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TDANet: Target-Directed Attention Network For
Object-Goal Visual Navigation With Zero-Shot
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Shiwei Lian1, and Feitian Zhang2

Abstract—The generalization of the end-to-end deep reinforce-
ment learning (DRL) for object-goal visual navigation is a long-
standing challenge since object classes and placements vary
in new test environments. Learning domain-independent visual
representation is critical for enabling the trained DRL agent with
the ability to generalize to unseen scenes and objects. In this
letter, a target-directed attention network (TDANet) is proposed
to learn the end-to-end object-goal visual navigation policy with
zero-shot ability. TDANet features a novel target attention (TA)
module that learns both the spatial and semantic relationships
among objects to help TDANet focus on the most relevant
observed objects to the target. With the Siamese architecture
(SA) design, TDANet distinguishes the difference between the
current and target states and generates the domain-independent
visual representation. To evaluate the navigation performance of
TDANet, extensive experiments are conducted in the AI2-THOR
embodied AI environment. The simulation results demonstrate a
strong generalization ability of TDANet to unseen scenes and
target objects, with higher navigation success rate (SR) and
success weighted by length (SPL) than other state-of-the-art
models. TDANet is finally deployed on a wheeled robot in real
scenes, demonstrating satisfactory generalization of TDANet to
the real world.

Index Terms—Vision-based navigation, reinforcement learning,
autonomous agents.

I. INTRODUCTION

THE objective of object-goal visual navigation is to find
a target object in an environment using only egocentric

visual observations. This task poses a major challenge to
robots, requiring their visual understanding and inference of
the complex scene to successfully locate a target instance.

Recent studies [1]–[9] have achieved great advancement in
solving this problem using deep reinforcement learning (DRL)
to train an end-to-end model. Learning an informative visual
representation containing the relationships among objects is of
crucial importance to the design of a robust navigation policy
[1]. The learning of domain-independent feature encoding re-
lationships among objects is a long-standing ill-posed problem
[2] due to the existence of irrelevant information in RGB
images such as background textures and colors. In addition,
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test environments vary in object classes and placements further
complicating the deployment of the trained policy. Du et
al. [3] and Fukushima et al. [4] applied visual transformer
[10] to exploit the relationships of detected instances, which,
however, at the same time increased the learning difficulty
and computational cost. Other studies utilized prior knowledge
graphs [5]–[7] or cosine similarity of word embeddings [4],
[8] to assist in learning navigation strategies. These prior
knowledge or representations of object relationships are rarely
updated during training, thus limiting the adaptation to unseen
scenes with dissimilar object placements. Moreover, most end-
to-end models mainly focus on a limited class of target objects
[9], while in the real household environment there may exist
target objects not seen during training.

This letter investigates the generalization of the DRL-based
object-goal visual navigation to both unseen test environ-
ments and unseen target objects by learning the relationships
among objects. A target-directed attention network (TDANet)
is proposed to train an end-to-end DRL policy for object-
goal visual navigation with zero-shot ability. The network
focuses on objects in the current visual observation that show
strong correspondence with the target. A novel target attention
(TA) module uses the information of the observed and target
objects as well as their word embeddings as the input to learn
both the spatial and semantic relationships between the target
object and the detected objects in training. TDANet adopts
the design of the Siamese architecture (SA) and distinguishes
the difference between the current and desired states of the
agent to guide the navigation, demonstrating strong zero-
shot ability. The proposed model is evaluated in the AI2-
THOR [11] embodied AI environment. The simulation results
show that TDANet generalizes satisfactorily to unseen objects
and scenes. In addition, comparison studies confirm that the
proposed TDANet outperforms other state-of-the-art models
with higher navigation success rate (SR) and success weighted
by length (SPL). TDANet is also deployed in real scenes,
showing its superior generalization to the real world.

II. RELATED WORK

A. Object-Goal Visual Navigation

Object-goal visual navigation requires the agent to search
for a target instance given only visual observations. Many
end-to-end DRL models have been designed to establish the
navigation strategy that maps the observations to actions for
this task. Some studies learn object-goal visual navigation
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by learning implicit representations of the observation before
inputting it into the navigation policy [12], [13]. Wortsman
et al. [13] introduced self-adaptive visual navigation using
meta-learning that learns to adapt to test environments without
explicit supervision. Other studies exploit the object relation-
ships or semantic contexts aiming for a more robust navigation
policy [3]–[6], [8], [14]. For instance, Qiu et al. [6] and Li
et al. [7] integrated hierarchical relationships among objects
in the DRL model and achieved remarkable navigation per-
formance using object detection outputs instead of raw RGB
images. However, the prior knowledge graph used in these
two methods is not updated during training, leading to limited
generalizability of the model across different test scenes.
Du et al. [3] introduced the powerful visual transformer to
learn the relationship among objects without the use of a
prior knowledge graph. Although improving the navigation
performance in unseen test scenes, the visual transformer
model significantly complicates computation and training and
does not generalize to new classes of unseen objects.

In this letter, TDANet with a novel target attention module is
proposed to learn both the semantic and spatial relationships
between the target object and observed objects. TDANet is
expected to be lightweight and generalizable to both unseen
scenes and objects.

B. Zero-Shot Visual Navigation
Traditional object goal navigation only navigates to limited

classes of target objects defined in the training set [15].
However, new classes of target objects will inevitably appear in
the real household environment. Zero-shot navigation, which
refers to navigating to objects not selected as the target object
in training, has therefore attracted great research interest.
While some recent studies, such as CoW [16] and VoroNav
[17], realized zero-shot navigation with modular designs using
large multimodal models, all those methods utilized depth
images to generate a global map, which we consider absent
from the observations of the agent of interest, thus out of the
scope of this letter.

To improve the zero-shot ability of end-to-end DRL nav-
igation models, some efforts have been made through the
design of networks [12] or input encodings [9], [18]–[20].
For instance, Zhu et al. [12] proposed a Siamese network
[21] for image-goal navigation across different scenes and
target images. Khandelwal et al. [19] utilized the zero-shot
ability of CLIP [22] to generate semantic embeddings of the
goal for navigation. Although the use of CLIP improved zero-
shot navigation performance, such a model design has fewer
trainable parameters and thus impairs the learning of seen
objects in the training set. Xu et al. [20] proposed the Aligning
Knowledge Graph with Visual Perception (AKGVP) method
leveraging the image-text matching ability of CLIP, achieving
remarkable zero-shot navigation capability. Zhao et al. [9]
proposed SSNet that used cosine semantic similarities and
object detection results as the input to the navigation policy to
eliminate class-related features. However, the detection matrix
used in SSNet is still limited to predefined object classes,
impeding further generalization of zero-shot navigation to
unseen objects.

In this letter, the Siamese architecture is integrated to
TDANet to learn the difference between the desired state of
the target object and the state of the observed objects in the
current visual observation for zero-shot tasks. Combining the
target attention module and Siamese architecture, the proposed
TDANet is expected to achieve a strong zero-shot capability
with unseen target objects while maintaining satisfactory nav-
igation performance with seen targets.

III. TASK DEFINITION

In the object-goal visual navigation task, the agent navigates
to a target object t defined in the target class set T given only
the egocentric RGB image without prior knowledge of the
environment. In the zero-shot visual navigation task, the agent
learns to navigate to a target object defined in the seen class
S, and navigates to a target object defined in the unseen class
U where S ∩ U = ∅.

The initial positions of the agent and the target ob-
ject are randomly selected in each episode. The agent
samples its action a through a policy network π us-
ing the current RGB image I and the word em-
bedding of the target object wt as the input, i.e.,
a ∼ πθ (I, wt). Here, θ is the weight of the policy network.
a ∈ A ={MoveAhead, RotateLeft, RotateRight,
LookUp, LookDown, Done}. The MoveAhead action
moves the agent forward 0.25m. The angles of Rotate and
Look actions are 45◦ and 30◦, respectively. Finally, the Done
action represents the situation when the agent determines that
it has found the target and thus ends the episode. An episode is
considered a success, when the agent samples the Done action
and the target object is visible. The visible indicates
that the target object is in the agent’s current RGB observation
as well as within a distance of 1.5m from it.

IV. TARGET-DIRECTED ATTENTION NETWORK

The overview of the proposed target-directed attention net-
work (TDANet) is illustrated in Fig. 1. The observation of
the agent is the RGB image captured from its monocular
camera. The object detector processes the image and generates
bounding boxes of objects from the current visual observa-
tion. The object detection results with corresponding word
embeddings and the word embedding of the target object are
inputted into the target attention (TA) module and the Siamese
architecture (SA) network to learn the visual representation
for the navigation policy. The target attention module learns
the spatial and semantic relationships between the observed
objects and the target object to select features of objects
that have the most correspondence with the target object.
The Siamese architecture distinguishes the difference between
the observed and target states and encodes it into the visual
representation, enabling the zero-shot ability of TDANet. The
visual representation is sequentially passed into a feed-forward
network and a long short-term memory (LSTM) network to
extract deeper features and store the previous memory of navi-
gation. Finally, the asynchronous advantage actor-critic (A3C)
model [23] learns the navigation policy and controls the agent
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Fig. 1. Overview of TDANet. The input is the fused data of bounding boxes and word embeddings of the observed objects and the target object t. The target
attention module learns the correspondence between the observed objects and the target object t and selects features of the objects most relevant to the target.
The Siamese architecture compares the current state with the target state and generates the visual representation. A3C DRL model [23] is adopted to learn
the navigation policy and is trained with rewards from the environment.

to navigate to the target object. The network is trained end-
to-end and the reward from the environment propagates back
to the TA and SA modules, which guides them to learn the
meaningful visual representation containing the relationships
among objects. The important modules of TDANet are detailed
as follows.

A. Input of TDANet

The input of TDANet consists of two components—the
detected object matrix Md and the target vector Vt. Md

concatenates the bounding box data of the detected objects
with the corresponding word embeddings, i.e., Md = [Vi, i ∈
{1, 2, ..., n}] ∈ Rn×303, where Vi = [xi, yi, Si, wi] represents
the vector of spatial and semantic information of the detected
object i. n is the total number of detected objects. xi, yi and
Si indicate the location (x, y) and the area S of the bounding
box of object i in the image coordinates. wi is the 300-
dimensional word embedding of object i. [Vi] represents the
vertical concatenation of row vectors Vi. If there is no object
detected in the current frame, Md ∈ R1×303 is set to a zero
vector. Vt = [xt, yt, St, wt] is the target vector, representing
the desired state of the agent to observe the target object t. xt,
yt and St are set to 0.5, 0.5 and 0.25, respectively, indicating
the desired location of object t is in the middle of the image
with an area of a quarter of the entire image area. wt is the
word embedding of object t. Similar to [4], [6], [8], [9], we
use the ground-truth bounding boxes in AI2-THOR and GloVe
[24] to generate word embeddings.

B. Target Attention Module

The target attention (TA) module is proposed to learn the
spatial and semantic correspondence between the detected
and target objects. Taking Md and Vt as inputs, the TA
module linearly maps both of them to a vector space of the
same dimension and learns the relationships through matrix
multiplication, generating correspondence vector Vcorr, i.e.,

Vcorr = (VtWL + bL) (MdWL + bL)
⊤ (1)

Here, WL ∈ Rdinput×doutput and bL ∈ Rnrows×doutput are
the trainable weight and bias of the linear layer, respectively.
dinput and doutput are the input and output dimensions of the
linear layer, respectively. nrows is the number of rows of the
input matrix. Vcorr ∈ R1×n encodes the correspondence of
the detected objects with the target object. n is the number
of detected objects in the current frame. The TA module then
calculates the vector of the attention probability distribution on
correspondence values, denoted by Vatt, by applying a softmax
function to Vcorr, i.e.,

Vatt,i =
exp(Vcorr,i)∑n
j exp(Vcorr,j)

(2)

where Vatt,i and Vcorr,i denote the i-th values of Vatt and
Vcorr, respectively. n is the number of detected objects.

The vector output of the TA module Vatt ∈ R1×n is then
multiplied by the extracted feature matrix ML1 ∈ Rn×dL1

to obtain VL1, i.e., VL1 = VattML1. ML1 represents the
extracted features of the n detected objects by passing Md
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through layer “Linear1” whose output dimension is dL1. VL1

represents the weighted average feature vector of ML1 based
on the attention distribution. This operation selects the features
of detected objects most related to the target object.

The TA module learns the relationships between the de-
tected objects and the target object during training, expected
to help the agent focus on the most relevant objects to the
target during navigation, thus improving the navigation success
rate and efficiency. In addition, the design of the TA module
permits an input of object detection results from an arbitrary
number of observed objects. Compared to other work using
the one-hot encoding [3] or an input matrix of fixed size
[6], [9], the proposed TA module allows the update of the
detection results when new objects are observed, enhancing
the generalization ability.

C. Siamese Architecture
The Siamese neural network (SNN) is commonly used in

few-shot learning tasks such as face recognition [25] and
signature verification [26] where it is difficult to train every
instance of the data. SNN usually contains two branches of
sub-networks with identical parameters to learn the difference
between two inputs. TDANet introduces the Siamese architec-
ture (SA) design to learn the difference between the current
and target states, enabling the zero-shot ability of the agent to
unseen objects. The SA contains two branches of linear layers
sharing the learning weights, as shown in Fig, 1. One branch
extracts the feature of the detected object matrix Md selected
by the TA module, and the other extracts the feature of the
target vector Vt. Finally, SA calculates the absolute difference
of the output vectors of the two branches with a dropout layer
to avoid over-fitting.

D. Reward Function
The reward function R is designed as

R =


Rp if p is visible
Rt if t is visible when Done

Rt +Rp if t&p are visible when Done
−0.01 otherwise

(3)
Here, Rt and Rp are the target reward and the partial reward,
respectively. t and p represent the target object and the parent
object, respectively. When the Done action is sampled, the
agent receives a target reward Rt = 5 if the target object is
visible. We introduce Rp proposed in [6] using the parent-
target relationship to help the agent learn the relationship
among objects. The parent objects are the larger objects related
to the target object t in a room. Rp is calculated through
Rt · Pr (t | p) · k. Here, k is a scaling factor set to 0.1.
Pr (t | p) denotes the conditional probability of finding t in the
neighborhood of p given the agent observing p. It is calculated
based on the relative spatial distance of all the parent objects
to the target [6]. The agent receives Rp when a parent object
p is visible in the current RGB frame. In the case of
observing the same p, the agent does not receive Rp again
to encourage exploration. The penalization of −0.01 is used
to foster a shorter path.

V. EXPERIMENTS

A. Experimental Setup

We have conducted extensive experiments in the AI2-THOR
embodied AI environment to train and test the proposed
TDANet. The environment contains 120 near photo-realistic
indoor room scenes, including 30 scenes from each of the four
room types, i.e., kitchen, bedroom, living room, and bathroom.
Following the literature [6], [7], [9], [13], we select the first
20 rooms from each room type as the training set and the rest
10 rooms from each room type as the test set. The rooms in
the test set are unseen during training. The commonly used
22 classes of objects are selected as the target set.

The agent is trained for 6000,000 episodes on the offline
data from AI2-THOR v1.0.1 with a learning rate of 0.0001.
During the test, 250 episodes for each room type are evaluated.
The evaluation metrics include the success rate (SR) and the
success weighted by path length (SPL) [27], which are com-
monly adopted in existing visual navigation studies [6], [7],
[9], [13], [27]. SR is calculated as 1

N

∑N
i=1 Si, where N is the

total number of episodes and Si is a binary success indicator
of the i-th episode. SPL is calculated as 1

N

∑N
i=1 Si

Li

max(Li,ei)
where ei is the path length of the agent in the i-th episode and
Li is the optimal path length from the agent’s initial state to
the target object. We evaluate the performance of the trained
agents in two sets of episodes where the optimal path length
is greater than 1 (L ≥ 1) as well as greater than 5 (L ≥ 5),
separately.

B. Comparison Models

Several benchmark object-goal visual navigation models
are selected for comparison, detailed as follows. Random.
The agent samples its actions following a uniform probability
distribution. Baseline [9], [12] concatenates the ResNet fea-
ture extracted from the current RGB image with the GloVe
embedding of the target object as the input. SP [5] utilizes
the prior knowledge of scenes to train the navigation policy.
SAVN [13] learns to adapt to new environments during both
training and inference using a meta-reinforcement learning
approach. MJOLNIR [6] introduces a novel context vector
in the graph convolutional neural network to learn the hierar-
chical object relationship. Li et al. [7] combines hierarchical
object relationship learning with meta-reinforcement learning,
which achieves a state-of-the-art navigation performance in
unseen scenes. SSNet [9] is a state-of-the-art model of zero-
shot visual navigation, which uses object detection results and
cosine similarity of word embeddings as inputs to reduce class-
related dependency.

C. Experiments of Seen Objects in Unseen Scenes

We train 5 independent agents using TDANet in the training
set with all the 22 classes of target objects and deploy them
in the unseen scenes in the test set. It takes about 17 hours to
train 6M episodes for each agent using three NVIDIA GeForce
RTX 4090 GPUs. The average SR and SPL of TDANet in the
test set are shown in Table I with comparison results from
other models using the same experimental setup.
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TABLE I
COMPARISON RESULTS WITH STATE-OF-THE-ART MODELS ON SEEN

OBJECTS IN THE TEST SET.

Model
L ≥ 1 L ≥ 5

SR (%) SPL (%) SR (%) SPL (%)

Random 11.2 5.1 1.1 0.5
Baseline [12] 35.0 10.3 25.0 10.5
SP [5] 35.4 10.9 23.8 10.7
SAVN [13] 35.7 9.3 23.9 9.4
MJOLNIR-r [6] 54.8 19.2 41.7 18.9
MJOLNIR-o [6] 65.3 21.1 50.0 20.9
SSNet [9] 63.7 22.8 42.9 21.3
Li et al. [7] 71.0 19.6 61.9 24.2

TDANet (ours)
78.2 30.6 67.0 33.4
±0.8 ±0.8 ±1.2 ±0.8

Fig. 2. The SR and SPL in the test set evaluated at each training episode of
selected comparison models.

TDANet significantly outperforms all the selected models,
with an increase of 7.2% in SR and 7.8% in SPL when
L ≥ 1, and an increase of 5.1% in SR and 9.2% in SPL
when L ≥ 5. It surpasses the state-of-the-art MJOLNIR and
the model proposed by Li et al., both of which require prior
construction of a knowledge graph. The results suggest that
TDANet successfully learns the spatial and semantic relation-
ships between the target object and the observed objects during
training and generalizes well to unseen scenes in the test set.

The SR and SPL in the test set evaluated at each training
episode of different models are shown in Fig. 2. The SR and
SPL of TDANet increase more rapidly and reach higher values
than other models. Table II lists the numbers of parameters and
average inference time of different models calculated using an
NVIDIA GeForce RTX 3060 GPU. Although TDANet has
more parameters than SSNet, the difference in the inference
time between them is only 0.1 ms, which is typically negligible
in the task of robot navigation.

To analyze the learned relationships using the target atten-
tion (TA) module of TDANet, we investigate the correspon-
dence values of observed objects to the target object in the
correspondence vector Vcorr learned using Eq. (1). Figure 3
visualizes the objects of interest with the darker red color
representing a higher predicted correspondence value in the
current visual observation. We observe that TA consistently
predicts the highest value for the target object and higher

TABLE II
THE NUMBERS OF PARAMETERS AND INFERENCE TIME OF DIFFERENT

MODELS.

Model Param. Time (ms)

MJOLNIR-o [6] 3.42M 0.6
SSNet [9] 2.00M 0.5
TDANet(ours) 3.08M 0.6

(a) (b) (c)

Television

Sofa TableTop

RemoteControl

LapTop

CD

Bread
Toaster

Pan
Potato

Apple

Lettuce

Fig. 3. The visualization of the TA module. Only the bounding boxes of
objects with higher correspondence values are labeled. The darker red color
of a bounding box indicates a higher correspondence value. The target object
is marked with the blue bounding box. The results demonstrate that the TA
successfully learns the correspondence between the objects and the target.

values for other objects either spatially or semantically more
related to the target object. For example, Fig. 3(a) predicts
the target object RemoteControl is highly related to the
TableTop, Sofa and Television. It suggests that TA
pays more attention to the objects where the target is po-
tentially found in their neighborhood, thus improving the
navigation success rate and efficiency.

Figure 4 shows the comparison between the predicted
trajectories of MJOLNIR [6] and TDANet. TDANet finds
the target with the shortest path with a higher success rate,
consistent with the experimental results presented in Table I.

D. Zero-Shot Experiments

The 22 target objects are split into seen and unseen object
classes similar to [9]. TDANet is first trained to navigate to
objects in the seen class in the training set and then deployed
in the test set. The detection results of objects in the unseen
class are removed and not inputted into the network during
training so that the network does not learn any information
about the unseen objects.

Table III shows the evaluation results of the compari-
son experiments of the zero-shot navigation. It is observed
that TDANet achieves the overall best performance with a
significant increase of SR and SPL both in the seen and
unseen classes. In the task of seen target navigation, TDANet
significantly outperforms the state-of-the-art zero-shot model
SSNet by an increase of more than 23% in SR and an increase
of 13% in SPL, when the target object is far from the agent’s
initial position (L ≥ 5). In the task of unseen target navigation,
TDANet surpasses SSNet by a large margin on SR and SPL
of more than 28.1% and 13.5%, respectively. We conjecture
the reason for the improved performance of TDANet over
SSNet is as follows. Firstly, The input of SSNet is a fixed-size
matrix only containing detection results of a set of predefined
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and failure, respectively. The white triangle indicates the field of view of the agent. The target object is marked with a blue bounding box.

TABLE III
COMPARISON RESULTS OF THE ZERO-SHOT EXPERIMENTS WITH STATE-OF-THE-ART MODELS IN THE TEST SET.

Model
Seen/

Unseen
split

Unseen class Seen class

L ≥ 1 L ≥ 5 L ≥ 1 L ≥ 5

SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%)

Random

18/4

10.8 2.1 0.9 0.3 9.5 3.3 1.0 0.4
Baseline [9] 16.9 8.7 5.3 3.1 17.7 8.3 5.3 2.6
MJOLNIR [6] 20.7 7.1 10.6 4.5 51.9 16.5 33.0 14.2
SSNet [9] 28.6 9.0 12.5 5.6 59.0 19.7 38.6 18.3
TDANet (ours) 62.5 25.3 47.4 23.8 74.7 29.7 62.9 32.2
Random

14/8

8.2 3.5 0.5 0.1 8.9 3.0 0.5 0.3
Baseline [9] 14.6 4.9 4.9 2.8 30.4 9.7 11.5 5.2
MJOLNIR [6] 12.3 5.1 6.0 3.6 52.7 22.3 26.8 14.9
SSNet [9] 21.5 7.0 13.0 6.7 59.3 24.5 35.2 19.3
TDANet (ours) 53.4 20.5 41.1 20.7 77.1 31.0 64.2 33.6

objects and cannot update itself with the detection results
of unseen objects. In contrast, the TA and SA design of
TDANet allows the update of the object detection module
with detection results of new objects so that it generalizes
significantly better to the navigation task with unseen objects.
Secondly, instead of directly using the cosine similarity of
word embeddings as SSNet, the TA module adaptively learns
the semantic relationships together with spatial relationships
to learn domain-independent features. Thirdly, SSNet fuses all
features of predefined objects (more than 90 categories), re-
gardless of whether or not it appears in the current observation.
In contrast, the TA module only focuses on the most related
objects to the target in the current observation, which is more
efficient. Fourthly, while SSNet uses cosine similarity as the

class-independent data, TDANet predicts actions based on the
difference between the current and target states learned by the
SA module instead of the certain object class data, resulting
in the improved generalization ability.

The results demonstrate that TDANet has robust general-
ization capabilities in the zero-shot task for unseen objects in
unseen scenes while simultaneously maintaining high naviga-
tion performance with seen objects during training.

E. Ablation Study

The ablation study is conducted to evaluate the influence
of the target attention (TA) module and the Siamese archi-
tecture (SA) of TDANet. For removing the TA module, we
calculate the average features of all observed objects. We
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TABLE IV
ABLATION STUDY FOR TDANET ON SEEN OBJECTS IN THE TEST SET.

Module L ≥ 1 L ≥ 5

TA 1 SA 2 SR (%) SPL (%) SR (%) SPL (%)

✗ ✗ 50.0 13.9 36.8 14.7
✗ ✓ 58.9 15.8 41.6 15.1
✓ ✗ 76.3 28.2 62.7 30.4
✓ ✓ 78.8 30.6 67.7 33.4

1 TA: Target attention
2 SA: Siamese architecture

TABLE V
ABLATION STUDY FOR TDANET USING 18/4 SEEN/UNSEEN CLASS SPLIT

OF ZERO-SHOT SETTING

Module Seen class Unseen class

TA 1 SA 2 SR (%) SPL (%) SR (%) SPL (%)

✗ ✗ 42.1 10.6 8.1 1.2
✗ ✓ 56.5 15.7 17.0 4.2
✓ ✗ 63.3 20.0 14.2 2.1
✓ ✓ 74.7 29.7 62.5 25.3

1 TA: Target attention
2 SA: Siamese architecture

follow the same experimental setup and evaluation metrics
in Section V-C. The ablation study results on seen objects
are listed in Table IV. We observe that both the TA and SA
modules improve SR and SPL. In addition, TA contributes
more to the improvement of navigation performance. We
conjecture that TA helps the agent focus more on the spatial
and semantic features of the most relevant observed objects
to the target, thus improving the success rate and navigation
efficiency especially when dealing with trained target objects.

To analyze the zero-shot performance of TDANet, another
ablation study under the same experimental setup in Sec-
tion V-D is conducted and the results of the zero-shot setting
are listed in Table V-D. It is observed that the combination of
the TA and SA modules significantly increases SR and SPL
by more than 40% and 20% in the zero-shot task, respectively.
The design of the TA and SA modules significantly improves
the zero-shot ability of TDANet. The TA module selects
features of the observed objects related to the target, which are
inputted into the SA module to learn the difference between
the target and current states. TDANet then predicts actions
based on the class-independent features outputted from the
SA module, thus improving the zero-shot navigation ability.
In comparison, When using the SA module only, the average
feature of all observed objects is calculated and inputted into
the SA module. As illustrated in Fig. 5, the SA-only network
is distracted by unrelated objects without the help of the TA
module and predicts wrong actions when it finds the target,
while TDANet predicts the right action by focusing on the
objects related to the target.

TA+SA SA onlyModel:

Predicted action: Done RotateLeft

(a) (b)

Fig. 5. The comparison of TDANet and the SA-only network for unseen
object goal navigation. The target object Pillow is marked with the blue
bounding box. (a) TDANet predicts the right action by focusing on objects
related to the target. (b) Without the help of the TA module, the SA-only
network is distracted by unrelated objects and predicts the wrong action.

(b) Third-person view

(a) Top-down view① 

④ 

②

0.91m
③ 

Start pose

End pose

Target

Intermediate 
pose

① ② 

③ 

④ 

Fig. 6. A sample trajectory of the real-world deployment of TDANet to the
unseen object Book. (a) Top-down view of the trajectory. ①-④ are sampled
egocentric RGB observations of the robot marked with detected bounding
boxes of YOLOv7 and the predicted action of TDANet at different poses of
the trajectory. The darker red color of the bounding box represents a higher
correspondence value predicted by the TA module. (b) Third-person view of
the scene and the robot trajectory.

F. Real-world Deployment

A testing system using a TurtleBot4 wheeled robot is
developed and an OAK-D-Pro camera is installed on the robot
at a height of 1.5m above the ground to test the real-world
generalization of TDANet. A servo is equipped to control the
camera’s rotation. Navigation only required the RGB frame of
the camera. The agent trained in Section V-C is used to deploy
and YOLOv7 [28] pretrained in the COCO dataset is used as
the object detector of TDANet. All algorithms run in real-time
on a laptop with an i7-12700H CPU and an NVIDIA GeForce
RTX 3060 GPU. A sample navigation trajectory of the agent to
an unseen object is visualized in Fig. 6. Videos are available
in the supplementary items. TDANet successfully navigates
the robot to the unseen target object Book by focusing on
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the observed objects that are most related to the target in the
current observation. For example, in Fig. 6①, PottedPlant
in the bottom right corner of the image is predicted as the most
related object and an action of RotateRight is predicted. In
Fig. 6②, TDANet locates the target at the bottom of the image
and predicts the action LookDown. The experimental results
illustrate the satisfactory generalization capability of TDANet
to the real world.

VI. CONCLUSION

This letter proposed the target-directed attention network
(TDANet), which paid more attention to the most relevant
objects to the target object in the monocular visual observation
during navigation. A target attention module was designed
to learn the spatial and semantic correspondence of the ob-
served objects with the target object. The adopted Siamese
architecture compared the current state to the target state, im-
proving the generalization of TDANet. Extensive comparison
experiments and ablation studies in the AI2-THOR environ-
ment were conducted, the results of which demonstrated that
TDANet learned a domain-independent visual representation
for navigation policy with a strong generalization ability to
both unseen scenes and unseen target objects, achieving higher
navigation success rate and efficiency compared to other
selected state-of-the-art models. The deployment of TDANet
in the real world demonstrated its generalization ability in real-
world environments.

In future work, we plan to investigate the collision avoid-
ance of TDANet in more complex simulated environments [29]
for a safe application in the real world.
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