
Novel and cutting-edge use cases have arisen since the first

deployments of the fifth generation of telecommunication

networks (5G). There are plenty of well-though optimally

design 5G simulators and emulators which allow

telecommunication technologies engineers and researchers

to thoroughly study and test the network. However, the 5G

ecosystem is not only limited to the network itself: a fast

development of 5G-specific use cases can considerably

accelerate the development of telecommunication

technologies. We present FikoRE, our real-time Radio Access

Networks (RAN) emulator carefully designed for application-

level experimentation and prototyping. Its modularity and

straightforward implementation allow multidisciplinary user to

rapidly use or even modify it to test their own applications. In

this article, we present FikoRE’s architecture accompanied

with relevant validation experiments and results.

Introduction
The release of the fifth generation of telecommunication

networks (5G) has produced a fast development and

increased interest in novel use cases such as wireless

Augmented (AR) and Virtual Reality (VR), Tele-operated Driving

(ToD) or mobile Machine Learning (ML) algorithms offloading.

These novel use cases rely on a nearby Multi-access Edge

Computing (MEC) server to where the most computationally

demanding tasks are offloaded. However, these use cases

and other application’s developers and researchers usually do

not have access to a full 5G setup to test their solutions. This

can potentially hinder the fast development of these novel

technologies which can collaterally produce the development

of 5G technologies to slow down. An optimal design of 5G

and beyond telecommunication technologies can not happen

without the input from the use cases and applications

researchers and developers.

One feasible solution to accelerate these developers

learning curve, which can lead to major breakthroughs, is to

use Radio Access Networks (RAN) simulators. These simulators

allow to study the network performance under different

setups and configurations. There are plenty of RAN simulators

in the state of the art, some of them widely use in research

and industry. Viena Simulator[1] and NS3[2] are probably two

of the most well-known simulators. They both were initially

designed for LTE while they have incorporated 5G simulation

capabilities over the last years. Another interesting example is

Matlab 5G Toolbox [3], a very useful tool for

telecommunications engineers and researchers as the

flexibility provided by Matlab allows them to rapidly test their

own models or algorithms. These simulators can model the

network from a link level or system level point of view. The

last option is particularly relevant for application layer

developers and researchers, as they are not as concerned

about the specific particularities modelled on the link level

simulations but understand the overall system level

performance of the network in different scenarios.

More interesting are the system level RAN emulators

which are capable of filtering and handling actual IP traffic

while accurately simulating, in real-time, a specific RAN

technology or configuration. There are multiple RAN

emulators in the state of the art, some of them already

included as an implemented functionality in some of the

simulators already mentioned, as in [2]. Besides, [4,5] also

provide emulation capabilities for both 5G and LTE. From the

FikoRE: 5G and Beyond RAN Emulator for

Application Level Experimentation and

Prototyping

Diego Gonzalez Morin, , Nokia XR Lab

Manuel J. López Morales, Universidad Carlos III de Madrid

Pablo Pérez, , Nokia XR Lab

Ana García Armada, Universidad Carlos III De Madrid

Alvaro Villegas, Nokia XR Lab

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice,

after which this version may no longer be accessible

industry side, there are other relevant emulators as the ones

described in [6,7].

There is a common factor to all the mentioned emulators:

they are designed to study the network behaviour. However,

we could not find, to the best of our knowledge, any

emulator in the state of the art specially focused on testing

applications or use cases under different network setups.

Most of the aforementioned emulators are extremely

complex to use or modify for non-knowledgeable

telecommunications engineers or researchers. These

emulators can be understood as tools to study the network

performance from a purely telecommunications perspective.

For this same reason, they are designed with such a

complexity level that considerably hinders users to modify

their source code to implement and test their own solutions.

Besides, these emulators learning curve can grow extremely

slow for application layer developers.

There is a very interesting research attempt [8] to fulfil this

gap of available emulators specifically designed for application

layer researchers. While this emulator provides a simple to

use RAN emulator to test different slicing and edge access

approaches, its RAN implemented model is too abstract: it

lacks a more accurate representation of important

procedures such as the resource allocation step or channel

quality information metrics estimation.

In this article we present FikoRE, a RAN emulator targeting

to lower the barrier for application layer researchers to test

their solutions and prototypes in real-time network

simulations. The proposed emulator is capable of handling

real IP traffic allowing researchers to directly test their

applications on different network configurations and

scenarios. FikoRE has been carefully designed to be easy to

use and even modify for users with a diverse background

knowledge. This is achieved by providing a high level of

abstraction to allow non experts start experimenting with the

tool. Despite this abstraction level, FikoRE’s implementation

ensures a high representability of an actual RAN deployment.

Besides, the emulators architecture is extremely modular

allowing straightforward source code modifications if

necessary. FikoRE’s end goal is to provide with a

straightforward emulation tool easy to use for both experts

and non-expert users.

Emulator Structure

Our emulator is not particularly designed for

understanding or testing the network, but study how the

network and its different possible configurations behave for

specific applications, use-cases and verticals. Consequently,

we designed the emulator to comply with the following

requirements:

• Work in Real-Time.Handle actual IP traffic efficiently.

• Emulate multiple users with real or simulated IP

traffic.

• Simulates the real behavior of the network with

sufficient accuracy.

• Besides, we wanted the emulator to be as simple to

use and modify as possible which requires it to be

implemented with a high modularity level allowing

easy source code modifications.

As the goal is to test actual applications on different possible

scenarios and understand which are the most optimal

network configurations, we carefully designed the resource

allocation algorithms and procedures implementation. We

believe it’s a crucial step in which an optimal algorithm design

can produce an enhanced network performance for specific

use cases or applications.

We have organized the emulator in 3 main modules:

A. Traffic Capture/Generator (TG): this module is in

charge of creating virtual traffic, according to the

user-selected TG model, or capture actual IP traffic

coming from a specific set of ports.

B. MAC Layer: is in charge of the resource allocation

step, implemented as an abstraction of the details

described in 3GPP 38.214, 3GPP 38.211 and 3GPP

38.306 specifications.

C. User Equipment (UE): it models a single UE, including

its position estimation, according to a user-selected

mobility model, channel quality estimation, and packet

handling. The main modules included in each

emulated UE are:

a. Radio Link Control (RLC) and Packet Data

Convergence Protocol (PDCP) Layer: this module

models the behavior of the RLC and PDCP layers

using a high abstraction level. Our implementation

is not incorporating any particular procedure

taken from the 3GPPP specifications.

b. PHY Layer: models the main channel quality

measurements, such as the Signal to Noise and

Interference Ratio (SINR), Received Signal

Reference Power (RSRP), Hybrid Automatic Repeat

Request (HARQ) retransmissions, etc. The models

implemented in this layer are described in 3GPP

38.901 specifications.

These modules are twined for each transmission direction:

uplink (UL) and downlink (DL). In Fig. 1, the implemented

overall data flow for each time step is depicted. We can

observe the described modules and how the interact

between them. The depicted workflow can be complemented

with the following steps with summarize the logic behind

each emulator’s time step:

1. Each emulated UE’s IP traffic is generated or captured

by the TG module. The packets are sent to the

RLC/PDCP layer where they are queued in the IP

buffer.

2. The PDCP/RLC layer indicates the MAC layer how

many bits are available for transmission for each UE

via a Scheduling Request (SC).

3. With this information along with the emulated

Channel Status Information (CSI) of each UE, the MAC

layer allocates frequency and time resources to each

UE. The CSIs are estimated by the PHY layer module.

4. The PDCP/RLC layer, according to the allocated

resources, segments the IP packets into smaller blocks

as determined by the MAC layer.

5. Using the emulated CSIs, the PHY layer module

determines the transmission latency and HARQ

retransmission probabilities of each block.

6. If the block has to be retransmitted, it is moved to

the HARQ queues.

7. Finally, when the block is determined to be

successfully transmitted it is moved back to the

RLC/PDCP layer module, where the integrity and

ordering of the full IP packets are checked.

8. Successful IP packets are then released.

The described steps run once every 1 millisecond. This

deadline is strict and must be met to allow a proper

synchronization between actual IP traffic and the emulator’s

behavior. This timing is accurately tracked by an agent

running concurrently to the emulator’s main threads.

The main mentioned modules are all thoroughly described in

the following sections.

Traffic Capture and Generation

The Traffic Generator (TG) module is only used for

simulated UEs which are not linked with any actual IP traffic. It

is in charge of periodically creating simulated IP packets for

both uplink and downlink transmission directions. The current

version of the emulator implements a single TG model. In this

model, the user only needs to configure the target UL and DL

throughputs, and the size of the simulated IP packets (in bits).

Then, the TG generates, in each time step, as many packets

of the specified size as necessary to fulfil the target

throughput. To add some variability, we get a pseudo-

random value from a normal distribution generator in each

time which is added to the target DL and UL throughputs.

There is a TG instance included in each simulated UE.

For UEs handling actual IP traffic, we incorporate Netfilter

Queue (NQ) [9] library. NQ is a Linux user space API which

provides access to packets that have been queued by the

firewall. To filter packets coming from or to specific ports or

addresses, the adequate firewall rules have to be set by the

user. Each emulated UE linked to actual IP traffic have two

unique queues assigned: one for each transmission direction

(DL or UL). The appropriate queue ids are given via the

configuration file to the NQ queues filtering the targeted IP

packets for each UE.

Our emulator interfaces with NQ assigning a callback to

each of the UE’s queues, which are triggered every time a

new packet has been received. The callback receives the

associated IP packet id and the packet size in bits. This

information, along with the callback call’s time-stamp is used

to create virtual IP packets identical to the ones generated by

the TG module. The received packet id can be used via NQ to

drop or release the associated actual IP packet.

MAC Layer

The resource allocation step, handled by the MAC layer,

determines how the frequency and time resources are

divided between the connected UEs. Tuning, improving or

even re-designing the main pieces in charge of the resource

allocation step is necessary for the newest connected use

cases and applications to become a reality. Our goal is to

provide a representative yet simple to use and modify MAC

layer module which allows researchers and developers to test

novel scheduling schemes and implementations for their

particular applications or use cases.

Consequently, we carefully designed and implemented

the MAC layer module. This module implements a fairly

detailed abstraction of the resource allocation procedures

described in 3GPP 38.214 and 3GPP 38.211 specifications.

According to such specification, the first step is to build the

resource allocation grid. The resource allocation grid is divided

in the frequency and time axes. The frequency axis extends

along the total bandwidth and is subdivided in subcarriers

which size is configurable according to the specifications.

Similarly, the time axis extends along a 10 millisecond frame,

Figure 1 Schematic information flow between the emulator’s main modules.

which can be divided in sub-frames (1 milliseconds) or in even

smaller units as the slots, which contain up to 14 OFDM

symbols. The size in frequency of the subcarriers is

determined by the numerology, which also determines the

duration of an OFDM symbol and, consequently, the number

of slots per sub-frame. Depending on this numerology and

the size of the available bandwidth the allocation grid will

have different distributions. The specific details on how the

resource allocation grid is built is described in 3GPP 38.214

and 3GPP 38.211 specifications

The smallest isolated resource unit handled by the MAC

layer is the resource block (RB), containing up 12 subcarriers in

frequency and 14 OFDM symbols in time. Besides, the

specifications also consider the aggregation of RBs in

Resource Block Groups (RBGs). Our emulator implements this

option, being the RBG built automatically according to the

rules described in the specifications.

The main goal of the resource allocation step is to

optimally assign these RBs/RBGs to the connected UEs. This

step is achieved estimating, in each time-step, a metric for

each UE and RB/RBG pair. Then, the PRBs/RBGs are assigned

to the most optimal UEs according to a selected metric. The

metric type is also selected by the user via the configuration

file. The current version of the emulator implements well-

known metrics such as First-In-First-Out (FIFO), Proportional

Fair (PF), Blind Equal Throughput (BET) and Max. Throughput

(MT).

Besides, we have implemented a simple user prioritization

scheme: each UE can be configured with a different level of

prioritization. This prioritization level is then used regardless

the selected metric: it is applied to the estimated metric

value. This feature is key in extremely demanding applications

such as Virtual Reality offloading [10].

We have implemented the resource allocation model in a

very modular manner so the potential users can implement

their own specific resource allocation techniques, custom

metrics or recent scheduling approaches such as network

slicing.

The resource allocation steps is not very constraint in the

specifications: the vendors and operators have a lot of design

freedom, such as grouping (localized) or not (distributed) slots

on the time axis.

A Resource Allocation Grid is built by the emulator for

each transmission direction (UL and DL), according to the

selected parameters. A simple representation of such grids is

depicted in Fig. 2.

The MAC layer module is also in charge of determining

which modulation to be used for each UE and PRB/RBG

according to the simulated Channel Status Information (CSI)

metrics estimated in the PHY layer module. This is estimated

by the Adaptive Modulation and Coding (AMC) steps which

dynamically adjusts the OFDM modulation order, coding

method and coding rate of symbols of a specific RB/RBG to

maximize throughput of the entire link transmission system.

The modulation order and coding rate are directly linked with

the Modulation and Coding Scheme index using the tables

from the specifications. In our implementation, the MCS index

is estimated and reported by the PHY layer as part of the CSI

metrics. The CSI metrics can be estimated for the entire

bandwidth (wideband mode) or for each sub-band, RBG or RB

(sub-band mode). Both modes are implemented in our

emulator. The estimated modulation order and coding rates

given by the calculated MCS index is used to determine how

many bits can be transmitted in each RB to the assigned UE.

We used the following formula slightly modified from 3GPP

38.306:

𝑏𝑖𝑡𝑠 = 𝜈 ∙ 𝑄𝑚 ∙ 𝑓 ∙ 𝑅 ∙ 𝑁𝑃𝑅𝐵
𝑠𝑐 ∙ 𝐵 ∙ (1 − 𝑂𝐻) (1)

where 𝜈 represents the number of used MIMO layers, 𝑄𝑚 the

modulation order, 𝑓 the scaling factor (configuration

parameter), 𝑁𝑃𝑅𝐵
𝑠𝑐 the number of subcarriers in a RB, and OH

the estimated overhead which possible values are given in

3GPP 38.306 specification. The B is a parameter we used to

handle Time Division Duplexing (TDD), it represents how many

OFDM symbols are granted for DL or UL transmission in the

evaluated RB. The UL/DL OFDM symbols assignations are

estimated by the TDD module, part of the MAC layer module.

If Frequency Division Duplexing is selected, then B is always

the maximum number of OFDM symbols within the RB/RBG.

If RBG grouping is used, the estimated number of bits needs

to be multiplied by the number of RB per RBG. Once the

assignation is done, a Transport Block Size (TBS), which size is

estimated according to 3GPP 38.306, is obtained for each

assigned pair of UE-PRB/RBG and is moved to the

correspondent UE instance. This UE instance then models all

the transmission relative steps.

The key characteristic of the implemented MAC layer

module in our simulator is the fact that it handles individual

RB/RBG entities. Consequently, it allows to perform the

resource allocation step in several manners, using different

RB/RBG setups. For instance, the resource grid can be

Figure 2 Resource allocation UL and DL grids as
implemented in FikoRE emulator.

subdivided in smaller grids with different numerologies,

metrics or user priorities. Our MAC layer implementation is

straight-forward and extremely modular hoping that these

novel techniques can be easily implemented by other

potential users.

User Equipment

The UE module models the individual UEs connected to

emulated gNB. In each timestep, the UE module is

implemented to:

1. Generate Traffic: using the TG model or from the

incoming actual IP traffic.

2. Update Position: using our own mobility module, the UE

updates its own position in every timestep. This module

implements three well-known mobility models: random

walk, waypoint and Manhattan.

3. Estimate the Channel State Indicators: using the PHY

Layer module which implements the appropriate

models from the 3GPP 38.901.

4. Handle Packets: the packets are handled by the

RLC/PDCP module and can be queued, depending on

several emulated metrics, in 3 different buffers: IP,

HARQ and Packet Release buffers.

The main steps of the UE module are handled by the

following main modules:

User Equipment: RLC/PCDP Layer

The PDCP/RLC layer represents a simple abstraction of all the

high layer levels within the full stack of 5G networks and

beyond. It is in charge of queuing all the IP packets (real and

simulated) from each UE, creating one IP buffer for each UE

and each transmission direction (UL and DL). Using a

Scheduling Request (SR), the RLC/PDCP layer communicates

the MAC layer how many bits are ready for transmission for

each UE. When a slot is allocated to an UE by the MAC layer,

the RLC/PDCP layer splits the IP packets into smaller blocks (if

necessary) of the estimated TBS. These blocks can then be

moved to the HARQ or the Packet Release buffers. This is

decided according to the implemented HARQ model, which

models the packets retransmission probability as:

 𝑝(𝑁𝐴𝐶𝐾) = (1 − (1 − 𝑓𝐵𝐿𝐸𝑅(𝛾))𝑛𝑡𝑥) ∙ 𝑟𝑛𝑡𝑥 (2)

where 𝑓𝐵𝐿𝐸𝑅(𝛾) estimates the Block Error Rate (BLER) given

the SINR (𝛾) in the time step when the packet was originally

transmitted, 𝑛𝑡𝑥 is the number of times the evaluated packet

was already retransmitted, and r is the HARQ error reduction

factor which is in our emulator is left as a configuration

parameter. If the packet has to be retransmitted, it is moved

to the HARQ model. If, otherwise, the HARQ model

determined the packet to be successfully transmitted then it

is moved to the Packet Release buffer. A HARQ packet is

ready to leave the buffer when the current time stamp is

greater than its release time target. The release time target is

estimated according to the PHY layer air transmission delays,

HARQ ACK/NACK period, and other modelled processing

delays. Similarly, an IP packet queued in the Packet Release

buffer is released from the emulator when the release time

deadline is also met. This deadline is identically estimated as

in the HARQ packets. This simple approach has shown to

sufficiently represent the different latencies added along the

entire RAN stack, as we will analyse in the experiments

section. Similarly, to the IP buffer case, there is one instance

of the HARQ and Packet Release buffers for each UE.

The Packet Release buffer also implements packet re-

ordering capabilities as an actual RLC layer. This is a key

component as HARQ retransmission produce packet

disordering. The goal of our implemented Packet Release

buffer is to reorder and reconstruct the individual IP packets.

If one block from an IP packet is dropped, when the

maximum number of retransmissions is reached, then the

entire IP packet is dropped. We achieve all these

functionalities by simply ordering the queued packets by ID

and checking each packet’s previous packet’s ID, stored at its

header. This module is complex, built using multiple

interconnected modules. Fig. 3 shows a simplified data flow

of our RLC/PDCP layer implementation.

User Equipment: PHY Layer

The PHY layer models the most relevant channel quality

metrics estimation: SINR, RSRP, MCS and Channel Quality

Indicator (CQI), among others. These metrics, besides of being

continuously logged, are used by the MAC layer for

performing the resource allocation step. The key metric, from

Figure 3 RLC/PDCP Layer module’s data flow simplification. .

which all the others are derived is the SINR. We calculate the

SINR from the Received Signal Power (RSP), and the measured

noise and interference. To estimate the RSP, we estimate the

Pathloss and Shadowing attenuation using the models

described in 3GPP 38.901 specification, given for 6 different

outdoor and indoor scenarios. Besides, we also estimate and

use the Rayleigh Fading. Other constant values are required

but are left as configuration parameters for the user:

transmission and reception antenna gains, and the

transmission power.

One important goal of the emulator was to allow the

concurrent simulation of many users. Consequently, we

needed to reduce the computation overhead as much as

possible. Therefore, the noise and interference are estimated

at the beginning of the emulation session and left constant.

While the noise is given as a configuration parameter, the

interference is estimated using the same RSP models as

described before but applied to other gNBs and static UEs

sufficiently close to the simulated gNBs and UEs. The number

and distance of the interfering gNBs and UEs, and their base

frequencies and other basic configuration are left as

configuration parameters.

Once the noise, interference and RSP are estimated the

SINR can be directly calculated. In the wideband mode, a

single SINR value is estimated for the entire bandwidth, while

in the sub-band mode, a SINR value is estimated for each

bandwidth sub-band. Every how many milliseconds a new

SINR value or values have to be estimated is given by the

correlation time, which we estimate according to the doppler

effect for the given frequency band and the UE's velocity.

The estimated SINR is used to estimate the optimal MCS

index for each UE and PRB/RBG. To get the SINR-MCS

relations, we performed link level simulations using Matlab,

obtaining a set of SINR-BLER curves for each MCS. These are

obtained for different configurations according to the

maximum number of MIMO layers and RBGs sizes.

Finally, we have the Rank Indicator Model which

determines if the signals received in each antenna of the UE

or gNB are sufficiently uncorrelated, and MIMO can be used.

As we are not estimating any correlation matrices, we

proposed a simple model based in the idea that the

transmitted power is constant for the same UE or gNB and is

divided by each antenna used for MIMO transmission.

Consequently, we can estimate the limit SINR values for each

extra added MIMO layer from which is more efficient to use

the extra layer. We built a simple look-up table with this

information. The overall data flow of the PHY layer module is

depicted in Fig. 4.

Validation Experiments and Results

Even though the emulator has been carefully designed to be

simple to use and especially easy to modify, it should provide

a sufficiently accurate simulation of an actual RAN

deployment. Consequently, we performed a set of thoughtful

experiments to validate and show the emulator’s models and

performance. To ensure repeatability, all the stochastic

models were substituted for static variable values. We also

assumed that all the UEs were in Line of Sight (LOS) with the

gNB.

Figure 4 PHY Layer module’s simplified data flow.

Figure 5 MCS index versus measured mean throughput for
actual measurements on a mmW setup (blue) and simulated
values(red)

As we have already described, the MAC layer is a key

component to fulfil our emulator’s main goals. Therefore, the

first experiment targets to validate the MCS index to

allocated bits implemented model. If the relation between the

MCS index and the allocated bits is off, the rest of the steps

or models can not accurately represent an actual RAN setup.

The main goal is to validate the used formula (1). To validate

this formula, we took several measurements on an actual

millilitre wave (mmW) 5G deployment. We used iperf3 to

continuously transmit IP packets to an iperf3 server running

on a nearby MEC. We used an Askey RTL6305 modem to

wirelessly connect our laptop to the mmW gNB. We

continuously logged the MAC layer level DL throughput and

the associated MCS index. These pairs of MAC layer

throughput and indexes were compared to the ones obtained

by the emulator. Both the emulator and actual mmW setup

were running on the 26.5 GHz frequency band, for a total of

800 MHz of bandwidth separated in 8 carriers. All the carriers

were configured with 4DL:1UL TDD configuration. In both

cases, only one UE is connected to the gNB. The results

comparison is shown in Fig. 5. We can observe how in most of

the cases the mean throughput difference between the

actual and emulated cases its low, showing a final average

error smaller than a 2.5%. We can on the contrary observed

how for lower MCS indexes show more throughput

differences than the mid and high indexes.

The metric estimation step of the MAC layer is also a key

step as the selected or implemented metric directly affects

the overall performance for particular applications. In [1] the

authors tests how the overall provided throughput by the

gNB is affected by the selected metric for a fixed number of

connected UE. To validate our metrics and resource allocation

step implementation we decided to repeat the experiment

using our emulator. We tested two different setups: 3.5GHz

frequency band with 40 MHz of DL bandwidth (Configuration

A) and 26.5 GHz frequency band with 400 MHz of DL

bandwidth (Configuration B). We tested our implementation

of the FIFO, PF, BET and MT metrics. To be able to compare

our results with the one obtained in [1], we configured the

emulator to simulate 20 UEs demanding as much DL traffic

as possible. The results obtained are depicted in Fig. 6. We

can directly compare configuration A results to the one

obtained in [1], showing to be almost identical. Being the

Viena Simulator [1] a widely recognized RAN simulator, this

comparison itself can serve as a validation of our metric

estimation and resource allocation implementation.

The previous experiments were focused on the

emulator’s MAC layer module validation, which functionality

does not distinguish between simulated or actual IP traffic. In

the following experiments which evaluate the emulator’s

performance when actual IP traffic is filtered and used.

Figure 6 Throughput values obtained using different metric
types and 20 simulated users. In red: mmW frequency band. In
blue: 3.5 GHz frequency band.

Figure 7 Emulated throughput for a user handling real IP data
and sharing resource with other simulated UEs. Different UEs
prioritization levels are used for the real IP traffic UE.

Figure 8 Emulated latencies for a UE mimicking a Tele-operated
Driving use case. Encoded video is transmitted via RTP at a
bitrate of 10 Mbps. Different number of simulated UEs, distances
and user prioritizations levels are used.

First, our target is to study the throughput capabilities of the

emulator’s handling real traffic and check how it is affected

by other concurrent simulated UEs. We run the emulator

configured on the 3.5 GHz frequency band and 40 MHz of DL

bandwidth. The metric used is PF to ensure all the UEs,

including the actual IP traffic one, are provided with a fair split

of the resources. In this experiment we also target to

highlight and test the user prioritization capabilities.

Therefore, we repeat each experiment configuring the UE

with a different prioritization level each time: no prioritization,

medium, high and maximum prioritization. The other

simulated UEs are in all cases set to low priority. We repeated

the same experiments for both TCP and UDP traffic. The

number of simulated UEs ranged from 10 to 250. The

simulated UEs are demanding 5 Mbps from the network,

simulating a user watching a high-definition online video. The

results of the measured mean DL throughput for the actual

IP traffic UE are shown in Fig. 7. As expected, the measured

transmitted DL throughput rapidly decays as the number of

simulated UEs grows in the medium and no prioritization

cases. However, we can observe the importance of user

prioritization when particular UEs much sustain a minimum

network quality, such as in VR offloading [10]. When the UE is

sufficiently prioritized, the measured throughput decreases at

a much lower rate and sustaining high throughputs even

when many UEs are demanding network resources.

Another key aspect to study is the latency simulation. We

designed a simple experiment to validate this aspect of the

emulator: we created a simple RTP-based video transmission

pipeline which emulates a Tele-operated Driving (ToD) use

case. The goal is to measure the transmission latency on the

IP level, not considering the coding and encoding processing

overheads. We only transmit a single video stream with a

target bitrate of 10 Mbps (high quality video streaming). While

more complex ToD use cases usually require multiple

cameras or even a 180 or 360 camera, we choose to

experiment with a single stream for simplicity. To ensure

repeatability, The stream is produced using a simple high-

definition video file of a first-person car driving scene. The

streamed UDP packets are filtered and handled by the

emulator. The UE handling the actual IP traffic stream was

moving at a constant speed of 50 km/h.

From the emulator side, the setup was identical to the

previous experiment. In this case, we aim to study how the

latency changes depending on the distance to the gNB, the

number of connected UEs, and the prioritization levels. The

results obtained are depicted in Fig. 8. As expected, we can

observe how the latency curves get steeper as we increase

the number of simulated UEs increase and decrease the

prioritization level. We can also observe that for distances

further than 1300 meters, only the No UEs and Max.

Prioritization cases with 100 UEs can actually transmit the

stream. In all the other scenarios the IP buffer gets full, and

the packets start to get lost. With this experiment we

highlight the importance of user prioritization in novel use

cases such as ToD.

Conclusions

In this article, we have presented FikoER, our RAN real-time

emulator specifically designed for Application-Level

Experimentation and Prototyping. We have given a brief

overview of other real-time emulators available in the state of

the art. We have highlighted the necessity of a simple to use

emulator to allow application-level researchers and engineers

to test their own solutions on an emulated yet representative

RAN. The described emulator aims to become an enabler of

novel use cases and technologies which can not yet be tested

on cutting edge technologies such as 5G’s mmW frequency

bands. We have thoroughly described the emulator’s

architecture along with the most relevant implementation

details pinpointing the used models taken from the 3GPP

specifications.

Finally, we have tested our emulator in several conditions

in order to validate different its different modules. We have

first validated the MCS index to transmitted bits formulae

used by our implementation of the MAC layer. We achieve

this validation by comparing actual mmW measurements with

our emulate measurements. The metric estimation and

resource allocation step are validated by comparing our

emulated results with the results described in [1]. Finally, we

have shown the emulators actual IP traffic handling

capabilities in different scenarios with multiple users. In these

last set of experiments, we have shown the importance of a

well-designed user prioritization approach for particular

demanding use cases

References

[1] M. K. Müller et al., “Flexible multi-node simulation of cellular

mobile communications: the Vienna 5G System Level Simulator,”

EURASIP Journal on Wireless Communications and Networking,

vol. 2018, no. 1, p. 17, Sep. 2018, doi: 10.1186/s13638-018-1238-

7.

[2] Riley, G.F., Henderson, T.R. (2010). The ns-3 Network Simulator.

In: Wehrle, K., Güneş, M., Gross, J. (eds) Modeling and Tools for

Network Simulation. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-12331-3_2

[3] Matlab, "5G Toolbox" 5G Toolbox, Available:

https://www.mathworks.com/products/5g.html. [Accessed:

08/04/2022].

[4] Virdis, Antonio, Giovanni Stea and Giovanni Nardini. “Simulating

LTE/LTE-Advanced Networks with SimuLTE.” SIMULTECH (2014).

[5] G. Nardini, D. Sabella, G. Stea, P. Thakkar, A. Virdis, "Simu5G – An

OMNeT++ Library for End-to-End Performance Evaluation of 5G

Networks," in IEEE Access, vol. 8, pp. 181176-181191, 2020, doi:

10.1109/ACCESS.2020.3028550.

[6] Polaris Networks, " NetTest 5G Network Emulator", NetTest 5G

Network Emulator, Available:

https://www.polarisnetworks.net/5g-network-emulators.html

[Accessed: 08/04/2022].

[7] Keysight, "5G Network Emulation Solutions", 5G Network

Emulation Solutions, Available:

https://www.keysight.com/zz/en/solutions/5g/5g-network-

emulation-solutions.html [Accessed: 08/04/2022].

[8] J. P. Esper et al., "eXP-RAN—An Emulator for Gaining Experience

With Radio Access Networks, Edge Computing, and Slicing," in

IEEE Access, vol. 8, pp. 152975-152989, 2020, doi:

10.1109/ACCESS.2020.3017917.

[9] Netfilter, "libnetfilter_queue", libnetfilter_queue, Available:

https://www.netfilter.org/projects/libnetfilter_queue/ [Accessed:

08/04/2022].

[10] D. González Morín, M. J. López-Morales, P. Perez, A., "TCP-Based

Distributed Offloading Architecture for the Future of

Untethered Immersive Experiences in Wireless Networks" in ACM

International Conference in Interactive Media Experiences,

Aveiro, 2022.

Acknowledgements
This work has received funding from the European Union

(EU) Horizon 2020 research and innovation programme under

the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement

No. 813391.

https://www.polarisnetworks.net/5g-network-emulators.html
https://www.keysight.com/zz/en/solutions/5g/5g-network-emulation-solutions.html
https://www.keysight.com/zz/en/solutions/5g/5g-network-emulation-solutions.html

