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Non Zero Mean Adaptive Cosine Estimator and
Application to Hyperspectral Imaging

Frangois Vincent and Olivier Besson

Abstract—The Adaptive Cosine Estimator (ACE) has become a
popular detection scheme in many applications. Similarly to the
majority of detection schemes, it assumes a zero mean noise. In
some domains, such as hyperspectral imaging, this assumption no
longer holds and this algorithm has to be adapted. In this paper
we revisit the use of ACE in a non zero mean context. We consider
the case where the data under test and the training samples differ
from one scaling factor on the mean and one scaling factor on
the covariance matrix. We derive two-step generalized likelihood
ratio tests for both the additive model and the replacement model
and show that the new detectors differ in the way the mean value
is removed. A real data experiment shows that they outperform
the standard version.

Index Terms—Adaptive coherence estimator, detection, gener-
alized likelihood ratio test, hyperspectral imaging.

I. INTRODUCTION

Detecting a Signal of Interest (Sol) with a known signature
in partially unknown noise is a key issue in many signal pro-
cessing applications and constitutes one of the main objectives
of radar systems for instance. The difficulty of this problem
lies in the statistics of the noise being unknown. For instance
with a Gaussian distributed noise, the mean and the covariance
matrix may not be known and thus adaptive detection of the
Sol requires using other samples (so called training samples)
to learn the noise present in the signal under test.

Under the Gaussian assumption, many algorithms have been
developed, such as Kelly’s Generalized Likelihood Ratio Test
(GLRT) [1], the Adaptive Matched Filter (AMF) [2] or the
Adaptive Coherence/Cosine Estimator (ACE) [3], [4], to name
the most popular ones. The latter algorithm, initially derived
assuming a known noise covariance matrix (i.e. following a
two step approach), was also shown to be the true scale invari-
ant GLRT (i.e. following a one-step approach) [5]. It possesses
very interesting properties and has become a reference in many
applications, including hyperspectral imaging [6]. ACE has a
striking interpretation as it simply measures the square of the
cosine of the angle between the Sol and the signal under test.
Thereby, ACE is robust to data with possible large amplitudes,
where the level of the AMF can significantly vary while the
above-mentioned angle remains the same [7].

However, ACE, just like the majority of popular detection
schemes, has been derived for zero-mean signals. Unfortu-
nately, in some applications, the data are always positive and
this hypothesis is not fulfilled. This is the case in the image
processing field and especially for hyperspectral applications,
this domain being the main focus of this paper. In this case,
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ACE is simply applied after a demeaning step, i.e., after
removing the mean value of the training samples.

In this paper, we revisit the use of ACE in a non-zero mean
data context, with a special interest in hyperspectral image
processing. More precisely, we consider two popular signal
models usually used in the hyperspectral domain, namely the
additive and the replacement models [8], and we derive the
corresponding two-step GLRT assuming a different scaling of
the mean and the covariance matrix between the data under
test and the training samples, in the spirit of ACE approach.
Moreover, the scaling factor affecting the mean is independent
of the scaling factor affecting the covariance. We show that all
solutions have similar formulations, i.e., the square of a cosine
angle, but with differences in the way the mean is removed
from the data. These differences induce major performance
variations, as shown on a real data experiment.

II. SIGNAL MODEL

The problem at hand consists in deciding whether a target
s is present in the signal under test x or if there is noise
only n. In order to characterize the noise, one has also access
to secondary data z; k = 1,..., K, hopefully free of target.
Unlike for the detection problem typically tackled in many
signal processing applications, we consider in this paper non
zero-mean data. More precisely the noise vector is assumed to
be Gaussian distributed, namely n ~ N (ym, O'QC), whereas
z, ~ N (m, C). Doing so, we generalize the central hypothe-
sis underlying the derivation of ACE, considering not only an
unknown scaling factor o2 between the covariance matrices
of the signal under test x and the secondary data zj, but also
an unknown scaling factor v between their means.

As for the Sol, two popular models are typically advocated
in the hyperspectral domain. The more realistic one considers
an opaque target that will mask a part of the background n.
This part is known as the fill factor o [9], [10], and the target
will replace this fraction of the background. When a — 0,
this so-called replacement model tends to the standard additive
model, widely used in many signal processing applications. In
this case, the target, if present, simply adds to the background.
Therefore, the problem we tackle can be formulated as the
following composite two-hypotheses test

X=n

Hoi
{ (1
Hy: x=as+fn

where [ defines the model type: additive model when 5 = 1
or replacement model when 8 = (1 — «).



III. GENERALIZATION OF ACE

In the sequel we derive the GLRT corresponding to the
problem described in (1) assuming that n ~ A/(ym, 0>C) and
that m and C are known. For adaptive detection the latter will
be replaced by their estimates obtained from training samples
7. The target signature s is supposed to be known and the
fill factor « is deterministic and unknown. We will first derive
the GLRT for the model typically assumed in the hyperspectral
domain when ACE is advocated [11], namely that the mean
remains the same (v = 1). Then we will consider the more
general case (v unknown), as the rationale of choosing the
same mean but a scaling factor for the covariance matrix is
not obvious. Below we will say that two test statistics ¢; and ¢,
are equivalent, which we denote ¢; = t», if for every threshold
11 there exists a unique threshold 7 such that t; > 7 < 15 >
n9. In particular ¢; = at?/ N which will enable us to discard
all constant terms in the GLR and to take its N/2-th root.

A. Same mean (y = 1)

First we consider that n ~ NV (m,c%C). As C is supposed to
be known, we can whiten the data and rewrite (1) as

Hy : =
o y=>b )
Hy: y=at+pb

where y = C*%x, b = C*%n, t = C~%s are the whitened
versions of x, n, s, and b ~ N (u, 0'21), with p = C m.
The likelihood functions under Hy and H; are

2
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o
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where oc means proportional to. The Maximum Likelihood
(ML) estimates of o are known to be respectively of =
N~y — pf* and 0% = (82N)~" |ly — at — Bul*. so that
the concentrated likelihood functions are given by

—N
max po(y; 0%) o [ly — p “)

maxpa (y; o, B,0%) o< |ly — ot - Bl

In the sequel we make repeated use of the following fact:

min ||z — av|®* = HPLZH2 = |z — vz 2 )
a Ty N vTv

where PL = I— P, with P, = (vI'v)~1vvT the orthogonal
projection on v.

Let us consider first the case # = 1 (additive model). Then,
taking the N/2-th root of the GLR yields

2
GLR = ¥ = #ll
= 2
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2
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[y — el [It]]
with ¥ = y — p and where cos(u, v) represents the cosine of

the angle between vectors u and v.
When 5 =1 — « (replacement model), we have

2
GLR = — |y — ] i
ming ||y — p — a(t — p)||
2
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where t = t — p1. Note that the mean g is removed both from
y and t, in contrast to the additive model where only y is
centered.

B. Scaling factor on the mean (arbitrary )

Now we consider the more general case where the mean, in
addition to the covariance matrix, is known up to a scaling
factor, namely n ~ N (ym, 0?C). Again, we first whiten all
vectors and the likelihood functions under Hy and H; become

2
- Y~
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Ny = at = Byl
23202
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Substituting o2 by its ML estimate both under Hy and Hj,
we get
—-N
maxpo(y;7,0%) o< [ly — v ©)
—-N
maxpi(y; e, 8,7,0%) oc |ly — at — Byu]

At this stage it is important to note that S and ~ cannot be
estimated individually under H;, only the product /-y can be
estimated. Consequently the GLRT will be the same under the
additive model and the replacement model. Pursuing, we have

—N
max po(y;7y,02) o |[y* | (10)
vY,0
where y* = P,y. Similarly
-N
max pi(y;a, B,7,0°) o ||yt — at™|| (11)
B,7,02

where t+ = Pf;t. Finally, maximization with respect to «
yields

max _pi(y; e, 8,7,0%) [Payt™ a2

a,By



Therefore, the GLR for arbitrary v is given by

= cos?(yt, th) (13)

It will be referred to as Mean Removal ACE (MRACE).
C. Summary

In order to get back to the original (non whitened) vectors, let
us note that y = C‘l/z(x—m), t=C"12% t = C—1/2(S_
m) and

T-1
1 1)2 m'C 'x
yr=07" [X‘mTcunm}
TE-1
1L e-1/2|, m C's
tr=C {s mTclmm] (14

Then, substituting these expressions in (6), (7) and (13), we
observe that all GLRTSs share the same form, namely

cos?(C™V2(x — am), C™/%(s — bm)) (15)

which corresponds to the square cosine between the whitened
versions of the data x and the Sol s, after removal of a scaled
version of m. The various detectors differ in the coefficients
(a,b), ie., in the way they remove the mean m from x
and s, see Table I for a synthesis. These seemingly minor
differences will however yield significant differences in terms
of performance, as will be illustrated next.

TABLE 1
SUMMARY OF THE DIFFERENT DETECTORS

Additive (8 = 1) | Replacement (8 =1 — «)

y=1 a=1,b=0 a=1,b=1
. To-1 To-1
arbitrary ~y a=Treal b= Draer

In the supplementary material provided we show that, for
all three detectors above, the test statistic of (15) follows a
beta distribution, which is central under Hy and non central
under H;. Moreover, the distribution of the test statistic does
not depend on vy or o2 under Hj.

IV. PERFORMANCE EVALUATION

In order to assess the performance of each GLRT derived in
this paper (and hence the validity of the different assumptions),
we propose to test them against real hyperspectral data. More
precisely, we consider the Viareggio 2013 airborne trial [12].
This benchmarking hyperspectral detection campaign took
place in Viareggio (Italy), in May 2013, with an aircraft flying
at 1200 meters. The open data consist of three [450 x 375]
pixels maps composed of 511 samples in the Visible Near
InfraRed (VINR) band (400—1000nm). The spatial resolution
of the image is about 0.6 meters. Different kinds of vehicles as
well as coloured panels served as known targets. For each of
these targets, a spectral signature obtained from ground spec-
troradiometer measurements is available. Moreover, a black
and a white cover, serving as calibration targets, were also
deployed. As can be seen on Fig. 1, the scene is composed

Test Scene

Fig. 1. Complete RGB view of the Viareggio test scene

of parking lots, roads, buildings, sport fields and pine woods.
Three images, referred here-after as iml, im2 and im3 have
been acquired with different target configurations.

As for the majority of hyperspectral detection schemes,
the first step of the processing aims at converting the raw
measurements into a reflectance map, namely removing all
atmospheric effects and non-uniform sun illumination. To this
end, we use the Empirical Line Method (ELM) [13] [14],
considering the black and white calibration panels. Then a
spectral binning [15] is performed to reduce the vector size
dimension to N = 32. The performance of each algorithm
is assessed calculating the number of pixels having their
detector’s output strictly higher than the one for the target
pixel. In other words, this number can be seen as a false alarm
number with an optimal thresholding.

We considered three training samples configurations. A
first series of experiments is conducted with a small local
window of size 13 x 13 pixels with a 9 x 9 guard window,
resulting in 2.75N training samples. Then we consider a
19 x 19 window to increase the number of training samples
to 8.75N. Finally, we consider the global image to estimate
the background parameters. In the three corresponding tables
presented hereafter, we only consider the more challenging
targets to detect, as otherwise the number of false alarms is
very small for any detector [16]. We compare the 3 versions of
the non zero mean ACE of table I with the AMF and Kelly’s
GLRT. We have also added the two GLRTSs derived in [17]
for comparison, namely the modified FTMF and SPADE.

In light of these results, we can draw the following remarks.
First of all, the popular ACE scheme simply adapted to remove
the mean (additive model with n ~ A(m,o?C)) is fair
only, with sometimes less good results than the basic AMF,
especially when the number of training samples is small. The
GLRT based on the replacement model, referred as ACE
replacement (always assuming n ~ AN(m,o2C)) exhibits
rather better results, except for the so-called V3 target and
K =8.75N.

On the other hand, we observe a huge improvement when



TABLE II
FALSE ALARMS SCORE, LOCAL PROCESSING WITH K/N = 2.75
target, image | AMF | Kelly | Modified FTMF | SPADE ACE additive ACE replacement MRACE
n~ N(m,0?C) | n~N(m,s?C) | n~ N(ym,s?C)
V3, iml 143 158 144 150 235 255 6
V3, im2 219 303 220 304 823 169 1
P2, iml 9 11 9 17 25 1 0
P2, im2 2 2 2 7 3 0 0
V6, im3 104 97 70 35 86 38 2
TABLE III
FALSE ALARMS SCORE, LOCAL PROCESSING WITH K/N = 8.75
target, image | AMF | Kelly | Modified FTMF | SPADE ACE additive ACE replacement MRACE
n~ N(m,o?C) | n~N(m,s?C) | n~ N(ym,s?C)
V3, iml 68 41 69 45 38 101 13
V3, im2 39 40 44 43 58 94 0
P2, iml 7 8 7 8 15 15 0
P2, im2 6 6 6 6 17 8 0
V6, im3 142 99 167 104 17 15 0
TABLE IV
FALSE ALARMS SCORE, GLOBAL PROCESSING (K/N = 5271)
target, image | AMF | Kelly | Modified FTMF | SPADE ACE additive ACE replacement MRACE
n~AN(m,o?C) | n~N(m,c2C) | n~N(ym,c2C)
V3, iml 26 26 26 26 1 1 1
V3, im2 16 16 16 16 1 1 1
P2, iml 2 2 2 2 0 0 0
P2, im2 0 0 0 0 0 0 0
V6, im3 42 42 37 37 3 3 0
exhibits striking performances compared to all other schemes,
Area of Interest AVE with a larger gap when the training samples number is small.
" o ! " 00 This kind of robustness to possible bad estimation of the
© w 400 background parameters is certainly due to the fact that we
6 e - relax the relationship between the mean of the training samples
80 80 100 and that of the pixel under test. Finally, we also observe a
00 40 &0 80 100 ° O 0 8 100 false alarm reduction for target-like components when using
this more general version of the non-zero mean ACE. Indeed,
Kelly ACE =1.8°1) Figure 2 represents zooms of the detectors’ output around
0.6 . . :
20 o 20 the target, which lies at the center of the maps. Target-like
0 . 60 “ el o4 parking lots splitters produce recurrent peaks in the detectors
60| = = 60| . - -~ . .
w0 a0 o » 02 output creating possible false alarms. We clearly see that these
20 . . .
100 100 £y unwanted peaks are drastically reduced when considering
040 80 80 0 o0 %o w0 MRACE, increasing the so-called selectivity of the detection.
ACE (y=1,8=(1-a)) MRACE
T * 25 » V. CONCLUSIONS
iz z jz 0s In this paper we focused on the adaptation of the popular
a3 15 . .
60 Lo X 60 . 04 ACE detector to the case of non zero mean data, with a special
80 0s 8 02 interest in hyperspectral target detection. The feature of ACE
100 100

20 40 60 80 100 20 40 60 80 100

Fig. 2. Detectors output comparison

considering a scaling factor on the mean, in addition to the
scaling factor on the covariance matrix (n ~ A (ym,o?C)),
namely using MRACE. Indeed, in this case, the GLRT, which
is the same for both the additive and the replacement models,

being to consider a scaling factor on the covariance matrix
between the primary and the secondary data, we studied two
hypothesis for the mean. The first one simply assumes that
the mean remains the same, whereas the second one supposes
a scaling factor on the mean, in addition to the covariance
matrix. For these two cases, we derive the GLRT for both the
additive and the replacement models, two models typically
used in the hyperspectral context. Based on a real data
experiment the new MRACE (assuming a scaling factor on
the mean) seems to outperform all popular detection schemes,
including the standard ACE version.
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SUPPLEMENTARY MATERIAL

The problem addressed can be formulated as the following
composite two-hypotheses test

Hy: x=n 0
H : x=as+fn

where 5 = 1 for the additive model and § = (1 — «) for the
replacement model, n ~ A (ym,c2C) where m and C are
known. The test statistic for the GLRT is

t = cos>(C™V2%(x — am), C™/?(s — bm))
_ [(x —am)TC~1(s — bm))?
[(x —am)TC~1(x — am)] [(s — bm)TC~1(s — bm)]
2)

where a and b are defined in Table I below.

TABLE I
SUMMARY OF THE DIFFERENT DETECTORS

Additive (8 = 1) | Replacement (5 =1 — «)

a=1,b=0

a= mTCc~'x —
mTC—1m’

a=1,b=1

mTc~ls
m7TC—1m

y=1

arbitrary

In this supplementary material, we provide a brief analysis
of the above detectors, more precisely a stochastic representa-
tion of the test statistic in terms of well-known distributions.

Let us first consider the case v = 1 for which one has

x ~ N(as + (1 — ab)m, (1 — ab)?c*C)

where b = 0 for the additive model and b = 1 for the

replacement model. Let us define
x=(1—-ab) lo'CV3(x —m)
~N(a(l —ab) to71C™Y2(s — bm), T)
The test statistic can be written as
[(x —m)TC (s — bm))?

' = m)TC 1(x— m)][(s — bm)7C (s — bm)]
iTPC—1/2(s—bm)5(
B xTx
_ iTPcfm(s_bm)fc
 XTPG2iem) X+ XTPE Ly X
A
T A+B
where
A=%"Pc1/2(5_pm)X L 2(s)
B = NTPé—l/z(s_bm)i = Xx—1(0)

with 6 = a?(1—ab) 202(s—bm)? C~!(s—bm). Therefore,
t follows a beta distribution, which is central under Hy and
non-central under H,. Under H| the distribution of ¢ does not
depend on o2 and the test has thus the constant false alarm
rate.

Let us now consider the case vy # 1 for which
x ~ N(as +nm, 7°C)

where n = v and 7 = o. For any vector u one can write

TO-1
e
=(I—-Pg-1/25,)C %1
= Pé_1/2m0_1/2u
Therefore the test statistic is now
t: [XTC_l/QPé,l/sz_lms]z
[XTC—l/QPé,l/sz—l/Qx][STC—l/QPé,l/QmC—l/QS]

[XTc—l/viTc—l/Qs]Q
T XITC12VVIC-1/2x|[sTC-1/2VVTC-1/23]
[x"C™V/2VPyrg-1/2, VI C™1/2%X]
[xTC-1/2VVTC-1/2x]
where V is an orthogonal basis for the subspace orthogonal
to C~'/?m. Next note that

x=7"WIC2x ~ N(ar~'VIC1/%5 1)

It follows that ¢ < C/(C + D) where

C =%TPyrg 1/2.% < x2(5)

D =X"PYrg 1ok £ 1 5(0)
with § = a?772sTC1/2VPyrg-1/2 VI C~/2s. Conse-
quently the test statistic follows a beta distribution and under
Hj this distribution does not depend on ~ (the scaling factor
on the mean) and o2 (the scaling factor on the covariance
matrix).



