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Robotic Exploration using
Generalized Behavioral Entropy

Aamodh Suresh, Carlos Nieto-Granda, Sonia Martı́nez

Abstract—This work presents and evaluates a novel strategy
for robotic exploration that leverages human models of un-
certainty perception. To do this, we introduce a measure of
uncertainty that we term “Behavioral entropy”, which builds
on Prelec’s probability weighting from Behavioral Economics.
We show that the new operator is an admissible generalized
entropy, analyze its theoretical properties and compare it with
other common formulations such as Shannon’s and Renyi’s. In
particular, we discuss how the new formulation is more expressive
in the sense of measures of sensitivity and perceptiveness to
uncertainty introduced here. Then we use Behavioral entropy
to define a new type of utility function that can guide a frontier-
based environment exploration process. The approach’s benefits
are illustrated and compared in a Proof-of-Concept and ROS-
Unity simulation environment with a Clearpath Warthog robot.
We show that the robot equipped with Behavioral entropy
explores faster than Shannon and Renyi entropies.

Index Terms—Robot Exploration, Human-Centered Robotics,
Planning under Uncertainty, Information Theory

I. INTRODUCTION

AUTONOMOUS robotic exploration is critical as it alle-
viates the inaccessibility and dangers of remote, unsafe,

and risky environments. Depending on the environment and
task at hand, the robot might be expected to exhibit a variety of
exploration behaviors from coarse and fast to fine and detailed.
These tasks are invariably evaluated or supervised by humans
and the exploration objective could change dynamically. Thus
having an intuitive, diverse and theoretically grounded ex-
ploration framework is a necessity. In this work, we infuse
human perception characteristics into robotic exploration AI,
and investigate both theoretically and practically, the effects
of this infusion.

The fundamental approach to exploration consists of re-
ducing uncertainty by observing an area with noisy sensors.
Uncertainty is typically quantified by entropy [1] and ma-
jority of exploration policies aim at reducing it (implicitly
or explicitly). However, unlike the typical robotic AI de-
signs, it is well known that humans perceive uncertainty in
a fundamentally non-rational manner [2], [3], [4], especially
in sensory perception and evaluating outcomes [5], causing
a variety of behaviors and decision making. Motivated by
this, we first propose and characterize a novel measure of
uncertainty called Behavioral entropy that incorporates human
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models of uncertainty perception [2] that is widely used in
the Behavioral Economics literature. Then, we investigate the
design of new behavioral robotic exploration policies using
our proposed uncertainty measure.

Related Work: Robotic exploration broadly involves the
cyclic interplay between perception (knowledge of environ-
ment and self via SLAM [6]), decision (evaluating areas of in-
terest (AOIs) from current knowledge) and action (navigation
policies to reach the selected AOI). Several SLAM techniques
have been proposed to produce environment maps utilizing
visual odometry [7] and LiDAR [8] that are key components
for exploration. Similarly, there exists navigation pipelines
utilizing a combination of global planning [9], [10], local
planning [11], optimal control [12] and reactive control [13] to
reach an AOI safely, reliably and efficiently. We focus on the
decision aspect of identifying and evaluating potential AOIs to
navigate from a given map. In particular, we use the popular
frontier-based exploration [14], that has been successfully
used to explore challenging environments [15], [16]. These
strategies are driven by optimizing utility functions that mea-
sure notions of information gain or uncertainty reduction by
visiting these AOIs. Thus, the metrics employed in these utility
functions are a key factor in designing exploration policies.
The most commonly used metric is based on the Shannon
information gain [14] that uses the Shannon entropy [1] as a
measure of uncertainty. More recently, information metrics de-
rived from Renyi’s entropy have been proposed and shown to
perform better than Shannon’s information gain [17]. Renyi’s
entropy generalizes Shannon’s to a family of generalized
entropies [18]. However, these entropies and the correspond-
ing metrics do not incorporate human behavioral models.
Moreover, their tuning is non-intuitive and Renyi’s entropy is
not continuously differentiable w.r.t. its parameter (at 1) and
thus making tuning also difficult. Some works try to address
modelling human choice and uncertainty perception through
data intensive approaches like Boltzmann machines [19] and
Bayesian learning [20]. However data-based approaches re-
quire large datasets and computational effort, provide limited
theoretical insights, can suffer from poor generalization and
are non-intuitive to tune and implement. Thus, we formulate a
new entropy that is based on human models of uncertainty per-
ception and which provides the most broad set of uncertainty
perception tools to tackle the exploration problem, while also
being smooth, theoretically grounded and intuitive to tune.

Contributions: In this work, we introduce a novel oper-
ator “Behavioral entropy” to quantify subjectively perceived
uncertainty of a given probability distribution. Our entropy
design is intuitive and empirically grounded from Behavioral
Economics, as well as “admissible” as a generalized entropy
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and theoretically grounded from Information theory perspec-
tive. We provide novel measures of “Sensitivity” and “Per-
ceptiveness” to characterize behavioral uncertainty perception
of entropic measures; which provides a basis to characterize
and compare any admissible entropic measure. We show that
Behavioral entropy is more general in the sense that it can
capture the widest range of uncertainty ”perceptions” w.r.t.
Shannon’s and Renyi’s (which is made more precise later). We
also show that in this regard, Renyi’s entropy is more general
than Shannon’s. Then, we construct a novel exploration utility
function based on Behavioral entropy and combine it into a
frontier-based exploration approach. We further analyze and
show that our exploration formulation is more expressive and
can capture a wider range of perceived utility than others
that use standard Bolzmann-Gibbs-Shannon (BGS) and Renyi
entropies. We perform proof of concept simulations with ideal
SLAM and robot navigation in a custom occupancy map to
evaluate our proposed method in isolation, and show that our
method is faster than methods with other entropies. Finally, we
evaluate our framework in a complex and realistic Unity-ROS
simulation environment used in the DARPA Subterreanean
challenge [21], with a Clearpath Warthog robotic system with a
LiDAR and IMU based SLAM system. We show that the robot
equipped with our behavioral entropy based method, explores
the environment quicker than other methods.

II. GENERALIZED ENTROPY AND PROBLEM
FORMULATION

We start introducing basic notations1, a concise description
of generalized entropy, followed by our problem formulation.

Generalized entropy: Entropy is a measure of uncertainty
associated with the probability distribution of a random vari-
able. More precisely, consider the set of probability distribu-
tions PM of discrete random variables of M outcomes; that
is, (p1, . . . , pM) ∈PM , if 0 ≤ pi ≤ 1, for i = 1, . . . ,M, and
∑

M
i=1 pi = 1. Let H : P ≜ ∪∞

M=1PM→R≥0 be a permutation-
invariant operator. We say that H belongs to the class of
entropy functions if it satisfies the following Shannon-Kinchin
axioms [22], [1]:

A1 Continuity: H is continuous over each PM .
A2 Maximality: H(p) ≤ H( 1

M , . . . , 1
M ), and the equality

holds if and only if pi =
1
M , for all i ∈ {1, . . . ,M}. This

axiom implies that the uniform distribution attains the
highest entropic measure.

A3 Expansibility: A sure outcome added to a probability
distribution p does not change its entropy. i.e.:
H(p1, . . . , pi,0, pi+1, . . . , pM) = H(p1, . . . , pM).

A4 Separability or Strong Additivity: For any two p,q ∈
PM , let H(p,q) denote the entropy of a joint distribution
of p,q, then H(p,q) = H(p)+H(q|p), where q|p is the
conditional distribution of q given p.

Shannon proved [1] that an entropic function satisfying all
the four axioms is necessarily a scaled BGS entropy (1a). We
focus on generalized entropies defined as follows.

1We let R denote the set of real numbers, Z≥0 the set of positive integers,
and R≥0 are non-negative real numbers. P(A) is the power set of any other
set A. Bx

r denotes the n dimensional ball of radius r centered at x ∈ Rn.

Definition 1 (Generalized entropy). An entropic function H is
an admissible generalized entropy, if it satisfies the first three
entropy axioms A1-A3.

BGS (Shannon) entropy HS and Renyi entropy HR ( gener-
alises many other entropies like Tsallis entropy [18]) are well
known admissible generalized entropic functions, defined as
follows:

HS(p) =− k
M

∑
i=1

pi log(pi), k ∈ R>0, (1a)

HR(p) =
1

1− γ
log

(
M

∑
i=1

pγ

i

)
, γ ∈ R>0, γ ̸= 1, (1b)

Robotic Exploration Setting: Our application of interest
is robotic exploration. To this end, we represent the environ-
ment where the robot is deployed as a compact set X ⊂ R2.
The discretization of X using square grid cells results into
the set of grid elements D and an associated occupancy
map M representing the likely location of obstacles in the
environment. More precisely, consider an occupancy function
focc : D → [0,1], which assigns probability of occupancy of
each cell in D . The occupancy map M is the discrete field
of focc over D . We partition D and, subsequently, M into the
unknown space DUK ≜ {x ∈D : focc(x)≜ 0.5} (resp. M UK),
the uncertain space DU ≜ {x∈D : focc(x)∈ (0,0.5)∪(0.5,1)}
(resp. M U), and the known space DK ≜ {x ∈ D : focc(x) ∈
{0,1}} (resp. M K). The process of “exploration” aims to
reduce the volume of unknown space DU and increasing the
volume of known space DK. In an ideal setting, exploration is
complete when DK = D . However, factors like sensing noise
and obstacles might hinder uncertainty reduction and could
make unknown areas unobservable and remain uncertain.

The robot uses LiDAR to perceive its immediate environ-
ment, IMU and odometry to approximate its internal state. We
use the popular SLAM [6] method called “Omnimapper” [8]
to simultaneously estimate the robot’s pose x ∈ SE(2) and
estimated occupancy map M . The LiDAR provides sensor
measurements of an area A ⊆ D around the robot and the
SLAM algorithm updates A in M using physical models of
sensor.

The frontiers F ≜ { f1, . . . , fN} where fi ∈ SE(2) are identi-
fied from the current occupancy map M , and contain locations
to explore next. We employ a utility function u : SE(2)×
SE(2)× P(M )→ R≥0 to quantify the reward of the robot
being at a pose x and observing an area A ⊂M around
a frontier fi; u(x, fi,A) ∈ R≥0. In this work, the rewards of
exploring an area A are given in terms of an information gain.
After identifying the best frontier to go next, the navigation
manager in the robot plans global paths and local control
actions to reach the selected frontier location.

The framework is visualized in Fig. 1 and will be explained
in detail in Sec. IV.

III. BEHAVIORAL ENTROPY AND ITS ANALYSIS

We derive a new measure of uncertainty, HB : P → R≥0,
which we term Behavioral entropy. This function aims to
quantify the subjectively perceived randomness present in a
probability distribution.
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Fig. 1: Proposed exploration framework with our contribution in the red cloud.
The Omnimapper SLAM system provides a local map L , a global map M
and robot localization x. Then, frontiers f and perceived occupancy W are
extracted from M . The frontiers f are clustered (F) and Behavioral entropy
HB is calculated from W . For each cluster in F , a behavioral information gain
IB is obtained from HB that corresponds to the measurement model. Then,
utilities U are calculated from the information IB and pose estimate x. The
explorer then picks a suitable goal region Bx

r and sends it to the navigation
manager, which in turn sends global and local plans η to the controller.

(a) Prelec’s weighting function (b) Entropy for Bernoulli trials.

Fig. 2: (Left) Prelec’s probability weighting function with a few parameter
choices. Y-axis w(p) indicates the perceived uncertainty associated with
probability p (X-axis). Dotted line indicates the unity curve w(p) = p. (Right)
Behavioral entropy variation with α in log scale for a Bernoulli trial. Black
curve indicates Shannon’s entropy.

Consider a probability vector p = (p1, . . . , pM) ∈PM , and
let w : [0,1]→ [0,1] be a probability weighting function, which
maps pi 7→ w(pi) ≡ wi and transforms the ith outcome pi
into a perceived probability wi. Among the several probability
weighting functions from the literature [3], [23], we employ
the popular Prelec’s model [2]:

w(p) = e−β (− log p)α

, α > 0, β > 0, w(0) = 0, (2)

see some examples in Fig. 2a. The parameter α controls the
convexity or concavity of w: taking α ≈ 0 results in a highly
concave w that over-weights probabilities (i.e w(p) ≫ p),
while taking α→∞ makes of w a highly convex function that
under-weights probabilities (i.e w(p)≪ p). The parameter β

controls the unique fixed point p∗ of w, i.e. the intersection
with w(p) = p, the dotted line in Fig. 2a. A β ≈ 0 indicates
fixed point p∗ ≈ 0, while a β → ∞ brings p∗ ≈ 1. By varying
α,β , we can model different behaviors. With low α and β

values results into an “uncertainty averse” behavior (green and
orange curves in Fig. 2a), with w(p)> p which implies more
certainty in unlikely outcomes. With high β values we get
“uncertainty insensitive” behavior when w(p) < p (blue and
brown curves in Fig. 2a), implying that the decision maker
only considers more certain outcomes. For more properties of
these weighting functions, see [23].

A. Behavioral entropy and its analysis
Our proposed “Behavioral Entropy” HB combines the no-

tion of BGS entropy with Prelec’s weights w from (2).

HB(p1, . . . , pM) =−
M

∑
i=1

w(pi) log(w(pi)). (3)

Thus, incorporating the behavioral modelling capacity of
Prelec’s weighting function into an entropic function. To
analyze the new operator, we first list some properties of
Prelec’s probability weighting functions w.

Proposition 1 (Perceived probability [23], Prop. 2.11). The
class of weighting functions w in (2) satisfies:

1) w is continuous, strictly increasing, and w(1) = 1.
2) In addition to 0 and 1, w only has another fixed point

at p∗ = e−(
1
β
)

1
α−1 ∈ (0,1).

We use Proposition 1 to control fixed points. Specifically, to
obtain p∗ = 1/M for any integer M ≥ 2, we substitute p∗ = 1

M
in 2) above and simplify terms to get conditions on α,β that
guarantee p∗ = 1/M:

β = e(1−α) log(log(M)). (4)

Now we recall the following well-known result.

Lemma 1 (Maximality of HS). The BGS entropy function HS

attains its unique global maximum at p≜ ( 1
M , . . . , 1

M ) (uniform
distribution) over PM .

Next, we show that HB is admissible as a generalized
entropy according to Definition 1 under (4).

Theorem 1. Fix M ∈ N. If α,β satisfy (4), then the function
HB is admissible as a generalized entropy.

Proof. We need to show axioms A1, A2 and A3 are satisfied
by HB. Axioms A1 and A3 are trivially satisfied from the
properties of w in Proposition 1 and the fact that HS satisfies
both A1 and A3. Regarding, A2, we observe that HB(p) =
HS(w), where p = (p1, . . . , pM) ∈PM and w = (w1, . . . ,wM)
is the corresponding Prelec weights (2). From Lemma 1, HS

is maximized only with w with wi =
1
M , for all i. Then for

any α,β satisfying (4), the non-trivial fixed point of w is
necessarily 1/M and is unique. Hence wi =

1
M , for all i only

when pi =
1
M , for all i. Thus, HB is maximized only when p

is the uniform distribution.

Remark 1. The Prelec’s function (2) with conditioning (4)
allows us to control the fixed point of the function which is
critical for admissibility guarantees, as well as the shape of
the perceived probability curve, ensuring different behavioral
perceptions. Whereas, other popular probability weighting
functions [23] like Karmakar’s (fixed point is fixed at 0.5) or
Tversky and Kahneman’s (shape and fixed point can’t be con-
trolled independently) cannot be used to generate meaningful
and admissable generalized entropies. •

Next, we will compare the properties and performance of
Behavioral entropy with other entropic functions.

B. Entropy comparison

First, we introduce the metrics that we use to make com-
parisons of different entropies.
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Definition 2 (Sensitivity). Fix any generalized entropy func-
tion H and assume that H is normalized so that it is bounded
above by log(M) (the maximizer of HS). Then, S(H) ∈ R≥0,
the entropic sensitivity of H, is defined as

S(H) =
∫

PM

H(p)dVol, (5)

where Vol is the standard Lebesgue measure over PM . The
value S(H) provides a measure of the average sensitivity of H
to uncertainty over all distributions p ∈P . If S(H1)> S(H2),
then the overall randomness perceived by H1 is greater than
that of H2, and H1 is more sensitive towards uncertainty.

Definition 3 (Perceptiveness). Let Hθ be any generalized
entropy function as in Definition 2 parametrized by θ ∈
Θ ⊆ RA. Let Hθ be continuous in θ , then P(H) ∈ R≥0, the
perceptiveness of H, is defined as:

P(H) =max
θ∈Θ

S(Hθ )−min
θ∈Θ

S(Hθ ). (6)

The above notion of perceptiveness captures the range of
sensitivity towards uncertainty for a class of entropies Hθ , by
considering all possible θ ∈Θ.

Now, we evaluate the perceptiveness of the family of HB.
We begin by identifying a useful bound.

Lemma 2. Consider a generalized entropy Hθ , which is
bounded above by some b ∈ R>0, for all θ ∈Θ. Then, S(Hθ )
lies in the interval (0, b

M−1! ), where M is the number of
outcomes. Subsequently, 0≤ P(Hθ )≤ b

M−1! .

Proof. The volume of the probability simplex PM ⊆RM con-
sisting of M outcomes is 1

(M−1)! [24]. The limits of S(Hθ ) can
be computed by considering that 0≤ infθ∈Θ

∫
PM

Hθ (p)dVol≤
S(Hθ )≤ supθ∈Θ

∫
P Hθ (p)dVol.

With this let us look at the perceptiveness of HB.

Theorem 2. Consider HB
α,β ≡ HB

α conditioned according

to (4). The sensitivity S(HB
α ) lies in the interval (0, log(M)

M−1! ) its
perceptiveness P(HB) reaches the maximum possible log(M)

M−1! .

Proof. We will first evaluate the limits of HB in α and then
apply it to sensitivity measurement s. We note that HB is
continuous in α and has a unique maximum at the uniform
distribution puni when conditioned according to (4). The limits
of S(HB) can be calculated as follows:

s0 = lim
α→0

S(HB
α ) = lim

α→0

∫
PM

HB
α (p)dVol. (7)

Since HB is continuous and bounded above by log(M) for
every P ∈P , and the volume of P region is finite, we can
take the limit inside the integral and obtain:

s0 =
∫

PM

lim
α→0

HB
α (P)dP

=
∫

PM

M

∑
i=1
− lim

α→0
(e−βα (− log(pi))

α

βα(− log(pi))
α))

=
∫

PM

M× 1
M
× log(M) =

log(M)

M−1!
.

Next for the lower bound,

s∞ =
∫

PM

lim
α→∞

HB
α (P)dP

=
∫

PM

M

∑
i=1
− lim

α→∞
(e−βα (− log(pi))

α

βα(− log(pi))
α))

=
∫

PM

M×0× log(0) = 0,

and the result follows.

Now we compare HB with Renyi and Shannon entropies on
the basis of perceptiveness.

Theorem 3. Consider the family of HB ≡ (HB
α ) conditioned

according to (4). Then, P(HB)> P(HR)> P(HS).

Proof. From (1), the value P(HR) can be obtained from ap-
propriate limits of S(HB). The upper limit of Renyi sensitivity
is reached when γ→ 0 and it is easy to see that coincides with
that of Behavioral entropy:

s0 = lim
γ→0

∫
PM

HR
γ (p)dVol =

log(M)

M−1!
. (8)

For the lower bound, since Renyi entropy is decreasing in
γ ∈ (0,1)∪ (1,∞), the lowest sensitivity is reached when

s∞ =
∫

PM

lim
γ→∞

HR
γ (p)dVol =

∫
PM

− log(max{p1, . . . , pM})dVol.

Since 0 < maxp∈PM{p1, . . . , pM} ≤ 1, as p is a probability
distribution, then − log(maxp∈PM{p1, . . . , pM})≥ 0 for all p.
Hence, the lower limit s∞(HR) ≥ 0. Thus, we get P(HB) >
P(HR) from Theorem 2. Next it is trivial to show that P(HR)>
P(HS) as the perceptiveness of HS is 0.

The concept of perceptiveness and its comparison with
different entropies is visualized in Fig. 2b using Bernoulli
trials. Behavioral entropy HB is able to capture the entire
behavior spectrum from “Uncertainty Averse” (blue region) to
“Uncertainty ignorant” (red region). Shannon entropy HS is a
single curve (black). Renyi entropy HR can capture “Uncer-
tainty Averse” (blue region) behavior however, it can’t be more
“uncertainty ignorant” than HR

∞ , thus being significantly less
perceptive than HB. Next, we connect the Behavioral entropy
notion to a robotic exploration setting.

IV. BEHAVIORAL EXPLORATION

Here, we provide details on the frontier selection and
clustering process for robotic exploration, and explain the
construction of the utility function used to choose the best
frontier, which defines our framework in Fig. 1.

Frontier Extraction and Clustering: The known areas
M K, unknown areas M UK, and uncertain areas M U of the
occupancy map M are extracted from the occupancy values
as described in Sec. II. Then, the free space M F, resp. the
occupied space M O, is obtained by collecting cells whose
occupancy probability is less than τFS, resp. greater than τOB.
Gradient vectors are computed over M and the non-zero cells
are stored in M ′ defining all possible frontier candidates.
Obstacle neighbor cells M ON are given by the convolution
of M O with a suitable kernel KN. Frontier cells F are the
free cells that are part of the gradient but not neighbors of
obstacles. As this can create a large number of frontier cells,
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these are clustered F C according to the cluster size τCL ∈Z≥0,
which indicates the size of square grid that clusters frontiers
into a single frontier. Greater τCL provides lesser number of
clusters while τCL ≜ 1 results in no clustering. A representative
frontier is picked at random in each cluster to give the final
list of chosen frontiers F L, whose size is equal to the number
of clusters. This procedure is summarized in Algorithm 1.

Algorithm 1: Frontier extraction and clustering

1 Input: M ,τOB,τFS,τCL,KN ;
2 Output : F L;
3 M K , MUK , MU ←M ; // Partition map

4 M F ← (M K ∪MU )< τFS ; // Get free space

5 M O← (M K ∪MU )> τOB ; // Get occupied space

6 M ′←M ; // map areas with non-zero gradients

7 M ON ←M O ◦KN ; // obstacle neighbor cells

8 F ← (M F ∩M ′)−M ON ; // free gradient cells

9 FC← Cluster(F ,τCL); // cluster frontiers

10 F L← Random Pick(FC)

Information Gain and Utility function: A sensor footprint
A ⊂M is obtained around each f ∈F , which is a collection
of occupancy cells according to the sensor model. We use
the LiDAR beam model [6] with range and number of beams
to determine the cells that get observed. We then update
the occupancy for each cell in A based on the number
of beams that hit a cell. Next, a perceived occupancy is
calculated using (9). Here, the behavioral information gain IB

is calculated as the reduction in entropy from observing the
area A around f . We then use the following utility function
to determine the value u∈R≥0 of going to f ′ from the current
pose x and map M :

uB( f ′,x;M ) =
IB( f ′;M )

|η(x, f ′)|
, IB( f ′;M ) = ∑

x′∈A
HB(p((x′)) (9)

Here, IB( f ′;M ) is the information gained or entropy reduced
by observing area A around frontier f ′ based on the current
occupancy map M . p((x′)) indicates the Bernoulli occupancy
distribution at x′. |η(x, f ′)| is the path length from position x
to frontier f ′. The frontier with the highest utility is chosen
to visit; see Algorithm 2.

f ∗ = argmax
f ′∈F L

uB( f ′,x;M ). (10)

Lemma 3. Consider the entropies HS, HR and HB condi-
tioned according to (4), the corresponding utilities uS, uR,
and uB. For any given map M , pose x and frontier location
f ′, the range R(ux) ∈ R>0 of possible utilities ux follows the
order R(uB)> R(uR)> R(uS)

Proof. The proof trivially follows from Theorem 3

Remark 2. As utilities calculated from Behavioral entropy
HB have the highest range, chosen frontier f ∗ from (10)
with different parameter choices are also the most diverse.
For instance, frontiers with high quality information will be
valued higher with high α irrespective of path length, forcing
aggressive exploration farther away. On the other end, a low

α will treat any uncertainty almost equally, thus focusing
exploration in nearby areas.

The proof of concept (POC) simulations in Sec. V provides
more insight. We describe the exploration pipeline (Fig. 1).

Algorithm 2: Behavioral frontier selection

1 Input: M ,F L,α,x ;
2 Output : f ∗;
3 for f ∈F L do
4 A ← f ,M ; // predicted sensor footprint

5 W ←A ,α ; // perceived probabilities

6 HB←W ; // Behavioral entropy

7 I← HB ; // information gain

8 |η | ← planner( f ,x) ; // path length

9 u← utility(I, |η |) ; // frontier utility

10 end
11 f ∗← argmaxU ; // most informative location

Exploration pipeline: Algorithm 3 describes the behav-
ioral exploration framework in Fig 1. The robot starts with an
initial pose x. The observations at x, Y , are used to construct
the occupancy map M using SLAM. Then, the frontier list
F L is extracted by Algorithm 1 and the best frontier f ∗

is selected according to Algorithm 2. Then, a circular goal
region Bx∗

r is computed, where x∗ is the transformed pose
of f ∗ in world frame and r is radius of the region. The
navigation manager then provides appropriate global and local
plans η to the goal region Bx∗

r , to generate a control policy
Π that ensures this is reached. SLAM, navigation manager,
controller and frontier clustering are continually running in the
background to ensure accurate and updated information. The
frontier selection process updates the new frontier f ∗ once the
navigation manager either confirms that the goal is reached or
aborts when no feasible plans are found. The algorithm runs
until there are no more frontiers to explore or the perceived
information gain is negligible (≈ 0) from remaining frontiers.

Algorithm 3: Behavioral explorer

1 Input: M ,x,K ;
2 Output : Π;
3 Initialise : M ,x,r,F L;
4 Initialise : x,r;
5 while F L ̸= φ & IB ̸= 0 do
6 M ,x← SLAM(Y,Π)

F L← Frontier Cluster(M ,K)
f ∗← Frontier Selection(M ,F L,x,K)
x∗← Pose transform( f ∗,M )
r← Goal Radius(Bp

r )
Bx∗

r ← Goal region(r,x∗,M )
η ← Navigation Manager(Bx∗

r ,M )
Π← Robot Controller(η ,x,M )

7 end

V. PROOF OF CONCEPT SIMULATIONS

To evaluate our proposed approach, we consider first a
proof of concept (POC) environment and then focus on real
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(a) Environment used for POC simu-
lation.

(b) The ground truth map of the
DARPA SubT section used.

Fig. 3: Environments used for simulations

world scenarios in Sec. VI. Here, we assume all other aspects
of exploration: SLAM, navigation and controls are working
optimally to focus exclusively on exploration.

Environment Setup: Consider a 2D rectangular environ-
ment X = [0,30]× [0,50] (Fig 3a) discretized by 0.1 unit
square grid cells (D = [0,300]× [0,500]) containing randomly
shaped polygonal obstacles (yellow/bright). The ground truth
map M ∗ consists of free-space (0 occupancy value) and obsta-
cles (100 occupancy value). The initial occupancy map M is
constructed by adding noise to each cell value by 1) sampling
from uniform distribution over each quadrant, 2) adding those
to ground truth values of free-space cells (0) and subtracted
from obstacle cells (100), see Fig 3a where this is shown.
Blue/dark areas (0) represent free space, bright/yellow areas
(100) represent obstacles and other values indicate uncertain
areas. The environment is divided into four quadrants which
contain different levels of noise, sampled from a uniform dis-
tribution with different intervals from [0,5] (top-left quadrant),
to [0,50] (top-right), and others with [0,15] (bottom-right) and
[0,25] (bottom-left). The white circles in the map are the five
initial conditions for the robot, x0

i , i∈{1,2,3,4,5}. From these,
given initial map in Fig 3a, the robot explores the entire region
via Algorithm 3 to recover M ∗.

POC exploration pipeline: First, the agent updates a cir-
cular area A = Bx

r in M , with a radius r and centered around
its current pose x. Four different mapping radii {2,3,4,5} to
capture different sensor ranges and three levels of mapping
noise σm ∈ {0,1,2} are employed with the following meaning:
a) In perfect mapping (σm ≜ 0) each cell in A is updated to
the ground truth. b) In imperfect mapping (σm ≜ 1 and σm ≜ 2)
the occupancy values in A are reduced/increased randomly2,
with higher σm implying lesser reduction in uncertainty after
observation.

Second, frontiers F are obtained as those cells with occu-
pancy values < 2 and a non-negative gradient w.r.t. to the cells
around them. We do not cluster the frontiers here to make sure
all possible frontiers are considered.

Then, for each fi ∈F , we calculate the information gain
by considering A = B fi

r . That is, for each cell in A , the
information gain per cell is given by the Behavioral entropy
in these cells and the total information gain I is the sum of
all of these values. Then, for each fi, the utility is calculated
as the information gain per Euclidean path length required to
reach fi from x. The best frontier f ∗ is that with the maximum
information gain. Finally, the robot moves from x to f ∗ in a

2with a random number generated by a uniform distribution with range
[0,35] for σm ≜ 1 and [0,15] for σm ≜ 2 for each cell in A

(a) Entropy reduced all trials (b) Area explored all trials

(c) Entropy reduced (r = 2,σm = 0) (d) Entropy reduced (r = 2,σm = 2)

(e) Entropy reduced (r = 4,σm = 0) (f) Entropy reduced (r = 4,σm = 2)

Fig. 4: Violin plots indicating the number of iterations used to complete 99%
of exploration under different behavioral exploration strategies, sensing radius
and noise conditions

straight line while mapping (first step) all possible circular
regions within its sensor range along the path.

Trials and Metrics: In summary, we have the fol-
lowing control variables: a) sensor radius r ∈ {2,3,4,5},
b) mapping noise σm ∈ {0,1,2}, c) starting point x0

i , i ∈
{1,2,3,4,5}, d) entropy method and parameter choice:
α ∈ {0.2,0.5,0.8,2.0,3.0,5.0} for Behavioral entropy, γ ∈
{0.2,0.5,0.8,2.0,10.0,100.0,1000.0} for Renyi’s entropy, and
Shannon’s entropy. Resulting in 60 trials for each entropy
method. For the ease of comparison, we group the behav-
ioral and Renyi parameters into “Uncertainty averse” HB

1-,H
R
1-

corresponding to α,γ < 1 and “Uncertainty ignorant” HB
1+,HR

1+
corresponding to α,γ > 1 respectively. We also consider Renyi
quadratic entropy (RQE) with γ = 2, as this is widely used in
the literature [17], [25]. We use the ground truth to measure
the total uncertainty remaining in M , which is given by
Shannon’s entropy for a fair comparison. After every iteration
of Algorithm 3, we record the entropy remaining and the
percentage of completion. We keep the same random number
generator for sampling the mapping noise per trial to ensure
accountability.

Results and Discussion: The results in Fig 4 show the
distribution of the number of iterations taken to explore 99%
of the map. The Y -axis indicates the distribution of number
of iterations used with a particular group to complete 99% of
area/entropy. The largest and smallest number of iterations are
indicated by blue horizontal lines limiting the violin shapes,
while mean and median are given by horizontal blue and red
lines inside the violin, respectively. The wider the violin, the
more trials resulted in similar number of iterations, while the
narrower the violin, the fewer the trials.

First, we report the performance for each entropy method
group across all trials, see Fig 4. We found that the results of
area explored and entropy reduced have similar trends as seen
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in Fig 4a and Fig 4b. Henceforth, we will report and discuss
both metrics as the same. Fig 4a shows that the minimum
time for full exploration is similar for all groups, resulting
from trials with very good sensor capability (r = 4,5) under
perfect mapping σm = 0. This is illustrated in Fig 4e for r = 4,
we see that across all behaviors, the number of iterations are
very similar ranging from 64−75. We also see a similar trend
with r = 4 and σm = 0, see Fig. 4c. Thus with perfect mapping
σm = 0, all behavioral methods seem to provide similar results
with marginally better performance from “Uncertainty igno-
rant” HB

1+ behavior. In general, from Fig. 4a and Fig. 4b mean
and median iterations are significantly less for “Uncertainty
ignorant” Behavioral entropy compared to the other groups.
This is because “Uncertainty ignorant” entropies focus on
exploring larger areas of uncertainty first as the information
gain from almost/partially known area is significantly less
than that from highly uncertain or unknown areas. Thereby,
reducing uncertainty (Shannon’s entropy) much faster than
other groups. This is clearly evident under very noisy mapping
(σm = 2): it can be seen from Fig. 4d and Fig. 4f, that the
“Uncertainty ignorant” group of Behavioral entropy clearly
outperforms all other groups in all statistics, resulting into a
significantly lower range, mean and median iterations. This
is because larger areas of uncertainty are explored first, not
waiting for an area to get an almost/complete information gain
before moving to the next. However, we observed that, for
α ≥ 10, as the behavioral information gain of the explorer be-
comes ≈ 0 for almost/partially known areas for the remaining
frontiers, exploration terminates. We observed a completion
(Shannon’s entropy reduced) of around 75−90% for α = 10.
This behavior is well justified looking at the entropy for
Bernoulli trials (Fig 2b). As alpha increases, the tail ignorance
grows and more likely outcomes also start getting ignored.
Thus care needs to be taken to appropriately choose α .

Although Renyi’s entropy offers some tail ignorance with
γ > 1, it is not enough to speed up exploration comparing to
Behavioral entropy. This is evident from Fig. 2b, where the
variation for HR from 1← γ (black HS curve) to γ→∞ (green)
is minimal as compared with Behavioral entropy HB (red).

VI. UNITY-ROS EXPERIMENTS AND RESULTS

Here, we describe results in a ROS-Unity environment from
the DARPA subterranean robotic challenge [21].

Environment and Robot setup: The simulated hardware
experiments use a Clearpath Warthog robot3 fitted with Ouster
LiDAR and IMU shown in Fig 5 in ROS. Real hardware
sensor and actuator models are used including noise sampled
from real data. We test our exploration algorithm in the
“Urban Challenge” Unity environment, part of the DARPA
subterranean robotic challenge, see supplementary videos for
scenarios that contains challenges like uneven surfaces, rubble
and cluttered environment to make it as close to reality as
possible. As we have an UGV that is incapable of climbing
stairs, we will use a part of the environment whose ground
truth is shown in Fig 3b. The white areas are traversable
whereas the black areas are obstacles or walls. We consider

3https://clearpathrobotics.com/warthog-unmanned-ground-robot/

Fig. 5: The unity-ROS environment used in DARPA subterranean challenge.
Snapshot of execution shown with map and costmap, frontier clusters (yellow
box), laser scans and robot going to region (blue circle), trying to follow a
planned path (green line).

two different starting positions (green dots in Fig 3b) for the
robot facing towards left of the map and use Omnimapper [8]
to map and localize the robot.

Experiment setup: A snapshot of the execution is shown
in Fig 5. The Omnimapper’s updated occupancy map M and
robot localization x are shown in RViZ in Fig 5 (left). Frontiers
f and perceived occupancy W are extracted from M . The
frontiers f are clustered (F) (Yellow boxes in Fig 5) and Be-
havioral entropy HB is calculated from W . For each cluster in
F , A Behavioral information gain IB is calculated as described
earlier that corresponds to a beam based measurement model
as in [6]. Utilities U are calculated from IB and estimated x as
in (9). The explorer then picks a suitable goal region Bx

r (shown
as blue disk in Fig 5(right)) and sends it to the navigation
manager, which in turn sends global and local plans η to the
controller. We use a Generalized Lazy Search (GLS) [26] path
planner for global planning, and MPPI [11] for local planning.
The framework is visualised in Fig 1.

The explorer algorithm is implemented with a time limit of
30 minutes, and terminates if there are no more frontiers or no
perceived information to be gained. We consider 7 different
entropy parameter choices: Shannon’s entropy HS, Renyi’s
entropy HR with γ ∈ {0.5,2.0}, and Behavioral entropy HB

with α ∈ {0.5,0.8,2.0,5.0}. We perform 10 trials at each
starting position for each entropy or parameter choice and we
measure the area explored and entropy reduced every 1 second,
and compute percentage completion from the ground truth. As
the results for area explored and entropy reduced is similar,
here we consider percentage entropy reduction as shown in
Fig 6. We again use violin plots to depict the distribution of
time taken in seconds for x%, x ∈ {50,75,90,95} completion.
Due to inherent uncertainty in the mapping framework, it is
very difficult to completely recover the ground truth for every
cell of M . Thus we go up to 95% completion in this case. As
before, the Y -axis indicates the distribution of time in seconds
for a particular group to complete a percentage of area/entropy.
The interpretation of these plots is similar to those of Fig. 4.

Results and Discussion: We note that, unlike the POC
experiments, here the inherent uncertainty and complexity of
mapping, localization, planning, navigation and controls are
present in the system. Thus they add significant aleatoric
uncertainty and make the trends in the results less apparent.
From the trials, the “Uncertainty ignorant” group (α,γ > 1)
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(a) 50 % completion (b) 75 % completion

(c) 90 % completion (d) 95 % completion

Fig. 6: Experimental results for the DARPA SubT environment.

focuses on exploring larger areas of uncertainty first as the in-
formation gain from a partially known area is significantly less.
This results in a “Breadth-First-Search” type of exploration.
Whereas, the “Uncertainty averse” group (α,γ < 1) focuses
on clearing an area before moving to the next one. Thus, the
information gain from a partially known area is still high and
the utilities of frontiers in new far away areas are similar to
the partially-known nearby frontiers. This group produced a
“Depth-First-Search” type of exploration.

The global and local planners performed better (time taken
and path quality) for the goal regions that are closer to the cur-
rent pose. This results in larger wait times, poorer navigation
and re-planning for further away goals, thus adversely affect-
ing the “Uncertainty ignorant” group (α,γ > 1), which tend to
produce further away goals than the other group. Interestingly,
Shannon’s entropy is performing the worst among all the
other choices as it suffers from implementation disadvantages
of both the “Uncertainty ignorant” and “Uncertainty averse”
cases: neither was an area explored completely in depth or
breadth causing much longer execution times. Since Renyi’s
entropy has limited perceptiveness as compared to Behavioral
entropy, we see that it is not performing as good as our
proposed entropy, following a similar trend from POC exper-
iments. These behaviors are visualized in the accompanying
video. Thus, our proposed entropy outperforms the existing
entropies used in the literature in both the POC environment
and the ROS-Unity environment. Based on the results, we
recommend HB parameter α to be in the range of 0.5− 0.8
for good exploration conditions or about 2.0−3.0 when there
is excessive sensing or environmental noise.

VII. CONCLUSIONS AND FUTURE WORK

This works presents a novel robotic exploration strategy,
which relies on human models of perception uncertainty. To
do this, we first define a novel human-inspired measure of
uncertainty called “Behavioral entropy”, which is theoretically
analyzed and compared with other common entropy measures
like Shannon’s and Renyi’s. We then used this family of
entropies to define utility functions to guide exploration in
a frontier-based approach. After this, we illustrate and show
that our method is superior in proof of concept simulations
as well as a DARPA Subterranean Challenge ROS-Unity

simulation environment with a Clearpath Husky robot. Future
work will study the benefits of the spatial/temporal variation
of α and conduct real world experiments. We would also like
to investigate other applications of information-adaptive path
planning algorithms using this entropy class.
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[22] J. M. Amigó, S. G. Balogh, and S. Hernández, “A brief review of
generalized entropies,” Entropy, vol. 20, no. 11, 2018.

[23] S. Dhami, The Foundations of Behavioral Economic Analysis. Oxford
University press, 2016.

[24] P. Stein, “A note on the volume of a simplex,” The American Mathe-
matical Monthly, vol. 73, no. 3, pp. 299–301, 1966.

[25] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic
mapping using cauchy-schwarz quadratic mutual information,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 4791–4798.

[26] A. Mandalika, S. Choudhury, O. Salzman, and S. Srinivasa, “Generalized
lazy search for robot motion planning: Interleaving search and edge
evaluation via event-based toggles,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 29, 2019, pp.
745–753.


	INTRODUCTION
	Generalized Entropy and Problem Formulation
	Behavioral entropy and its analysis
	Behavioral entropy and its analysis
	Entropy comparison

	Behavioral Exploration
	Proof of concept simulations
	Unity-ROS Experiments and results
	Conclusions and Future Work
	References

