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Abstract

Sparse Subspace Clustering (SSC) is a state-of-the-art method for clustering high-
dimensional data points lying in a union of low-dimensional subspaces. However, while
{1 optimization-based SSC algorithms suffer from high computational complexity, other
variants of SSC, such as Orthogonal Matching Pursuit-based SSC (OMP-SSC), lose clus-
tering accuracy in pursuit of improving time efficiency. In this letter, we propose a novel
Active OMP-SSC, which improves clustering accuracy of OMP-SSC by adaptively up-
dating data points and randomly dropping data points in the OMP process, while still
enjoying the low computational complexity of greedy pursuit algorithms. We provide
heuristic analysis of our approach, and explain how these two active steps achieve a
better tradeoff between connectivity and separation. Numerical results on both syn-
thetic data and real-world data validate our analyses and show the advantages of the
proposed active algorithm.

Keywords: Sparse subspace clustering, orthogonal matching pursuit, active algo-

rithm, subspace detection property, connectivity

1 Introduction

In a big-data era, unsupervised learning plays a significant role in analyzing numerous

unlabeled data. In many applications, such as motion segmentation and face clustering,
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high-dimensional data samples are drawn approximately from a union of low dimensional
subspaces. Subspace clustering (SC) [1] refers to the problem of clustering these data
points into their original subspaces, and various methods have been developed to solve
this problem [1H16]. Among them, Sparse Subspace Clustering (SSC), the first one to
introduce sparse representation into SC problem, is a state-of-the-art method, with elegant
formulation and theoretical guarantees to work under weak conditions, e.g., at the presence
of noise [17] and outliers |18]. SSC algorithm solves SC problem by first finding a sparse
self-representation for each data point, and then applying spectral clustering [19] to the
similarity matrix. However, it is inefficient to solve an optimization problem for sparse
representation (as the original SSC algorithm does) when analyzing large-scale data. One
way to speed up SSC is replacing ¢; optimization with greedy pursuit, e.g., Orthogonal
Matching Pursuit (OMP) [20], for sparse self representation [21}23], which improves the
time efficiency of SSC by several orders of magnitude for large-scale problem. Another way
is to compress data points (i.e., to reduce dimension) before applying SSC algorithm, leading
to Compressed Subspace Clustering algorithm [24-26], whose performance is guaranteed by
works in random projection and Restricted Isometry Property (RIP) of subspaces [27}28].

One motivation of this letter is the drawbacks of existing SSC algorithms. Traditional ¢;
optimization-based SSC (¢;-SSC) suffers from high computational complexity, while OMP-
SSC loses clustering accuracy. Our goal is to develop a fast SSC algorithm with high
clustering accuracy. We are also motivated by the insight that the final clustering accuracy
depends on two major properties of the similarity matrix: Subspace Detection Property
(SDP) [1§], i.e., “no false connection”, among points from different subspaces, and connec-
tivity among points from the same subspace. While there is rich literature on theoretical
analysis of SDP, much fewer works concern about the connectivity problem [29]. [30] intro-
duces a post-processing procedure, and [31] modifies the optimization target as a weighted
sum of 1 norm and nuclear norm of the representation matrix in order to tradeoff between
separation and connectivity.

In this letter, we proposed a novel algorithm, active OMP-SSC (A-OMP-SSC), which
introduces two active-style processes, including adaptively updating and randomly dropping
data points. We analyze how the proposed algorithm obtains a better tradeoff between
connectivity and SDP, thus improving clustering accuracy while preserving advantages of

greedy methods in time efficiency. Numerical results validate our analyses and show the



advantages of our algorithm.

2 Preliminary

Given data matrix X = [x1,X2, -+ ,XN]| € RPXN where D is data dimension and N is
total number of data points, the aim of SC is to cluster these data points into their original

subspaces. In the preprocessing, all points are /3 normalized, i.e., ||x;||2 = 1, Vi.

2.1 SSC and OMP-SSC

The core idea behind SSC is that, each data point can be approximately represented as a
sparse linear combination of other points, where the nonzero entries correspond to those
from the same subspace. The first step of SSC is to find a sparse representation for each

point by solving an optimization problem of
. A )
min llcillh + §HxZ —Xcill5 st e =0, (1)

where c; denotes the representation coefficient vector for x; and )\ is a balance parameter.
The second step is to apply spectral clustering to the similarity matrix A = |C|+ |C|T and
get the clustering labels.

OMP-SSC is a faster version of SSC. It finds the sparse representation by OMP instead.
Given data point x; and dictionary composed of all other data points, OMP iteratively finds
an atom that has the largest absolute inner product with residual, adds this atom to the
neighbor set, projects x; onto the span of its current neighbors, and updates residual, until

the iteration number reaches a certain value or the norm of residual is small enough.

2.2 Geometric Analysis

Most literature focuses theoretical analyses of SSC on SDP.

Definition 1. |[18] Subspace Detection Property (SDP) holds if and only if it holds that
for all i, ¢; is non-trivial (i.e., not all-zeros), and ¢;; # 0 only when x; and x; lie in the

same subspace.

A geometric framework for theoretical analysis of SDP was first proposed in [18], and

has been thoroughly studied since then. In comparison, only a few works analyze the



connectivity problem of SSC. It is shown in [29] that, when subspace dimension exceeds
three, there is no guarantee that data points from the same subspace will form a connected

component even in the noiseless case.

3 Active OMP-SSC

3.1 Intuition

As mentioned before, the final clustering accuracy of SSC depends on both connectivity
and SDP of the similarity matrix obtained by the self-representation step. Actually, SDP
holding true is not necessary for correct clustering results due to the robustness of spectral
clustering. On the other hand, spectral clustering could fail if the connectivity of similarity
matrix is so weak that data points from the same subspace are separated. The ideal case is
that both connectivity and SDP are strong, which is unrealistic in practice at the presence of
noise. Therefore, the problem of increasing clustering accuracy becomes to tradeoff between

connectivity and SDP.

3.2 Algorithm

The proposed A-OMP-SSC algorithm operates iteratively on all data points. For x;, we
first find its sparse representation c; on the current dictionary, indexed by a set D, using
OMP,

c; = argmin ||x; — X¢/|2, s.t. |lcillo = d and

C;

cij =0,vj € ({1,---, N)\D) U {i}, (2)

where d denotes the iteration number of OMP. Since the goal of OMP here is not calculating
exactly the representation coefficients, but finding a few neighbors reliably, the iteration
number d is not very large, which will be specified later. We then calculate the representation

residual

r, =X; — XCZ'. (3)

After the sparse representation step, we update x; by adding an offset term to it and keeping
it ¢ normalized

x; = (x; + bry) /||x; + brif|2, W



Algorithm 1 The Proposed A-OMP-SSC
Input: Data points X € RP*N_ dictionary index set D = {1,---,N}, OMP iteration

number d, modifier parameter b > 0, dropping probability p € (0, 1), cluster number k.

1: fori=1,---,N do

2. Find c; using OMP (with d iterations) by (2).

3:  Calcuate residual r; by .

4:  Update data point: x; < x} by (4).

5. Update dictionary: D < D\{i} with probability p.

6: end for

7. Apply spectral clustering (with number of clusters k given) to similarity matrix A.

Output: Clustering labels.

where b > 0 denotes a modifier parameter. Then, with certain probability p we drop this
point from the future representation, i.e., removing index ¢ from the dictionary index set.
The process above is repeated sequentially for all data points. Finally, we apply spectral
clustering to the similarity matrix, as done in SSC algorithms. Notice that OMP-SSC is a
special case of A-OMP-SSC, with modifier parameter b = 0 and dropping probability p = 0.
The detailed procedure of the proposed algorithm is included in Algorithm 1.

3.3 Discussion
3.3.1 Sequentially updating data points

From the construction of matrix A comes the intuition that, a two-direction connection
doesn’t contribute to connectivity. If x; chooses x; (j > i) as its neighbor, we should
encourage X; to choose the data points other than x;. By the updating operation in ,
we push x; further away from its neighbors, as illustrated in Fig.

This will be verified in an ideal case. Suppose is a correct decomposition of x;,
where X; = Xc; lies in its ideal subspace and r; in its orthogonal subspace. Notice that the
projection operation in OMP ensures that x} %; is nonnegative. After the updating of

we have

Z. Nz, 1.
X;T}ZZ _ (Xz + (b + ]-)rl) X; _ X, Xi < 5(;_[‘)—(1 _ X;I‘)Z’L (5)
[|xi + bry|2 [%i + brif|2




X;+br;

Figure 1: A visualization that updating data point x; may push it further away from its

neighbor x;. Without loss of generality, we suppose X;-TX]' > 0.

The inequality in comes from the fact that, when b > 0,

1% + brgl|5 = 1% + (b + D)rgl|3 = [|I%i]15 + (b + 1)*|Irql3

> ||% + i3 =1, (6)

and the equality holds when b = 0.

From @, |x; + br;||2 is symmetric about by = —1. In practice, since signal-to-noise
ratio (SNR) of residual is generally lower than that of the data point itself, a positive b
introduces less noise than the symmetric negative one in the updating step because it has
a smaller absolute value, which is preferred. The choice of b reflects a tradeoff between

improving connectivity and avoiding worsening SNR too much.

3.3.2 Randomly dropping data points

Dropping x; is more radical than updating it, as it is now impossible for x;, j > 7 to choose
X; as its neighbor. However, dropping data points could be risky since it reduces the data

density, which is undesirable in SSC as it worsens SDP.

3.3.3 OMP iteration number

Intuitively, in OMP process, a new edge improves connectivity if it is a true connection, but
weakens SDP otherwise. For OMP, once an atom is added to the neighbor set at a certain
iteration, it cannot be removed. Therefore, as iteration number d increases, connectivity
increases but SDP decreases, as pointed out in [23]. Thus, it is not the best to choose d
as the subspace dimension, as done in [22]. Choosing a smaller OMP iteration number can

improve clustering accuracy and linearly decrease time consumption.



Another advantage of choosing a small OMP iteration number in our active algorithm is
that, it allows more freedom for a correct choice of sparse representation coefficient satisfying
SDP as c; has fewer non-zero entries. For the SC problem, the essential information from
data is not the data points themselves, but their relationship instead. This inspires the
updating and dropping steps in A-OMP-SSC, which seek to further exploit this relationship
by changing the distribution of data points adaptively and thus changing the choice of

representation coefficients.

3.3.4 When it benefits

A-OMP-SSC works well when data density is not too small. This comes from the fact
that, the updating step changes the distribution of points, and the dropping step gradually
decreases data density. When the starting data density is relatively high, there are still

many near neighbors for later points, so SDP would not badly decrease.

3.3.5 Computational complexity

In OMP-SSC, each iteration requires N inner products with complexity O(D). Thus, for
N points, each d iterations, the total complexity of self-representation step is O(N2dD).
For A-OMP-SSC, only an additional O(D) updating step is required for each point, which
is neglegible. Moreover, the dropping step gradually decreases the number of points during

the process, which improves time efficiency.

4 Numerical Experiments

In this section, we conduct numerical experiments to validate our analysis and illustrate

the advantages of active OMP-SSC algorithnﬂ

4.1 Synthetic Experiments

We first conduct experiments to examine the effects of modifier parameter b, dropping prob-
ability p, and OMP iteration number d, respectively. Next, we compare ¢1-SSC, OMP-SSC,

and A-OMP-SSC algorithms, with respect to clustering error rate, connectivity, and SDP.

!The MATLAB codes for the proposed methods and all experiments are available at http://gu.ee.
tsinghua.edu.cn/codes/A_OMP_SSC.zip.
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Figure 2: Clustering error rate versus noise level and parameter b (left) or p (right).

We also validate that A-OMP-SSC shows advantages over OMP-SSC when data density is
not too small. Finally, the superior time efficiency of the proposed algorithm is verified.

The generated synthetic samples are randomly permuted as we meet in practice.

4.1.1 Modifier parameter b

We randomly generate 3 independent linear subspaces in 40-dimensional ambient space,
each of which is of dimension 6 and has 45 data samples. The noise level, i.e., additive
Gaussian noise strength of each sample, varies from 0 to 1. We set p = 0 and d = 3.
Clustering results with different choices of modifier parameter b are demonstrated in Fig.
(left), where each result is the average of 100 independent trials. According to Fig. [2] (left),
we read that clustering error rate is the highest at b ~ —1 and lowest at 1. As b increases
from —1, clustering error rate first drops, leveraged by improvement in connectivity, but
then rises due to a decrease in SNR and thus a reduction in SDP. (Due to limited space,
results on connectivity and SDP are not shown here.) Also notice that a positive b is better

than a negative one symmetric about —1 thanks to higher SNR.

4.1.2 Dropping probability p

The data is generated the same way as in the previous experiment. We set b = 0 and
d = 3. Clustering results with different choices of dropping probability p are demonstrated
in Fig. [2[ (right), which shows that clustering error rate reaches a minimum at p ~ 0.8. A
large p up to 1 is a good choice in this experiment, because the subspace dimension and
OMP iteration number are small while the number of data points per subspace is relatively

large. Therefore, the decreasing data density would not be a big trouble.
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Figure 3: Effects of OMP iteration number on clustering error rate for OMP-SSC (triangle
markers) and A-OMP-SSC (star markers).

4.1.3 OMP iteration number d

We randomly generate 3 independent linear subspaces in R'?°, each of which has 60 data
samples. For A-OMP-SSC, b = 1, p = 0.3. This experiment is conducted under three
conditions, with subspace dimension set to 12, 24, 36, and the corresponding noise level 0.9,
0.7, 0.5. Effects of OMP iteration number d are demonstrated in Fig.[8] As d increases from
1 to subspace dimension, clustering error rate first drops owing to increasing connectivity,
but then rises due to decreasing SDP, just as we discussed. A reasonable choice of d is
approximately one over three of subspace dimension. Notice that A-OMP-SSC doesn’t
perform well when subspace dimension is 36, which is a result of the small data density, as

we will discuss later.

4.1.4 Performance comparison

We take the second smallest eigenvalue of the normalized Laplacian of a cluster as a metric
of connectivity (with range [0,1]); the larger it is, the stronger connectivity is [22]. We
also use the percentage of points satisfying SDP as a metric of SDP (with range [0, 100]);
the larger it is, the stronger SDP is. The data is generated the same way as in the first
experiment. Based on previous results, we set b = 1, p = 0.8, and d = 3. A performance
comparison of three algorithms is demonstrated in Fig. [d] Results show that A-OMP-SSC
outperforms OMP-SSC in clustering accuracy, thanks to great improvement in connectivity,
despite minor loss of SDP. A-OMP-SSC also outperforms ¢1-SSC at slightly high noise level.
This is because the number of chosen neighbors in the solution of £;-SSC is generally around

or larger than subspace dimension, therefore SDP percentage quickly decreases to zero as
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Figure 4: Comparison between ¢1-SSC, OMP-SSC and A-OMP-SSC. Left: clustering error
rate; right: connectivity (left axis, blue solid lines) and SDP percentages (right axis, red

dashed lines).

0.4 4
- - -noise level = 0.2| O L1-SsC
— 06 = || A omP-ssC
o) 2 .|| * A-omp-ssc
©0.3 § 3 -OMP-
- @
.
©
0.2 £2
£ =
(5 2
2 k=
c
201 . £1
P ; A D\
0 oA - - - - ) 0 Loafa®A -
0 50 100 150 200 0 50 100 150 200

samples per subspace samples per subspace

Figure 5: Algorithm comparisons under various problem scales. Left: clustering error rate;

right: running time (in seconds).

noise level increases. This result demonstrates the robustness of A-OMP-SSC to white

Gaussian noise.

4.1.5 Data density

We use the same parameter set as the performance comparison experiment, except that
the number of samples per subspace varies from 10 to 200. A comparison of clustering
error rate between SSC algorithms under certain noise levels is demonstrated in Fig. [f]
(left). OMP-SSC performs better when data density is small, while A-OMP-SSC possesses
an increasing advantage as data density rises, which validates our previous analysis on the
success condition of A-OMP-SSC.

We also compare the running time of SSC algorithms under the same simulation setting.
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Table 1: EYaleB clustering error rate in percentage.

# clusters 2 3 5 8 13 21 38
OMP-SSC 1.11 | 2.64 | 552 | 843 | 14.4 | 19.8 | 28.7
A-OMP-SSC | 1.10 | 2.23 | 4.11 | 6.94 | 12.2 | 16.8 | 22.3

The result is shown in Fig. |5| (right). Despite the disadvantage in clustering accuracy in
some scenarios, a major advantage of OMP-SSC is that it is much faster than traditional
£1-SSC, which is consistent with the results from existing literature [22,23]. Furthermore,
A-OMP-SSC is even faster than OMP-SSC, because the operation of updating data points
doesn’t change the overall computational complexity, while the operation of dropping data

points gradually reduces data density.

4.2 Face Clustering

We test our algorithm on EYaleB, a dataset of human-face pictures from 38 persons, each
with around 64 photos under various illumination. In our experiment, the pictures are
downsampled to 48 x 42. It is known that human-face images of a subject can be approxi-
mated by a 9-dimensional subspace [2]. We set b = 0.5, p = 0.2 and d = 3. A comparison of
OMP-SSC and A-OMP-SSC on clustering error rate is demonstrated in Table[I} The result
is the average of 200 trials. For each trial, given the number of clusters k, we randomly
choose k subjects, mix all images of these subjects together, and permutate them before ap-
plying clustering algorithms. The result shows that A-OMP-SSC outperforms its reference
on human face clustering problem, especially in the scenario of multiple classes. Notice that
the state-of-the-art clustering error rate of £;-SSC in the case of all 38 subjects is 31.0% [22],
while its running time is prohibitive. This highlights the fact that A-OMP-SSC enjoys both

superior time efficiency and higher clustering accuracy in such large-scale problems.

5 Conclusion

We propose a fast and accurate A-OMP-SSC algorithm, which obtains a better tradeoff
between connectivity and SDP via adaptively updating and randomly dropping data points.
We heuristically explain the intuitions behind our algorithm and analyze the condition where

it works. Numerical results validate our analyses, and demonstrate the advantages of our

11



algorithm over OMP-SSC and ¢;-SSC. The proposed active mechanism may benefit many

other SC algorithms.
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