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Abstract—This paper carries out a large dimensional analysis of the
standard regularized quadratic discriminant analysis (QDA) classifier
designed on the assumption that data arise from a Gaussian mixture
model. The analysis relies on fundamental results from random matrix
theory (RMT) when both the number of features and the cardinality of
the training data within each class grow large at the same pace. Under
some mild assumptions, we show that the asymptotic classification error
converges to a deterministic quantity that depends only on the covariances
and means associated with each class as well as the problem dimensions.
Such a result permits a better understanding of the performance of
regularized QDA and can be used to determine the optimal regularization
parameter that minimizes the misclassification error probability. Despite
being valid only for Gaussian data, our theoretical findings are shown
to yield a high accuracy in predicting the performances achieved with
real data sets drawn from popular real data bases, thereby making an
interesting connection between theory and practice.

Index Terms—QDA, classification, machine learning, deterministic
equivalent, random matrix theory.

I . I N T R O D U C T I O N

A. Overview of Discriminant Analysis for Classification

Discriminant analysis is part of a larger class of classification
methods commonly known in the machine learning community as
model-based classification methods [1]–[3]. These methods rely on the
assumption that the input data follow a certain distribution. A classifier
is then designed so as to minimize a certain classification metric [2].
Linear and Quadratic discriminant analysis (LDA and QDA), merely
relying on the assumption of the data following Gaussian distribution,
are among the most popular representatives [4]. Both methods are
designed to assign for a given input data the class that presents the
highest posterior probability. Their major unique difference is that
LDA presumes equal covariance matrices for both classes but different
means whereas QDA assumes different covariances and means across
classes. By construction, they both require the knowledge of the
Gaussian parameters for each class. This can be performed by
estimating these parameters from the available training points using
maximum likelihood estimation, a way that should be effective if the
number of training samples is sufficiently high. However, when the
number of training samples is small compared to their dimensions,
maximum likelihood covariance matrix estimates can be poorly
conditioned, leading to high misclassification error rates. One popular
approach to solve the ill-posed estimation consists in regularizing the
covariance estimation [5]. It has led to the emergence of regularized
versions of discriminant analysis, termed as regularized LDA (R-
LDA) and regularized QDA (R-QDA). In this paper, the focus is
on regularized QDA.

B. Previous works

A large body of research has been conducted to analyze the perfor-
mance of discriminant analysis classifiers. One approach, carried out
under the assumption of exact dimensions and hinging on properties
of the Wishart distribution, has been pursued in [6] to derive the

exact misclassification error rate of the QDA. Such an analysis was
limited to the case in which the training sample size for each class
is greater than the number of features. Moreover, it cannot be easily
generalized to handle regularized discriminant analysis. A second
asymptotic approach has arisen in several recent works, leading to
concurrent results about the misclassification error rates associated
with discriminant analysis classifiers. Particularly, based on sparsity
assumptions on the mean and covariance matrices, sparse variants of
LDA and QDA has been proposed in [7] and [8] and analyzed under
the asymptotic regime in which the number of features p is much
larger than the number of the training samples n. A different possible
regime is the one in which n and p grow large with the same pace,
often termed as the double asymptotic regime. The major advantage
of this regime is that it lends itself to the use of results from random
matrix theory. It has recently been considered in the analaysis of the
regularized LDA [9], but to the best of the authors’ knowledge has not
been considered for the most general case in which the covariances
across classes are different, henceforth, calling for the use of QDA
based classifiers.

C. Contributions

The present work aims to provide a comprehensive understanding
of the performance of regularized QDA under the asymptotic regime
in which the number of training samples with each class grow large
with the number of features. Under some mild assumptions controlling
the distance between class covariances and means, we show that the
classification error converges to a non-trivial deterministic quantity
that only depends on the Gaussian distribution parameters of each
class and the problem dimensions. Although real data are far from
being Gaussian, our asymptotic approach has been shown to yield
good accuracy when applied to real data.
• Under some mild assumptions, building on fundamental results

from random matrix theory [10] we establish the convergence
of the classification error to a deterministic error that reveals the
mathematical connection between the classification error and the
statistical parameters associated with each class.

• We leverage this result to propose a more efficient design of
the regularized QDA classifier by selecting the regularization
parameter that minimizes the asymptotic classification error.

• We validate our theoretical findings using both synthetic data
and real data drawn from available data bases. We particularly
illustrate the good accuracy of our results for both settings.

In the remainder of this paper, we give an overview of regularized
QDA for binary classification in Section II. The main results are
presented in Section III while all proofs are available in an extended
version of this paper. We validate our analysis in Section IV and
conclude the paper in Section V.

Notations:

Scalars, vectors and matrices are respectively denoted by non-
boldface, boldface lowercase and boldface uppercase characters. 0p×n
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and 1p×n are respectively the matrix of zeros and ones of size p×n,
Ip denotes the p × p identity matrix. The notation ‖.‖ means the
Euclidean norm for vectors and the spectral norm for matrices. (.)T ,
tr (.) and |.| stands for the transpose, the trace and the determinant
of a matrix respectively. For two functionals f and g, we say that
f = O (g), if ∃ 0 < M <∞ such that |f | ≤Mg. P (.), d−→,

p−→ and
a.s.−−→ respectively denote the probability measure, the convergence

in distribution, the convergence in probability and the almost sure
convergence of random variables. Φ (.) denotes the cumulative density
function (CDF) of the standard normal distribution.

I I . Q DA C L A S S I F I E R F O R B I N A RY C L A S S I F I C AT I O N

We consider the problem of classifying a multivariate observation
x ∈ Rp×1 to one of two classes under the assumption that x belongs
to class Ci, i = 0, 1, if and only if:

x = µi + Σ
1
2
i ω

with ω ∼ C(0p×1, Ip) and Σi ∈ Rp×p and µi are the covariance
and the mean vector associated with class i. Let πi, i = 0, 1 denote
the prior probabability that x belongs to class Ci. Based on these
assumptions, the Bayes rule classifier is the one that assigns x to the
class that presents the highest posterior probability (P(x ∈ Ci|x)).
This amounts to selecting the class which achieves the highest value
of the following classification score:

WQDA
i (x) = −1

2
log |Σi| −

1

2
(x− µi)T Σ−1

i (x− µi)

+ log πi,
(1)

In particular, the classification rule is given by:{
x ∈ C0 ifWQDA

0 (x) > WQDA
1 (x)

x ∈ C1 otherwise.
(2)

The resulting classification approach produces quadratic class
boundaries, giving the name quadratic discriminant analysis (QDA)
to the corresponding classifier. As a Bayes classifier, it is associated
with the lowest possible expected misclassification error rate if the
data follow the assumed Gaussian mixture model. In practice, the
class parameters µi and Σi are not known. To solve this issue, a
set of independent training data with known class labels is used to
estimate the covariance matrix Σi and the mean vector µi associated
with each class. Such estimates are used as a plug-in estimators in
the discriminant analysis cost (1). In particular, let ni be the number
of available samples in class Ci and denote by T0 = {xl ∈ C0}n0

l=1

and T1 = {xl ∈ C1}n0+n1
l=n0+1 the corresponding samples. Denote by

xi and Σ̂i the empirical estimates of the mean vector and covariance
matrix associated with class Ci:

xi =
1

ni

∑
l∈Ti

xl,

Σ̂i =
1

ni − 1

∑
l∈Ti

(xl − xi) (xl − xi)
T .

Then, the empirical discriminant analysis score becomes:

ŴQDA
i (x) = −1

2
log |Σ̂i| −

1

2
(x− xi)

T Σ̂−1
i (x− xi)

+ log πi,
(3)

The empirical QDA formulated in (3) requires all covariance estimates
Σ̂i to be non-singular. However, in some practical scenarios, Σ̂i might
be ill-conditioned if not singular, a situation arising in particular when
the number of samples ni is lower than the number of features. To
get around this issue, regularized estimators shrinking the sample
covariance estimate to identity have often been proposed [5]. In this

paper, we consider the following regularized estimate of the inverse
covariance matrix:

Hi =
(
Ip + γΣ̂i

)−1

, (4)

where γ > 0 is a regularizer. The regularized discriminant analysis
is thus obtained by replacing Σ−1

i by Hi, thus yielding:

ŴRQDA
i =

1

2
log |Hi| −

1

2
(x− xi)

T Hi (x− xi) + log πi.

Conditioned on the training samples Ti, i = 0, 1, the classification
error contributed by class Ci is given by

εi = P
[
(−1)i ŴQDA

0 (x) < (−1)i ŴQDA
1 (x) |x ∈ Ci

]
. (5)

which yields the following total mis-classification error probability:

ε = π0ε0 + π1ε1. (6)

On the other hand, the conditional classification error in (5) can easily
be shown to write as:

εi = P
[
ωTBiω + 2ωTyi < ξi|ω ∼ N (0p, Ip)

]
, (7)

where

Bi = Σ
1/2
i (H1 −H0) Σ

1/2
i ,

yi = Σ
1/2
i [H1 (µi − x̄1)−H0 (µi − x̄0)]

ξi = − log

(
|H0|
|H1|

)
+ (µi − x̄0)T H0 (µi − x̄0)

− (µi − x̄1)T H1 (µi − x̄1) + 2 log
π1

π0
.

It thus amounts to computing the cumulative distribution function
(CDF) of quadratic forms of Gaussian random vectors, and hence
cannot be derived in closed form in general. However, it can be still
approximated by considering asymptotic regimes that allow to exploit
results about central limit theorem involving quadratic forms, as will
be shown in the next section. This is in striking difference with LDA
classifiers, for which the conditional probability coincides with that
of a Gaussian random variable (since Bi = 0).

I I I . S TAT E M E N T O F T H E M A I N R E S U LT S

In this section, we state the main results regarding the derivation of
deterministic approximations of the QDA classification errors. Such
results have been obtained by considering some specific assumptions,
carefully chosen such that an asymptotically non-trivial classification
error (i.e. neither 0 nor 1) is achieved. We particularly highlight how
the provided asymptotic approximations depend on such statistical
parameters as the means and covariances within classes. Ultimately,
these results can be exploited in order to improve the performances
by allowing optimal setting of the regularization parameter.

A. Technical Assumptions

We consider the following double asymptotic regime in which ni,
p grow to ∞ for i ∈ {0, 1} and the following assumptions are met:

Assumption 1 (Data scaling). ni
p
→ c ∈ (0,∞), with |n0 − n1| =

o (p).

Assumption 2 (Mean scaling). ‖µ0 − µ1‖2 = O
(√
p
)
.

Assumption 3 (Covariance scaling). ‖Σi‖ = O (1).

Assumption 4. lim sup 1√
p

tr A (Σ0 −Σ1) = O (1), for all A ∈
Rp×p satisfying ‖A‖ = O (1).

The first assumption states that the number of features and that of
training samples are commensurable. This is of standard use within
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the framework of random matrix theory and allows to obtain closed-
form approximations of the mis-classification error probabilities.
Assumption 1 implies also that πi → 1

2
for i {0, 1}. The second

assumption governs the distance between the two classes in terms
of the Euclidean distance of the difference between the means. This
is mandatory in order to avoid asymptotic perfect classification. A
similar assumption is required to control the distance between the
covariance matrices. Particularly, the spectral norm of the covariance
matrices are required to be bounded while their difference should
satisfy 1√

p
tr A (Σ0 −Σ1) = O (1). This latter condition is met for

instance when at most d√pe eigenvalues of Σ0−Σ1 are O (1) while
the remaining are O

(
p−α

)
, for α ≥ 1

2
. It allows, together with the

fact that πi → 1
2

for i {0, 1}, terms involving the difference H1−H0

to decrease at a rate of O
(
p−

1
2

)
.

B. Central Limit Theorem (CLT)

Under Assumptions 1-4, a central limit theorem (CLT) on the ran-
dom variable ωTBiω+ 2ωTyi when ω ∼ N (0p, Ip) is established.
This result is essential to evaluate the asymptotic approximation of
the mis-classification rate and is stated as follows:

Proposition 1 (CLT). Under assumptions 1-4, the following conver-
gence holds

ωTBiω + 2ωTyi − tr Bi√
2 tr B2

i + 4yTi yi

d−→ N (0, 1) . (8)

Proof: The proof is mainly based on the application of the
Lyapunov’s CLT for the sum of independent but non identically
distributed random variables [11].

As a by-product of the above Proposition, we obtain the following
expression for the conditional classification error εi:

Corollary 1. Under the setting of Proposition 1 , the conditional
classification error in (5) satisfies:

εi − Φ

(
(−1)i

ξi − tr Bi√
2 tr B2

i + 4yTi yi

)
→ 0. (9)

C. Deterministic Equivalent

With the term above at hand, we are now in position to derive
the asymptotic equivalent for conditional classification error. Before
that we shall introduce the following notations, which basically stems
from standard results from random matrix theory.

We define for i = 0, 1, δi as the solution of the following fixed

point equation 1: δi = 1
ni

tr Σi

(
Ip + γ

1+γδi
Σi

)−1

.

Define Ti as:

Ti =

(
Ip +

γ

1 + γδi
Σi

)−1

and the scalar φi and φ̃i as:

φi =
1

ni
tr Σ2

iT
2
i φ̃i =

1

(1 + γδi)2

Let µ = µ0 − µ1, and set ξi, bi and Bi to:

ξi ,
1
√
p

[
− log

|T0|
|T1|

+ log
(1 + γδ0)n0

(1 + γδ1)n1

+γ

(
n1δ1

1 + γδ1
− n0δ0

1 + γδ0

)
+ (−1)i+1 µTT1−iµ

]
.

Bi , c

[
φ0

1− γ2φ0φ̃0

+
φ1

1− γ2φ1φ̃1

]
− 2

p
tr ΣiT1ΣiT0.

1Mathematical details treating the existence and uniqueness of δi can be
found in [10].

Theorem 1. Under assumptions 1-4, the following convergence holds
for i ∈ {0, 1}

εi − Φ

(
(−1)i

ξi − bi√
2Bi

)
p−→ 0.

Proof: The proof relies on showing that Bi, ξi are the almost
sure equivalent of 1

p
tr B2

i and 1√
p
ξi. Further details can be found in

Appendix A of the extended version.
See Appendix A in the extended version.
Theorem 1 shows that the mis-classification error converges to a

non-trivial deterministic quantity that depends only on the statistical
means and covariances within each class.

The major importance of this result is that it can be used to deter-
mine the regularization γ that minimizes the asymptotic classification
error. While it seems to be elusive for such value to possess a closed-
form expression, it can be numerically approximated by using a simple
one-dimensional line search algorithm.

Special cases: 1) It is important to note that we could have
considered ‖µ0 − µ1‖ = O(1). In this case, the classification
error rate would still converge to a non trivial limit but would not
asymptotically depend on the difference ‖µ0 − µ1‖. This is because
in this case, the difference in covariance matrices dominate that
of the means and as such represent the discriminant metric that
asymptotically matters.

2) Another interesting case to highlight is the one in which
‖Σ0 −Σ1‖ = O(p−

1
2
−α), α > 0. From Theorem 1 and using some

basic manipulations, it is easy to show that the total classification
error converges to

ε− Φ

−µTTµ

2
√
p

√
1− γ2φφ̃

cγ2φ2φ̃

 p−→ 0, (10)

where φ, φ̃ and T have respectively the same definitions as φi, φ̃i and
Ti upon dropping the class index i, since quantities associated with
class 1 or class 2 can be used interchangably in the asymptotic regime.
It is easy to see that in this case if ‖µ0 − µ1‖2 scales slower than
O
(√
p
)
, classification is asymptotically impossible. This must be

contrasted with the results of LDA [9], which provides non-vanishing
misclassification rates for ‖µ0 − µ1‖ = O(1).

3) When ‖Σ0 −Σ1‖F = O(1) occurring for instance when
‖Σ0 −Σ1‖2 = O(p−

1
2 ) or Σ0 − Σ1 is of finite rank, and

‖µ0 − µ1‖2 = O(1), we can prove that the misclassification error
probability associated with each class converges respectively to 1− η
and η where η is some probability depending solely on the statistics.
Hence, the total mis-classification error probability associated with
regularized QDA converges to

ε→ 0.5.

The above two remarks should help to draw some hints on when
regularized LDA or regularized QDA should be used. Particularly, if
the Frobenius norm of Σ0−Σ1 is O(1), using the information on the
difference between the class covariance matrices is not recommended.
We should rather rely on using the information on the difference
between the classes’ means, or in other words favoring the use of
regularized LDA against regularized QDA.

I V. E X P E R I M E N T S

In this section, we carry out simulations to validate our results for
synthetic and real data.
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Figure 1: Performance in terms of the testing classification error of
the regularized QDA classifier with equal training, n0 = n1. The
x-axis in the first row is the number of features p for γ = 1 while in
the second row is the regularization parameter γ for p = 300 features.

A. Synthetic Data

For synthetic data, we choose the following models for µi and Σi:
{Σ0}i,j = 0.6|i−j|,

Σ1 = Σ0 + 2

[
Ik 0k×(p−k)

0(p−k)×k 0(p−k)×(p−k)

]
, k =

⌊√
p
⌋
, µ0 =[

1,0(p−1)×1

]
, µ1 = µ0 + p−

1
4 1p×1. We validate the theoretical

results of the previous section by evaluating the empirical misclassi-
fication rate of the regularized QDA classifier over a testing set of
ntest = 1000 samples from C0 and C1. The statistics x̄i and Σ̂i are
estimated using training sets Ti independent of the testing set, with
cardinalities ni respectively for i ∈ {0, 1}. This process is averaged
over 50 Monte Carlo realizations. In a first experiment, we fix γ = 1
and quantify the classification error as a function of the number of
features p ranging from 100 to 500. The results of this experiment are
shown in the first row of Figure 1 for different values of c ∈ { 1

2
, 1, 3

2
}.

For all values of c, it is clear that the asymptotic error presents a good
match with the real error computed over the given testing set.

In a second experiment, we fix p = 300 features and examine the
behavior of the classification error with respect to the regularization
parameter γ. As seen, there exists an optimal γ denoted by γ∗ that
gives the lowest classification error for QDA. The theoretical asymp-
totic error can be then used to determine the optimal regularization
parameter. It is worth mentioning that as the ratio p

ni
increases, the

optimal value of the regularization parameter γ becomes closer to
zero. This can be explained by the fact that in this case, the empirical
covariance matrix becomes ill-conditioned, and hence, putting more
weight on the bias (identity matrix in this case) should yield better
performance.

B. Real Data

The Gaussianity assumption of the training set and testing set has
been extensively used in our derivation. However, in practice, real
data are not Gaussian. In this section, we assess how accurate are our
results when applied on real data. Surprisingly, when applied to the
real data sets namely the MNIST data set [12] (class 0 is given by
instances of the digit 8 and class 1 is given by instances of the digit
9) and the Ionosphere data set [13] (class 0 is given by the good radar
returns and class 1 is given by the bad radar returns), our derivations
are found to mimic the real behavior of the classification error with
a reasonable discrepancy. In Table I, we summarize both data sets
parameters in terms of the number of features p, the total number
of samples N0 of class 0 and the total number of samples of class
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Figure 2: Performance of the R-QDA classifier applied to both data
sets given by Table I in terms of the average classification error for
different values of the ratio c. The first row gives the performance
of the R-QDA classifier when applied to MNIST data set whereas
the second row gives its performance when applied to the Ionosphere
data set. The x-axis is the regularization parameter γ. In both data
sets, we consider equal training, i.e. n0 = n1.

Table I: Data sets Description where both statistics µi and Σi, i{0, 1}
are estimated using the total samples available in the data sets.

MNIST [12] Ionosphere [13]
p 784 34
N0 5851 225
N1 5949 126
1√
p
‖µ0 − µ1‖2 4.6707 0.3332

1√
p
tr (Σ0 −Σ1) -2.2409 1.2609

1 N1 along with their associated distances in means and covariance
matrices. The training for each class i is performed using ni samples
randomly selected from the available Ni samples. The testing is then
performed by randomly selecting ntest images from the remaining
Ni−ni samples. This process is repeated for 100 times, over which the
mis-classification error is averaged. Surprisingly as shown in Figure
2, the deterministic equivalent of the classification error computed
based on the empirical means and the covariance matrices provides
a good way to approximate the real mis-classification error for both
data sets. More importantly, the deterministic equivalent is able to
track the regularization parameter γ that would minimize the average
classification error as shown in Figure 2.

V. C O N C L U S I O N

This paper studies the asymptotic mis-classification error rate of
the regularized QDA classifier. It is shown that under the regime in
which the dimension of the training feature vectors and their numbers
in each class grow large at the same pace, the mis-classification
error converges to a deterministic quantity that depends solely on
the problem dimensions and the statistical parameters in each class.
By setting the regularization parameter to the value that minimizes
the asymptotic mis-classification rate, such a result should set the
stage for a better design of the regularized QDA. This becomes all
the more of a major practical importance, given that a good accuracy
of our derivations is shown for synthetic and real data.
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