Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Apr 2014]
Title:Decreasing Weighted Sorted $\ell_1$ Regularization
View PDFAbstract:We consider a new family of regularizers, termed {\it weighted sorted $\ell_1$ norms} (WSL1), which generalizes the recently introduced {\it octagonal shrinkage and clustering algorithm for regression} (OSCAR) and also contains the $\ell_1$ and $\ell_{\infty}$ norms as particular instances. We focus on a special case of the WSL1, the {\sl decreasing WSL1} (DWSL1), where the elements of the argument vector are sorted in non-increasing order and the weights are also non-increasing. In this paper, after showing that the DWSL1 is indeed a norm, we derive two key tools for its use as a regularizer: the dual norm and the Moreau proximity operator.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.