
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

FROM THE EDITOR

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

 JULY/AUGUST 2016 | IEEE SOFTWARE 5

MONITORING ROADWORK qual-
ity differs completely from actually
building roads. When the road is be-
ing built, you take samples of mate-
rials and test them in a lab. When it’s
ready, you use specialized equipment
to look for slippery or uneven pave-
ments. And when the road is opened
to traf� c, you set up cameras and
other sensors to see how it’s used.
In software engineering, we have it
much easier because we can monitor
how we build software (the process),
the software we build (the product),
and the product’s actual use, simply
with yet more software.

There’s a deep reason why soft-
ware systems are re� ective—why
software is used to build and ana-
lyze them. Large software systems
form the most complex artifacts de-
signed and built by humans. Manag-
ing this complexity requires tools of
matching capabilities, so these are
necessarily also software. Examples
include compilers, runtime libraries,
version control systems, issue track-
ers, application servers, and OSs.
Without these the modern software
industry would grind to a halt.

The Process, the Product,
and the Product’s Use
The tools that manage the develop-
ment process provide ample oppor-

tunities to monitor its quality. Every
code commit is a heartbeat that can
trigger static analysis (for instance,
in the form of style checks and code
smell detectors); unit, integration,
and regression tests; and, inevitably,
test coverage analysis. The test re-
sults identify possible areas of con-
cern in three dimensions: product
functionality, software modules, and
developer teams. Feature requests
and bug reports on the project’s issue
tracker let us assess daily progress
and, again, pinpoint problem areas.

IDEs provide � ner-granularity
data on how software is developed
before a change matures for an even-
tual commit. This data can describe
crashes, automated refactorings, and
newly created entities. Logs of on-
line code reviews reveal the details of
caught (and missed) snafus. We can
even apply sentiment analysis and
other natural-language-processing
techniques on the project’s email
lists, forums, and chat logs to im-
prove our understanding of the de-
velopers’ performance.

When the software runs, we can
either have it instrumented to blab
about its quality or apply other
tools to it to make it talk involun-
tarily, as it were. An important ele-
ment of internal instrumentation is
assertion statements: logic fuses that

blow when our assumptions about
the program state no longer hold.
Logging instrumentation, typically
implemented through purpose-built
libraries and frameworks, can pro-
vide extensive details about what’s
happening in a system, thus letting
us reason more deeply about possi-
ble problems.

We can also apply software tools
that probe or slightly modify the
software’s internal workings to give
us data regarding its functioning.
With CPU-pro� ling tools, we can
� nd where the code spends most of
its time, memory pro� ling lets us see
where memory is allocated and leaks,
and tracing tools show us library and
OS interactions. More intrusive tools
help us locate out-of-bounds memory
accesses, parallelism bugs, or secu-
rity vulnerabilities. And when things
go south, we can collect and process
the details of crash reports, such as
the stack trace and the software’s log
up until the crash.

Finally, we can monitor how our
customers actually use the software.
We can easily do this externally—
for example, by looking at web-
server logs or key presses. However,
we can obtain much better results if
we instrument the software to log its
use: invocations, input and output
data, button clicks, command exe-

Re� ecting on Quality
Diomidis Spinellis

JULY/AUGUST 2016 | IEEE SOFTWARE 5

cutions, latency, and throughput. If
our software provides a cloud-based
service, all we need is some addi-
tional logging. Otherwise, our soft-
ware must ship the corresponding
data back to the mothership over the
Internet. Increasingly, software also
gives its users an explicit say by let-
ting them vote on feature requests or
prompting them to � ll out satisfac-
tion surveys.

Explicitly designing our develop-
ment process, our product, and its
use to generate precisely the data
we need reduces the collection ef-
fort and improves the data’s quality.
This can involve trivial adjustments,
such as con� guring the format and
retention of log � les, or larger-scale
software instrumentation initiatives.
Invariably, well-designed software
and processes are also easier to mon-
itor. For example, in one case I could
obtain precise usage data from a
desktop application because its hun-
dreds of diverse commands were all
uniquely identi� ed with a mnemonic
string and were dispatched from a
single central point.

Exploiting the Data
With so much data re� ecting the
software’s quality readily available,
� ying blind is inexcusable. When
managing a software business, we
must ensure that the types of data
I outlined are generated, collected,
and, more important, used. At a
minimum, their widespread avail-
ability throughout an organization
(subject to appropriate con� denti-
ality safeguards) can help all stake-
holders generate the intelligence
they require. Other organizations
might deliberately institute detailed
monitoring procedures for collect-
ing data, triggers that get pulled
when something goes wrong, and
corrective actions to � x problems.

Dashboards, alarms, and periodic
reports help us access the data when
needed. If all this sounds like a tall
order, there are also companies that
collect and analyze software data as
a service.

Data-driven quality management
enables the ef� cient allocation of � -
nite (and perennially constrained)
resources. Recently, while going
over a software product’s crash
logs, I found that just two easily
� xed crashes caused more than 20
percent of 1,200 collected crash re-
ports. Other areas in which we can
utilize the collected data include
feature selection, software perfor-
mance optimization, team alloca-
tion, development process tuning,
bug triaging, software evolution
planning, hardware allocation, and
marketing-channel selection. Signif-
icantly, we can expect that our ac-
tions’ results will later show up in
the data we collect, thus giving us
feedback on whether we’re going in
the correct direction.

For extra points, we can look
for opportunities arising from inte-
grating process, product, and usage
data. For example, consider driving
pro� le-based optimization from ac-
tual usage data rather than synthetic
benchmarks. Or, we can investigate
how software crashes map back to
the static analysis or code reviews of
the corresponding change.

I n the future, when the world is
an Internet of Things running
on software, road builders and

other engineers will have at their dis-
posal the wealth of data we develop-
ers take for granted. At that point,
we’ll have to tell our engineering col-
leagues how over time we learned
to use data to build the quality soft-
ware our society deserves.

EDITORIAL
STAFF

Lead Editor: Brian Brannon,
bbrannon@computer.org
Content Editor: Dennis Taylor
Staff Editors: Lee Garber, Meghan O’Dell,
and Rebecca Torres
Publications Coordinator:
software@computer.org
Lead Designer: Jennie Zhu-Mai
Production Editor: Monette Velasco
Webmaster: Brandi Ortega
Multimedia Editor: Erica Hardison
Production: Mark Bartosik and Larry Bauer
Illustrators: Annie Jiu, Robert Stack,
and Alex Torres
Cover Artist: Peter Bollinger
Director, Products & Services:
Evan Butter� eld
Senior Manager, Editorial Services:
Robin Baldwin
Manager, Editorial Services Content
Development: Richard Park
Senior Business Development Manager:
Sandra Brown
Senior Advertising Coordinators:
Marian Anderson, manderson@computer.org
Debbie Sims, dsims@computer.org

CS PUBLICATIONS BOARD

David S. Ebert (VP for Publications), Alain April,
Alfredo Benso, Laxmi Bhuyan, Greg Byrd,
Robert Dupuis, Jean-Luc Gaudiot, Ming C. Lin,
Linda I. Shafer, Forrest Shull, H.J. Siegel

MAGAZINE OPERATIONS
COMMITTEE
Forrest Shull (chair), M. Brian Blake, Maria
Ebling, Lieven Eeckhout, Miguel Encarna-
ção, Nathan Ensmenger, Sumi Helal, San
 Murugesan, Yong Rui, Ahmad-Reza Sadeghi,
 Diomidis Spinellis, George K. Thiruvathukal,
Mazin Yousif, Daniel Zeng

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, re� ect the author’s or � rm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscriptcentral
.com/sw-cs. Be sure to select the right manuscript type
when submitting. Articles must be original and not exceed
4,700 words including � gures and tables, which count for
200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org/web/aboutus
/whatis/policies/p9-26.html.

