efficiency when object features
indicate rewarding areas. We detail the entire process as
Alg. 1 in the context of action sampling in reinforcement
learning.

IV. SIMULATION EXPERIMENTS

A. Environment Setup

Our simulation environment is built on the basis of Py-
bullet [40] which has been previously extended to handle
various cloth-like deformable object manipulation tasks [33],

Fig. 4. Left: quantitative evaluation on CubeBagClean. The first row represents the episode length (↓) for solving 4 tasks across
different combinations of random (Rand) and fixed (Fix) camera (Cam) and end-effector (EE) birth modes. The second row shows the
total discounted rewards (↑). Right: quantitative evaluation on CubeBagObst subtasks. The first two figures represent the episode length
(↓) and reward (↑) for the scenario with fixed camera (Fix Cam) and random end-effector (Rand EE) birth modes. The third and fourth
figures are episode length (↓) and reward (↑) with random camera (Rand Cam) and random end-effector (Rand EE) birth modes.

CubeBagClean
w/o manifold

CubeBagObst
AV w/ manifold

CubeBagObst
SV w/o manifold

CubeBagClean
w/ manifold

Visualization of
CubeBagClean
w/ manifold

Fig. 5. Visualization of the learned hand-eye policies. In each row
except for the second row, we show the images of intermediate
frames in an example episode. We also draw arrows ↑ beneath
the images to illustrate how the camera moves. In the first and
third rows sampled from the CubeBagClean case, we compare the
performance between IP methods with and without DAVS. We can
see that with DAVS, the camera is able to move right and upwards
to find the cube in the bag, while the one without DAVS searches
more randomly. In the bottom two rows from the CubeBagObst
case, we compare the methods between IP methods with DAVS and
a static vision method. In the IP setting, the camera bypasses the
obstacle and finds a feasible solution, while the static vision method
doesn’t. This reveals the necessity of allowing active vision and
active end-effector. The second row is the 3D manifold visualization
corresponding to the first row (BlueDot: Camera; Green: 3D SOI;
Red: Projected SOI; BlueCurve: Boundary of DAVS).

[41] under static viewpoint camera. We advance one step fur-
ther and customize the environment to support the empirical
evaluation of the proposed IP framework as shown in Fig. 3.

We evaluate the performance of the proposed framework
with DAVS in two environments: (1) CubeBagClean: envi-
ronment contains a deformable bag with the left handle fixed
in the air and a rigid cube placed inside; (2) CubeBagObst:
CubeBagClean with an additional circular obstacle above

the bag, providing an additional view occlusion. To ensure
diversity of the initial position of the cube, it is spawned and
released from a certain height above the bag, falling down
into the bag freely.

In both simulation environments, we provide three types of
observations: a 2D depth image, a 2D SOI heatmap, and the
end-effector position. Based on the observations, the camera
and end-effector manipulating the bag are allowed to act
simultaneously, but restricted to a maximum of 200 action
steps in one episode. Specifically, the end-effector can be
arbitrarily moved while the active camera is traversing the
half-sphere surface, similar to the CMU’s panoptic massive
camera grid [42] setting. The perceiver agent is controlled
by pitch and yaw angles and stares at a constant focus point.
To avoid collisions and ensure the simulation stability, we
constrain the end-effector action with a bounding box and
the camera yaw angle with a range.

B. Evaluation Metrics

We use CubeBagClean and CubeBagObst to assess the
efficiency of using the proposed action space, in terms of
succeeding in finding the cube. In CubeBagClean, we vary
the birth modes of the camera and the end-effector to create
4 subtasks where either the camera or the end-effector can
be spawned in a fixed or a random place. In CubeBagObst,
we consider 2 subtasks with both fixed and random camera
birth modes while the end-effector is always initialized in a
random position. The fixed camera position is selected in a
way that the bag interior is not immediately visible, so non-
trivial camera trajectories are required to solve the task. In
each task, our reward function encodes a goal of maximizing
the visibility of the rigid cube and the opening ring. We
use a potential-based reward formulation [43] to encourage
revealing more of the visible cube pixels and the SOI. The
reward function is as follows:

rt = λr∆Arigid
t +λd∆Nring

t +λ f I(Arigid
t ,Aring

t , t) (6)

where ∆Arigid
t = Arigid

t −Arigid
t−1 is the increased visibility of

rigid object pixels in the image captured by the active
camera. λr is a scale compensation factor depending on

the relative distance between the object and the camera.
∆Nring

t = Nring
t − Nring

t−1 is the increased number of visible
deformable SOI vertices in the active camera view. λd is
a constant scale factor for the deformable object. I(·) is an
indicator function that checks if the IP policy has reached the
final goal. Specifically, I(·) returns 1 only if Arigid

t and Aring
t

both reach the preset visibility thresholds before timeout. λ f
is a time-dependent scale factor, defined as 100× (Tmax− t),
encouraging the IP policy to finish the task as quickly
as possible. To demonstrate the effectiveness of DAVS in
comparison to the state-of-the-art, we choose a model-free
RL algorithm PPO [44] as the policy search algorithm.
We provide quantitative evaluations regarding the finishing
episode length and the final reward, and qualitative results
illustrating the learned policy behaviors among different
methods.

C. Baseline Methods

We choose the PPO [44] and a straightforward Visual
Servoing (VS) approach that focuses on maximizing the vis-
ibility of the SOI within the camera’s view as our baselines.
The 2D depth and heatmap images are concatenated, and em-
bedded as a fix-length feature vector through a convolution
neural network architecture from [45]. The image feature
vector and the end-effector location vector are concatenated
and used as PPO input. The output camera and end-effector
actions thus depend on both current image features and end-
effector position.

D. Result

1) CubeBagClean: Fig. 4 shows the learning process on
4 subtasks, comparing PPO without DAVS to the variant
with the proposed DAVS on the metrics of the finished
episode length and total discounted rewards. It is evident
that the performance of the baseline is improved by a
significant margin by introducing DAVS (with manifold),
achieving lower episode length and higher reward in all four
subtasks. This indicates that DAVS successfully encodes the
coordination between the camera and end-effector agents and
expedites the finding of better solutions. We also visualize
an example of the learned IP policies in Fig. 5. The last
row of the figure illustrates the dynamic evolution of the
manifold in a CubeBagClean episode in the first row. The
camera position, SOI, projected SOI, and DAVS are plotted
in different colors. For each subtask, we report the episode
length, total reward, and the success rate on 100 random
scenes as presented in Table I.

2) CubeBagObst: The additional circular obstacle in this
scenario introduces more view occlusion and hence requires
more complex maneuver and coordination of camera and
end-effectors. In this experiment, besides a default PPO with
and without DAVS, we also take a PPO with static vision into
account for comparison to show the insufficiency of static
vision methods. From Fig. 4, we observe the agents in IP
with DAVS outperform the counterparts without DAVS or
with the static vision solution, particularly when the camera

starts from a fixed but challenging side perspective. The
qualitative result is shown in Fig. 5.

3) Generalization to objects with new properties: To
evaluate the trained networks’ generalizability, we analyzed
their performance when interacting with bags exhibiting
unseen yet similar dynamics, despite the model being trained
with a single-bag dynamic setup. Specifically, we explored
the impact of random variations in the bag’s spring elastic
stiffness and damping stiffness on its dynamics.

For each CubeBagClean subtask, we created 100 scenes
with random bag dynamics to evaluate the models’ perfor-
mance, with and without DAVS. As presented in Table I,
the IP policy, when utilizing DAVS, not only consistently
outperforms its counterpart without DAVS but also demon-
strates superior generalizability, underscoring the robustness
and effectiveness of our methodology.

Furthermore, we investigated the impact of variations in
shape, which were not seen during training. Specifically, we
created scenes with 36 bags with shapes adapting from [33].
As shown in Table I, the IP policy with DAVS performs
better. We observed that certain tasks with unseen shapes
were easier to achieve due to two reasons: 1) some new
bags had large openings, making it easier to capture the
object inside during manipulation; 2) some new bags were
more shallow, causing the contained cube to be closer to the
camera. Consequently, the rigid cube area appeared relatively
larger than in the original setup in the captured image,
making reaching the pre-set cube area threshold easier.

4) Comparison with other baselines: As shown in Table
II, with the reduction of ω to shrink the exploration space for
camera actions, the camera is more likely to move directly
into the manifold centroid. The PPO policy with DAVS
achieves shorter episode lengths, higher total rewards, and
higher success rates. While ω = 0 significantly improves
performance in simpler scenarios (CubeBagClean), higher
values of ω (DAVSω=0.5 and DAVSω=1) are crucial for
handling more complex environments (CubeBagObst). The
Visual Servoing method (VS) performs better than DAVSω=1
in some aspects but is outperformed by DAVS with ω

settings on CubeBagObst. In general, DAVSω=1 achieves the
best overall balance, making it the most robust approach
among the tested methods. We also examined the failure
cases in the simulation experiments. In our Pybullet simula-
tion setup, we executed the movements of the camera and
the actor simultaneously. Most failures occurred when the
simulated gripper moved too quickly, causing overstretching
of the deformable handles. Additionally, the relatively slow
movement of the camera made it more difficult to locate the
object, especially in scenes involving obstacles. Furthermore,
under the challenging generalization test, the IP method
failed particularly when the stiffness differed significantly
or with a small bag opening.

V. REAL-ROBOT EXPERIMENTS

To assess the effectiveness of the policy trained using
DAVS for deformable object manipulation with active per-
ception, we selected a policy fine-tuned within the CubeBag-

Episode Length (↓) / Reward (↑) / Success Rate(%) (↑)

Dynamics Method Fix Cam, Fix EE Rand Cam, Fix EE Fix Cam, Rand EE Rand Cam, Rand EE

Seen w/o DAVS 200.0 / 0.3 / 0.0 104.4 / 9561.8 / 66.0 164.7 / 3537.0 / 23.0 110.5 / 8958.9 / 49.0
w/ DAVS (ours) 39.0 / 16107.1 / 100.0 64.0 / 13600.7 / 84.0 35.24 / 16483.2 / 95.0 90.1 / 10998.6 / 61.0

New Dynamics w/o DAVS 200.0 / 0.2 / 0.0 116.4 / 8359.0 / 59.0 152.0 / 4796.1 / 30.0 114.5 / 8557.1 / 46.0
w/ DAVS (ours) 54.4 / 14565.6 / 91.0 84.6 / 11541.6 / 73.0 39.7 / 16035.9 / 94.0 80.7 / 11943.3 / 66.0

New Shapes w/o DAVS 188.8 / 1125.0 / 11.9 122.5 / 7750.1 / 50.5 95.6 / 10439.2 / 70.5 101.5 / 9859.9 / 58.8
w/ DAVS (ours) 97.9 / 10213.0 / 66.4 98.2 / 10184.4 / 63.1 38.7 / 16141.4 / 93.4 72.7 / 12734.3 / 80.6

TABLE I
PERFORMANCE ACROSS VARIED CAMERA AND END-EFFECTOR SETTINGS

UR10e UR10e

Perceiver

Actor

3rd Person View

Realsense L515

Bag

Top-down View

Realsense D435

ROI

Ow
Ob1

Op
Of

Ob2

Oa

Yaw: 180

Yaw :0

Pitch: -0

Pitch: -90

(-45, 30)

(-30, 110)

(-60, 135)

Cam Birth

Fig. 6. (Left) The experimental set-up of active perception for deformable object manipulation; (Right) The real-world experimental results with different
camera birth modes. Arrows ↑ beneath the images illustrate how the camera moves.

Episode Length (↓) / Reward (↑) / Success Rate(%) (↑)

Method CubeBagClean CubeBagObst Total(%) (↑)

w/o DAVS 137.6 / 6248.0 / 36.0 87.2 / 11539.5 / 65.0 50.5
DAVSω=0 32.0 / 16824.8 / 99.0 143.8 / 5739.8 / 36.0 67.5
DAVSω=0.5 59.6 / 13950.7 / 82.0 90.4 / 10760.6 / 59.0 71.5
DAVSω=1 62.7 / 13740.9 / 78.0 68.3 / 13536.2 / 75.0 76.5
VS 35.4 / 16107.7 / 96.0 137.5 / 5348.4 / 34.0 65.0

TABLE II
PERFORMANCE BY DIFFERENT APPROACHES

Clean simulation environment (featuring random camera and
end-effector positions) for real-world experimentation. Fig-
ure 6 illustrates our real-world experimental configuration for
active perception in deformable object manipulation tasks.
Here, a UR10e robotic arm (the actor) manipulates one han-
dle of a fabric bag (with the other handle fixed) using a 3D-
printed end-effector. Concurrently, a second UR10e robotic
arm (the perceiver) equipped with a RealSense D435 depth
camera observes the environment. We manually measured the
transformation matrices between the world coordinate frame
Ow and the perceiver’s base frame Ob1, as well as between
Ow and the actor’s base frame Ob2. Mirroring the camera
perceiver configuration from our PyBullet training environ-
ment, the camera’s action space is limited to a hemispherical
area, with its orientation constantly aimed at the sphere’s
center—which also coincides with the origin of the world
frame Ow. Given the known central point of the camera’s
field of view and the sphere’s radius, the camera’s position
and orientation are straightforwardly defined by its pitch and
yaw angles. Taking into account the kinematic constraints,
these angles are set within the ranges of [-89, -30] degrees
for pitch and [45, 135] degrees for yaw. The inputs to our real
RL agent comprise the end-effector pose, depth image and

a ring-shaped heat map. At each step, the DAVS generates a
construction based on the captured green Region of Interest
(ROI) of the fabric bag, which is defined by the bag’s green
opening rim. This green rim is roughly identified by an
overhead camera and then transformed into the world frame
using a fixed transformation. The outputs generated are the
pitch, yaw, and relative motion actions of the actor. Following
approximately 5,000 episodes of fine-tuning, the perceiver
and actor synergistically cooperate to reliably locate a blue
cube within the bag. Figure 6 showcases the successful
outcomes of these real-world experiments.

VI. CONCLUSION

In this work, we address deformable object manipulation
through Interactive Perception in a system involving an active
camera, a robotic end-effector, and a deformable object.
We contribute to a novel formulation of the problem with
common model assumptions and enable tractable compu-
tation through our proposed framework. Then, we perform
simulation experiments with different view occlusion situ-
ations and demonstrate that our proposed framework with
DAVS outperforms the state-of-the-art methods. Finally, we
confirm that our method generalizes well to bags featuring
previously unseen dynamical properties, as well as their
efficacy within an actual real-world interactive perception
system. The challenges presented in this work lead to
the future directions of improving hand-eye coordination,
such as explicitly incorporating dynamics prediction within
the IP framework, and more effective parameterized DAVS
constructions with task dependency for deformable object
manipulation.

REFERENCES

[1] J. Bohg, K. Hausman, B. Sankaran et al., “Interactive perception:
Leveraging action in perception and perception in action,” IEEE Trans.
Robot., vol. 33, no. 6, pp. 1273–1291, 2017.

[2] R. Cheng, A. Agarwal, and K. Fragkiadaki, “Reinforcement learning
of active vision for manipulating objects under occlusions,” in Conf.
Rob. Learn. PMLR, 2018, pp. 422–431.

[3] T. Novkovic, R. Pautrat et al., “Object finding in cluttered scenes
using interactive perception,” in IEEE Int. Conf. on Robotics and
Automation. IEEE, 2020, pp. 8338–8344.

[4] R. M. Martin and O. Brock, “Online interactive perception of artic-
ulated objects with multi-level recursive estimation based on task-
specific priors,” in IEEE/RSJ Int. Conf. on Robots and Intelligent
Systems. IEEE, 2014, pp. 2494–2501.

[5] D. Katz and O. Brock, “Manipulating articulated objects with inter-
active perception,” in IEEE Int. Conf. on Robotics and Automation.
IEEE, 2008, pp. 272–277.

[6] D. Katz, A. Orthey, and O. Brock, “Interactive perception of articulated
objects,” in Experimental Robotics. Springer, 2014, pp. 301–315.

[7] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception,
and control methods for deformable object manipulation,” Sci. Robot.,
vol. 6, no. 54, p. eabd8803, 2021.

[8] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and
J. L. Wyatt, “Modeling of deformable objects for robotic manipulation:
A tutorial and review,” Front. Robot. AI, vol. 7, p. 82, 2020.

[9] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi,
D. Berenson, F. Ficuciello, K. Harada, X. Li, J. Pan et al., “Challenges
and outlook in robotic manipulation of deformable objects,” arXiv
preprint arXiv:2105.01767, 2021.

[10] R. Herguedas, G. López-Nicolás, R. Aragüés, and C. Sagüés, “Survey
on multi-robot manipulation of deformable objects,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2019, pp. 977–984.

[11] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” Int. J. Robot. Res., vol. 37, no. 4-5, pp.
421–436, 2018.

[12] D. Kragic and H. I. Christensen, “Survey on visual servoing for manip-
ulation,” COMPUTATIONAL VISION AND ACTIVE PERCEPTION
LABORATORY, Tech. Rep., 2002.

[13] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,” vol. 1,
no. 4, pp. 333–356, 1988.

[14] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active per-
ception,” Auton. Robots, vol. 42, no. 2, pp. 177–196, 2018.

[15] A. L. Yuille and A. Blake, Active vision. MIT Press, 1992.
[16] D. H. Ballard, “Animate vision,” Artificial intelligence, vol. 48, no. 1,

pp. 57–86, 1991.
[17] E. Rivlin and H. Rotstein, “Control of a camera for active vision:

Foveal vision, smooth tracking and saccade,” vol. 39, no. 2, pp. 81–
96, 2000.

[18] X. Zhang, D. Wang, S. Han, W. Li, B. Zhao, Z. Wang, X. Duan,
C. Fang, X. Li, and J. He, “Affordance-driven next-best-view planning
for robotic grasping,” arXiv preprint arXiv:2309.09556, 2023.

[19] J. Sock, S. Hamidreza Kasaei, L. Seabra Lopes, and T.-K. Kim, “Multi-
view 6d object pose estimation and camera motion planning using
rgbd images,” in Proceedings of the IEEE International Conference
on Computer Vision Workshops, 2017, pp. 2228–2235.

[20] S. Wenhardt, B. Deutsch et al., “Active visual object reconstruction
using d-, e-, and t-optimal next best views,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. IEEE, 2007, pp. 1–7.

[21] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, “Viewpoint
selection using viewpoint entropy.” in VMV, vol. 1. Citeseer, 2001,
pp. 273–280.

[22] H. Van Hoof, O. Kroemer et al., “Maximally informative interaction
learning for scene exploration,” in IEEE/RSJ Int. Conf. on Robots and
Intelligent Systems. IEEE, 2012, pp. 5152–5158.

[23] E. Gärtner, A. Pirinen, and C. Sminchisescu, “Deep reinforcement
learning for active human pose estimation,” in Proc. AAAI Conf. Artif.
Intell., vol. 34, no. 07, 2020, pp. 10 835–10 844.

[24] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino,
and D. Kragic, “Latent space roadmap for visual action planning of
deformable and rigid object manipulation,” in IEEE/RSJ Int. Conf. on
Robots and Intelligent Systems. IEEE, 2020, pp. 5619–5626.

[25] P. Zhou, J. Zhu, S. Huo, and D. Navarro-Alarcon, “LaSeSOM: A latent
and semantic representation framework for soft object manipulation,”
IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5381–5388, 2021.

[26] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kpam: Keypoint
affordances for category-level robotic manipulation,” arXiv preprint
arXiv:1903.06684, 2019.

[27] Z. Weng, F. Paus, A. Varava, H. Yin, T. Asfour, and D. Kragic,
“Graph-based task-specific prediction models for interactions between
deformable and rigid objects,” in IEEE/RSJ Int. Conf. on Robots and
Intelligent Systems. IEEE, 2021, pp. 5741–5748.

[28] A. Bahety, S. Jain, H. Ha, N. Hager, B. Burchfiel, E. Cousineau,
S. Feng, and S. Song, “Bag all you need: Learning a general-
izable bagging strategy for heterogeneous objects,” arXiv preprint
arXiv:2210.09997, 2022.

[29] Z. Xu, C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song,
“Dextairity: Deformable manipulation can be a breeze,” arXiv preprint
arXiv:2203.01197, 2022.

[30] L. Y. Chen, B. Shi et al., “Autobag: Learning to open plastic bags
and insert objects,” in IEEE Int. Conf. on Robotics and Automation.
IEEE, 2023, pp. 3918–3925.

[31] P. Zhou, P. Zheng, J. Qi, C. Li, C. Yang, D. Navarro-Alarcon,
and J. Pan, “Bimanual deformable bag manipulation using a
structure-of-interest based latent dynamics model,” arXiv preprint
arXiv:2401.11432, 2024.

[32] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation,” arXiv
preprint arXiv:2011.07215, 2020.

[33] R. Antonova, P. Shi, H. Yin, Z. Weng, and D. K. Jensfelt, “Dynamic
environments with deformable objects,” in Proc. Adv. Neural Inf.
Process. Syst., 2021.

[34] J. Lee, Introduction to topological manifolds. Springer Science &
Business Media, 2010, vol. 202.

[35] B. Calli, W. Caarls, M. Wisse, and P. P. Jonker, “Active vision via
extremum seeking for robots in unstructured environments: Applica-
tions in object recognition and manipulation,” IEEE Trans. Autom. Sci.
Eng., vol. 15, no. 4, pp. 1810–1822, 2018.

[36] J. A. Gibbs, M. P. Pound, A. P. French, D. M. Wells, E. H. Murchie,
and T. P. Pridmore, “Active vision and surface reconstruction for 3d
plant shoot modelling,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 17, no. 6, pp. 1907–1917, 2019.

[37] L. Manuelli, Y. Li, P. Florence, and R. Tedrake, “Keypoints into the
future: Self-supervised correspondence in model-based reinforcement
learning,” arXiv preprint arXiv:2009.05085, 2020.

[38] A. Sanchez-Gonzalez, J. Godwin et al., “Learning to simulate complex
physics with graph networks,” in Proc. Int. Conf. Mach. Learn.
PMLR, 2020, pp. 8459–8468.

[39] J. Townsend, N. Koep, and S. Weichwald, “Pymanopt: A python
toolbox for optimization on manifolds using automatic differentiation,”
J. Mach. Learn. Res., vol. 17, no. 137, p. 1–5, 2016.

[40] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[41] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Gold-
berg, and A. Zeng, “Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks,” in IEEE Int.
Conf. on Robotics and Automation. IEEE, 2021, pp. 4568–4575.

[42] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade,
S. Nobuhara, and Y. Sheikh, “Panoptic studio: A massively multiview
system for social motion capture,” in Proc. IEEE Int. Conf. Comput.
Vis., 2015, pp. 3334–3342.

[43] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml,
vol. 99, 1999, pp. 278–287.

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

	Introduction
	Related Work
	Methodology
	Action Space Factorization and Manifold with Boundary
	Manifold with Boundary-based DAVS
	Exploiting DAVS in Action Exploration

	Simulation Experiments
	Environment Setup
	Evaluation Metrics
	Baseline Methods
	Result
	CubeBagClean
	CubeBagObst
	Generalization to objects with new properties
	Comparison with other baselines

	Real-robot Experiments
	Conclusion
	References

