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Abstract—Joint user selection and precoding in mul-
tiuser MIMO settings can be interpreted as group sparse
recovery in linear models. In this problem, a signal with
group sparsity is to be reconstructed from an underde-
termined system of equations. This paper utilizes this
equivalent interpretation and develops a computation-
ally tractable algorithm based on the method of group
LASSO. Compared to the state of the art, the proposed
scheme shows performance enhancements in two different
respects: higher achievable sum-rate and lower interfer-
ence at the non-selected user terminals.

Index Terms—User selection, precoding, group LASSO,
massive MIMO.

I. INTRODUCTION

Performance gains are often achieved in multiuser

massive multiple-input multiple-output (MIMO) sys-

tems with a large number of transmit antennas per

user [1]. As a result, in dense settings in which the

number of available users is comparable to the number

of transmit antennas, user selection is required along

with downlink beamforming [2]–[5].

The conventional approach for user selection and

precoding is to divide them into two separate problems:

First, a subset of users is selected; then, the information

signals of the selected users are precoded via a classic

precoding scheme [5]. Generally, the optimal approach

for user selection deals with integer programming.

Hence, this problem is often addressed via sub-optimal

greedy algorithms [2], [3]. In this work, we deviate

from the conventional approach and propose a scheme

for joint user selection and downlink beamforming.

A. User Selection and Precoding as Group Sparsity

Joint user selection and beamforming is interpreted

as the problem of constructing a signal with group

sparsity. To clarify this point, assume a multiuser

downlink scenario with M transmit antennas and K

users in which we wish to select a subset of L users.

A linear precoder in this problem can be seen as a

signal with MK entries, such that each block of size

M represents an individual beamforming vector. By

such a formulation, joint user selection and downlink

beamforming with respect to some performance metric,

e.g., the achievable sum-rate or mean squared error

(MSE), reduces to the problem of finding a signal with

group sparsity: A signal of size MK in which only L

blocks of size M have non-zero entries.

Following this equivalent interpretation, we employ

the generalized least squared error (GLSE) framework

for precoding, recently developed in [6]–[8], to formu-

late joint user selection and precoding as the problem

of group sparse recovery in a linear model. A computa-

tionally tractable algorithm is then developed based on

group least absolute shrinkage and selection operator

(LASSO) to address this problem. Our investigations

show significant performance enhancements compared

to the state of the art.

B. Notations

Throughout the paper, scalars, vectors, and matri-

ces are represented by non-bold, bold lower case, and

bold upper case letters, respectively. The real axis is

denoted by R and the complex plane is shown by C.

HH, H∗, and HT indicate the Hermitian, complex con-

jugate, and transpose of H, respectively. log (·) is the

binary logarithm. We denote the statistical expectation

by E {·}. diag (t) represents the diagonal matrix con-

structed from the elements of vector t.

II. PROBLEM FORMULATION

Consider a multiuser MIMO system with multiple

base stations (BSs) which are equipped with trans-

mit antenna arrays of size M . The system is intended

to serve K single-antenna user terminals (UTs). For

mathematical tractability, we focus on a single BS

which aims to transmit information to a group of

L ≤ K UTs.

A. System Model

The system operates in the time-division duplexing

(TDD) mode. Hence, the uplink and downlink channels

are reciprocal. In each coherence time interval, the

UTs transmit known training sequences. The BS then

utilizes these sequences to estimate the channel state

information (CSI).

Let hk ∈ CM denote the vector of uplink channel

coefficients between UT k and the BS. The signal

received by UT k is hence given by

yk = hT

kx+ zk (1)

where zk is additive complex Gaussian noise with zero

mean and variance σ2
k, i.e., zk ∼ CN

(

0, σ2
k

)

, and

x is the downlink transmit signal constructed from

the information symbols of the selected UTs and the
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CSI via linear precoding. As a result, the transmit

signal is written as

x =
∑

ℓ∈S

√
pℓsℓwℓ. (2)

where S, sℓ, pℓ and wℓ are defined as follows:

1) S ⊆ {1, . . . ,K} represents the subset of L UTs

selected by the BS for downlink transmission.

2) sℓ is the information symbol of user ℓ which is

assumed to be zero-mean and unit-variance.

3) pℓ denotes the power allocated to UT ℓ ∈ S.

4) wℓ is the beamforming vector of UT ℓ.

The transmit power at the BS is restricted. It is

hence assumed that x satisfies the power constraint

E

{

x
H
x
}

≤ P for some non-negative real P .

B. Performance Measure

There are various metrics characterizing the per-

formance of the downlink transmission in this sys-

tem. One well-known metric is the weighted average

throughput which is defined as

Ravg =
1

L

∑

ℓ∈S

wℓRℓ (3)

for some non-negative weights {wℓ} and transmission

rates

Rℓ = log (1 + SINRℓ) . (4)

In (4), SINRℓ is defined as

SINRℓ =
pℓ|hT

ℓ wℓ|2

σ2
ℓ +

K
∑

j=1,j 6=ℓ

pj|hT

ℓ wj |2
. (5)

From signal processing points of view, precoding

can be interpreted as channel inversion. In this prob-

lem, the ultimate aim is to construct the transmit signal

such that at a selected UT ℓ, hT

ℓ x = βsℓ, for some

scaling factor β, and at UT k which has not been

selected, we have hT

kx = 0. The former guarantees

channel inversion at the selected UTs which results in

minimal post-processing load, and the latter restricts

the precoder to have zero leakage at the non-selected

UTs.

By this alternative viewpoint, a suitable performance

measure is the residual sum of squares (RSS) at the UTs

defined as

RSS =
1

K

K
∑

k=1

E

{

|hT

kx− βaksk|2
}

, (6)

where ak = 1 if UT k is selected and is zero otherwise.

III. OPTIMAL USER SELECTION AND PRECODING

Let s = [s1, . . . , sK ]
T

collect the information sym-

bols of all UTs. By defining pk = 0 for those UTs

which are not selected, the transmit signal is compactly

represented as

x = W
√
Ps. (7)

where W and P are defined as follows:

1) W = [w1, . . . ,wK ] is the beamforming matrix.

2) P = diag (p) with p = [p1, . . . , pK ]
T

.

The notation
√
P moreover denotes a matrix whose

entries are the square root of the entries of P. Similarly,

the vector of receive signals y = [y1, . . . , yK ]T reads

y = HT
x+ z (8)

where H = [h1, . . . ,hK ] and z = [z1, . . . , zK ]
T

.

A. User Selection and Precoding with Minimum RSS

We design the transmit signal by considering the

RSS as the performance measure. In this respect, the

optimal approach for joint user selection and precoding

is to find W and p such that the RSS is minimized

and the signal constraints are satisfied. In the sequel,

we formulate this approach in a standard form.

Objective Function: Following the given represen-

tation, the RSS is written as

RSS =
1

K
E

{

‖HTW
√
Ps− βAs‖2

}

, (9)

where A = diag (a1, . . . , aK). In this formulation, A

is ineffective and can be dropped. To show this, note

that for any non-selected UT k, x is independent of sk
and hence

E

{

|hT

kx− βsk|2
}

=E
{

|hT

kx|2
}

+β2
E

{

|sk|2
}

(10a)

=E
{

|hT

kx|2
}

+β2. (10b)

Therefore, we can write

RSS =
1

K
D (W,p)−

(

1− L

K

)

β2, (11)

where D (W,p) is defined as

D (W,p) := E

{

‖HTW
√
Ps− βs‖2

}

(12a)

= tr
{

QHQ
}

(12b)

with Q = HTW
√
P− βIK . We hence set the objec-

tive function to D (W,p).
Constraints: There are two main constraints:

1) The number of selected UTs should be less

than L.

2) The average transmit power is constrained.

Noting that the number of selected UTs in the system is

given by the sparsity of p, i.e., ‖p‖0, the first constraint

is written as

‖p‖0 ≤ L. (13)

For the second constraint, we note that

E

{

x
H
x
}

= E

{

s
H
√
PWHW

√
Ps

}

(14a)

†
= E

{

tr
{√

PWHW
√
Pss

H

}}

(14b)

= tr
{

WPWH
}

(14c)

where † follows the fact that E
{

ss
H
}

= IK . As a

result, the transmit power constraint reads

tr
{

WPWH
}

≤ P. (15)



Optimization Problem: Considering the objective

function and constraints, the jointly optimal approach

for user selection and precoding is formulated as

min
W∈CM×K ,p∈RK

+

D (W,p) (16)

subject to C1 : ‖p‖0 ≤ L,

C2 : tr
{

Wdiag (p)WH
}

≤ P.

The optimization problem in its initial form is not

tractable, since both the objective function and con-

straints are not convex. We address this issue by con-

verting (16) into a group selection problem. We then

develop an algorithm based on group LASSO to esti-

mate the solution.

IV. PRECODING VIA GROUP LASSO

The optimization problem in (16) can be converted

into a group selection problem. To show this, let V :=
W
√
P be the overall precoding matrix. The objective

function is rewritten in terms of V as

D (W,p) = tr
{

(

HTV − βIK
)H (

HTV − βIK
)

}

= ‖HTV − β IK‖2F . (17)

The power constraint is further given in terms of V as

tr
{

VHV
}

= ‖V‖2F ≤ P. (18)

To represent constraint C1 in terms of V, we note that

only the column vectors in V whose corresponding

UT is selected have non-zero entries. This equivalently

means that
{

‖vk‖ 6= 0 if UT k is selected

‖vk‖ = 0 otherwise
, (19)

where vk =
√
pkwk denotes the k-th column vector

of V. As the result, one can write

‖V‖2,0 = ‖p‖0, (20)

where ‖V‖p,q denotes the ℓp,q norm of V defined as

‖V‖p,q :=

[

K
∑

k=1

(‖vk‖p)q
]1/q

. (21)

From the above derivations, we conclude that the

optimal approach for joint user selection and precoding

reduces to the following programming:

min
V∈CM×K

‖HTV − β IK‖2F (22)

subject to C1 : ‖V‖2,0 ≤ L,

C2 : ‖V‖2F ≤ P.

The optimization in (22) describes a group selection

problem in which a matrix with group sparsity is to be

recovered, i.e., a matrix with a certain fraction of col-

umn or row vectors being zero. Such a problem raises

in several applications, e.g., distributed compressive

sensing and machine leaning [9]–[11]. Group selection

in its primitive form is a non-deterministic polynomial

time (NP)-hard problem, since it reduces to an inte-

ger programming. To address this problem tractably,

several suboptimal approaches have been developed in

the literature which approximate the solution. Group

LASSO is one of the most efficient approaches which

relaxes the problem of group selection into a convex

programming [12], [13]. In the sequel, we use group

LASSO to develop a computationally tractable algo-

rithm for joint user selection and precoding.

A. A Tractable Algorithm via Group LASSO

Group selection is an extension of the basic sparse

recovery problem in which a sparse vector is to be

recovered from an underdetermined system of equa-

tions [14], [15]. Group LASSO extends Tibshirani’s

regularization approach [16] and convexifies the non-

convex ℓ0-norm with the ℓ1-norm. This means that

constraint C1 is relaxed as

C1 : ‖V‖2,1 ≤ ηL (23)

for some η which regularizes the relaxation. By doing

so, the joint user selection and precoding reduces to

min
V∈CM×K

‖HTV − β IK‖2F (24)

subject to C1 : ‖V‖2,1 ≤ ηL,

C2 : ‖V‖2F ≤ P.

This relaxed program represents a group LASSO algo-

rithm which is convex and is posed as a generic linear

programming.

B. An Alternative Formulation via RLS

The joint user selection and precoding scheme in

(24) describes least squares with side constraints,

where the RSS ‖HTV− β IK‖2F is minimized subject

to some constraints. Following the method of regular-

ized least-squares (RLS), this problem is converted into

the following unconstrained optimization1

min
V∈CM×K

‖HTV − βIK‖2F + λ‖V‖2F + µ‖V‖2,1 (25)

for some regularizers λ a µ. The key features of this

algorithm are as follows:

• For given upper bounds on the group sparsity

and transmit power of V, there exists a pair of

regularizers λ and µ, such that the solution to (25)

satisfies the constraints. Hence, by tuning λ and

µ different constraints are fulfilled.

• Due to its convexity, the problem is tractably

solved via generic linear programming. Alterna-

tively, an iterative algorithm based on approximate

message passing (AMP) can be developed to find

the solution with minimal computational complex-

ity; see [17] for more details on AMP and [18] for

its applicatindons to precoding.

Using either the algorithm in (24) or the one in (25),

a matrix V is tractably found which approximates the

optimal solution to (22). The beamforming and power

allocation matrices are then given by decomposing

this matrix as V = W
√
P for a diagonal P. In the

1Alternatively, one could use the method of Lagrange multipli-
ers to conclude the similar unconstrained form.



Algorithm 1 Joint User Selection and Precoding

Input: Channel matrix H, average transmit power P

and the number of selected users L.

Set V = [v1, . . . ,vK ]

V = GroupLASSO (H, P, L, β)

Let subset S ⊆ {1, . . . ,K} contain indices of the

column vectors in V which have the L largest ℓ2-

norms, i.e., |S| = L and

‖vℓ‖2 ≥ ‖vj‖2

for any ℓ ∈ S and j ∈ {1, . . . ,K} − S.

Set vj = 0 for j ∈ {1, . . . ,K} − S, and update V as

V←
√
P

‖V‖F
V

Set pk = ‖vk‖2 and wk =
vk

‖vk‖
for k ∈ {1, . . . ,K}.

Output: Beamforming matrix W = [w1, . . . ,wK ]
and power allocation matrix P = diag (p1, . . . , pK).

sequel, we investigate the performance of the proposed

approach through some numerical simulations.

V. PERFORMANCE INVESTIGATION

We study the performance of the proposed approach

by simulating some sample scenarios. To jointly pre-

code and select user via group LASSO, Algorithm 1

is used. In this algorithm,

V = GroupLASSO (H, P, L, β) (26)

denotes the solution to the minimization in (24) with

η = 1. The algorithm finds first the solution V to (24),

and selects L UTs with strongest precoding vectors

while setting the other column vectors zero. It then

scales the precoding vectors of the selected users, such

that the downlink transmit signal remains P .

As a benchmark, we evaluate the performance of

maximum ratio transmission (MRT) beamforming with

random user selection, and compare it with the perfor-

mance of Algorthm 1. In this approach, L UTs are

selected at random. The precoding vector of selected

user k is then set to

vk =

√

P

L

h∗
k

‖hk‖
. (27)

Throughout the simulations the standard Rayleigh

model is considered for the fading channel. This means

that the entries of H are generated independently and

identically with complex zero-mean and unit-variance

Gaussian distribution, i.e.,

hmk ∼ CN (0, 1) (28)

for m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K}.
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Fig. 1: Average throughput vs. the array size M . Here, P = 1

and σ2

k = 0.1 for all the UTs. The user load is set to αK = 1,
and the scaling factor reads β = 1.

A. Performance Metrics

To quantify the performance, the following metrics

are considered:

1) The weighted average throughput Ravg defined in

(3) for uniform wights, i.e., w1, . . . , wK = 1. This

metric determines the average achievable rate per

selected UT which is widely used in this literature.

2) The power leakage to the non-selected UTs which

is given by

QLeak := E







K
∑

k=1,k/∈S

|hT

kx|2






(29a)

=

K
∑

k=1,k/∈S

∑

ℓ∈S

|hT

kvℓ|2. (29b)

This metric calculates the total amount of interfer-

ence at the non-selected UTs from the downlink

transmission to the selected UTs.

B. Scenario A: Fixed Loads

We first consider a scenario in which the total

number of UTs, as well as the number of selected

ones, is a fixed fraction of the transmit array size M .

More precisely, a downlink transmission scenario is

considered in which K = ⌈αKM⌉ number of users

are available and we intend to select L = ⌈αLM⌉ UTs.

Here, αK and αL are fixed numbers. For this scenario,

both the performance metrics are sketched for fixed

transmit power P and noise variance in Fig. 1 and

Fig. 2 in terms of the downlink transmit array size M .

Fig. 1 shows the weighted average throughput2

against M . Here, P = 1 and the noise variances are

set to σk = 0.1 for k ∈ {1, . . . ,K}. Moreover, the

scaling factor reads β = 1. The results are sketched

for αK = 1 and two different values of αL; namely,

αL ∈ {0.3, 0.5}. As the figure depicts, the proposed

approach considerably outperforms the conventional

MRT technique. Such an enhancement comes from the

2Remember that the average throughput in this case is defined as
the sum-rate divided by the number of selected users.
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Fig. 2: Power leakage vs. the number of transmit antennas
M . Here, P = 1 and σ2

k = 0.1 for all the UTs. The user
load is set to αK = 1, and the scaling factor reads β = 1.

joint selection and precoding approach. The conver-

gence of Ravg to a constant in both the techniques

follows hardening of the channel in large dimensions

for fixed loads [1], [19].

The power leakage for this scenario is plotted in

Fig. 2 versus M . Here, the parameters are set exactly

to the ones considered in Fig. 1. The figure demon-

strates the following two observations:

1) The proposed algorithm imposes significantly less

interference to the non-selected UTs. This ob-

servation comes from the fact that the objective

function in (24) contains the power leakage as a

penalty term.

2) The power leakage in both techniques converges

to a constant value. Such a behavior is naturally

following the fact that the loads αK and αL are

kept fixed.

C. Scenario B: Fixed Number of UTs

As another scenario, we consider a case in which

the total number of UTs, as well as the number of

selected ones, does not grow with M . For this case,

we study a settings in which a downlink array of size

M is employed to service L users out of K = 16
available UTs. Similar to Scenario A, we set P and

noise variances to fixed numbers and sketch the average

throughout, as well as the power leakage, against the

transmit array size M in Fig. 3 and Fig. 4.

In Fig. 3, the average throughput Ravg is sketched

against M assuming β = 1, P = 1 and σk = 0.1 for

k ∈ {1, . . . ,K}. The results are given for L ∈ {4, 8}.
Similar to Scenario A, the figure depicts performance

enhancement achieved by using the proposed algorithm

based on the group LASSO. In contrast to Scenario

A, the throughput in this case grows logarithmically

with M . Such a behavior follows the fact that in this

case, the number of UTs is constant and does not grow

with M .

Fig. 4 shows the variation of the power leakage

against M . As the figure demonstrate, in the proposed

algorithm, QLeak vanishes significantly fast as M
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Fig. 3: Average throughput vs. the array size M . Here, P = 1

and σ2

k = 0.1 for all the UTs. The number of UTs is set to
K = 16, and the scaling factor reads β = 1.
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Fig. 4: Power leakage vs. the number of transmit antennas
M . Here, P = 1 and σ2

k = 0.1 for all the UTs. The number
of UTs is set to K = 16, and the scaling factor reads β = 1.

grows, such that at M = 64 it imposes almost no

interference to the non-selected UTs. Such a behav-

ior follows the fact that in the joint approach based

on the group LASSO, the beamforming vectors are

constructed, such that the power leakage is suppressed

at non-selected UTs. For a fixed number of UTs, the

suppression is performed more accurately by narrow

beamforming towards the selected users, as the array

size grows large [20].

VI. CONCLUSIONS

A joint user selection and precoding scheme has

been proposed for multiuser MIMO systems based

on group LASSO. The scheme depicts performance

enhancement in two different aspects: 1) The through-

put of the system, defined as the sum-rate divided

by the number of active users, shows some gains.

2) The interference imposed by downlink transmission

at the non-selected UTs is significantly reduced. For

instance, when L = 8 UTs are selected out of K = 16
users, there is almost zero interference, when the BS is

equipped with M = 64 antennas. These observations

indicate that the proposed scheme is a good candidate

for massive MIMO settings.



The current work can be pursued in various direc-

tions. For example, considering the RLS-based deriva-

tion in (25), an iterative algorithm can be developed

via AMP implementing the proposed scheme with

low computational complexity. Another direction is

to extend the current framework to wiretap settings

following the approach in [21]. The work in these

directions is currently ongoing.
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