
Please do not remove this page

Service continuations: an operating system
mechanism for dynamic migration of internet
service sessions
Sultan, Florin; Bohra, Aniruddha; Iftode, Liviu
https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Service-continuations-an-operating-system-mechanism/991031550
039804646/filesAndLinks?index=0

Sultan, F., Bohra, A., & Iftode, L. (2003). Service continuations: an operating system mechanism for
dynamic migration of internet service sessions. Rutgers University. https://doi.org/10.7282/t3-v5ra-5y52

Downloaded On 2025/02/28 14:18:34 -0500

This work is protected by copyright. You are free to use this resource, with proper attribution, for
research and educational purposes. Other uses, such as reproduction or publication, may require the
permission of the copyright holder.

https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Service-continuations-an-operating-system-mechanism/991031550039804646/filesAndLinks?index=0
https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Service-continuations-an-operating-system-mechanism/991031550039804646

Service Continuations: An Operating System Mechanism for
Dynamic Migration of Internet Service Sessions�

Florin Sultan, Aniruddha Bohra
Department of Computer Science

Rutgers University,
Piscataway, NJ 08854-8019

fsultan, bohrag@cs.rutgers.edu

Liviu Iftode
Department of Computer Science

University of Maryland,
College Park, MD 20742

iftode@cs.umd.edu

Abstract

We propose service continuations (SC), an OS mechanism
that supports seamless dynamic migration of Internet ser-
vice sessions between cooperating multi-process servers.
Service continuations provide a server application with a
simple and easy to use abstraction, and a means to migrate
the service state along with the serviced connection. SC
supports transparent resumption of service to the client at
another server, and guarantees integrity and consistency
of communication channels used by server processes. SC
is a generic, application independent mechanism that can
be used to provide service continuity and availability for
today’s complex Internet services.

We have implemented SC in FreeBSD and used them suc-
cessfully in three real servers: the Apache web server, the
PostgreSQL transactional database server, and the Icecast
streaming server. We present results of an experimental
evaluation showing that using SC adds negligible run-time
overhead to existing servers and that SC enable efficient
dynamic migration of client sessions.

1 Introduction

The growth of the Internet has led to increased demands
by its users with respect to both availability and quality
of services delivered over an internetwork where best-
effort service is the norm. Critical applications, as well
as applications requiring long-term connectivity run over
the Internet. In addition, increased user expectancy con-
flicts with increasing load on popular servers that become
overloaded, fail, or may fall under DoS attacks. From
the clients’ perspective, all these result in poorend-to-end
service availability.

A vast majority of today’s Internet services are built over
TCP [17], the standard reliable, connection-oriented Inter-
net transport layer protocol. The connection-oriented nature
of TCP, along with its endpoint naming scheme based on
network layer (IP) addresses, creates an implicitbinding

�This work is supported in part by the National Science Foundation
under NSF CCR-0133366 and ANI-0121416

between a service and the IP address of a server providing it,
throughout the lifetime of a client connection. This makes
the client prone to all adverse conditions that may affect
the server endpoint or the internetwork,after the connection
is established: congestion or failure in the network, server
overload, failure or DoS attack. With TCP/IP, availability
of a service is constrained not only by the availability of a
given server, but also by that of the routing path(s) to the
server.

Service continuitycan be defined as the uninterrupted de-
livery of a service, from an end user’s perspective [20, 27].
The static service-server binding enforced by TCP limits
its ability to provide continuous service to the client in the
presence of adverse conditions. The only way TCP reacts
to lost or delayed packets is by retransmissions targeting
the same server endpoint of the connection (bound to a
specific IP address) and which cannot exploit the existence
of alternate, equivalent servers. In practice, however,
the end user of an application with long-lived or critical
connections may be more interested in receiving continuous
service rather than staying connected to a given server.

Simple server replication does not address the problem.
Network failure or congestion after the connection is es-
tablished may render the service unavailable to the end
user. Studies that quantify the effects of network stability
and route availability [12, 8] demonstrate that they can
significantly reduce the end-to-end availability of Inter-
net services. Although highly availableserverscan be
deployed, deploying highly availableservicesremains a
problem due to connectivity failures.

As server identity tends to become less important than the
service provided, it may be desirable for a client to be able
to switch between servers during its service session, for
example when a server cannot sustain the service. In [27],
we have proposed thecooperative service model, along with
an enabling connection migration protocol, Migratory TCP
(M-TCP). In this model, a pool of equivalent servers, possi-
bly geographically distributed across the Internet, cooperate
in sustaining the service by handling client connections
migrated within the pool. The control traffic between
servers, needed to support migrated connections, can be

1

carried either over the Internet or over a private network,
different from the one over which clients access the service.

In this paper, we propose the idea ofservice continuations
(SC), a new OS-based mechanism to support dynamic
migration of live client sessions between multi-process
cooperative servers in the Internet. Migration of a session
is dynamic in the sense that it may occur multiple times, at
any point during session lifetime, transparent to the client
and asynchronously with respect to server execution. The
SC concept is rooted in the (most often valid) assumption
that a service maintains for a client session well-defined
fine-grainedstate, and that client sessions are independent
of each other.

To the server application, a service continuation represents
an abstraction ofdiscreteapplication-level state associated
with a client session, spanning multiple process contexts,
which is guaranteed to be restored at a new server upon mi-
gration. At the OS level, a service continuation is an ordered
sequence of fine-grained state components associated with
processes involved in servicing the client.

For each process, and for a given client, an SC stores client
session state and OS state of communication channels.
The first component in the SC sequence corresponds to
the front-end process that accepts the client connection
for service. Subsequent components correspond to other
back-end processes (if any) that participate in servicing
the client. To resume the service at a new server, the
SC is migrated and used to reinstate the service state and
the communication state for all processes involved in the
service. We emphasize that migrating a SC does not involve
whole process contexts, but only “small” state components
associated with a client session.

SC do not require client applications to change, while
imposing minimal changes on existing server applications.
However, both the client and server OS must include sup-
port for transparent SC migration. To our best knowledge,
SC is the first OS-based solution that provides generic,
fine-grained migration support for client service sessions in
multi-process servers.

In this paper, we also describe an SC implementation.
We use the Migratory TCP (M-TCP) protocol previously
designed [26, 23] to migrate and reinstate the client con-
nection (the first channel in the SC sequence). M-TCP
uses a limited form of log-based rollback recovery [10] to
preserve exactly-once delivery semantics on the migrated
connection, without freezing or otherwise disrupting traffic
on the original connection during migration. With M-TCP,
a decision on when to migrate is taken according to a
migration policy that defines triggers specific to the client or
to the server. Definition and evaluation of migration policies
is out of the scope of this paper.

The goal of this paper is to demonstrate that SC is a viable
step towards building highly-available complex Internet
services by moving active client sessions between servers.
We report on our SC implementation in the FreeBSD

Server 1

Client

Server 2

Front-end Back-end

SC

Figure 1: Cooperative 2-process servers using a service
continuation (SC) to support migration of a client session.

kernel. We present results showing that using SC imposes
little migration-free run-time overhead on a server, while
migration costs are low.

To demonstrate the use of SC in a wide range of real
Internet services, we have integrated session migration in
three real-world servers. We modified three representative
open source servers (Apache [2], PostgreSQL [18], and
Icecast [11]) to use SC and migrate client connections
during service. The programming effort of using the
SC API was low, the major burden of integration being
understanding of the server code.

The remainder of the paper is structured as follows. We
start with an example in Section 2. Section 3 presents the
SC system design. Section 4 describes the mechanism used
in SC for synchronization of state components. Section 5
discusses issues related to using SC in building migratory
Internet services. Section 6 describes our SC implemen-
tation. Section 7 presents an experimental evaluation of
the implementation. Section 8 outlines future directions
of research. Section 9 reviews related work. Section 10
concludes the paper.

2 Example

We illustrate the SC idea and its use for migration of client
service sessions by an example characteristic of today’s In-
ternet services. Consider a web-based e-commerce service
structured in a two-tier server architecture (Figure 1). A
front-endFE (web server) receives a client request, and a
back-endBE translates it into a sequence of one or more
database transactions. The two processes communicate
over IPC channels (e.g., pipes):FE parses the request and
passes its arguments toBE, which executes each transaction
in the sequence and sends the results back toFE. TheFE
forwards the data to the client.

Most of the time, a client may complete its transactions
on the server to which it initially connected. However,
in case of network congestion or server overload, a client

2

may experience large delays. When this happens, instead of
cancelling the request, the client session can be dynamically
migrated to another server to complete the request. The
migration must be transparent to the client application (e.g.,
a web browser), so that the user does not have to restart the
whole request.

Note, however, that the client request cannot be re-executed
from the beginning at the new server for two reasons. First,
this is not possible since the request string is no longer
available for the new front-end. Second, restarting execu-
tion at the new back-end (if possible) would be wrong, as it
may cause already committed transactions to execute twice,
compromising correctness. In our example, application
semantics require deterministic execution of the sequence
of transactions across migration.

With SC, the session can migrate at any time, without
synchronizing theFE andBE processes. In order for this
to happen:(i) the front-end saves the original request in an
SC, to use when resuming service at the new server;(ii)
the back-end saves in the SC the sequence number of the
last executed transaction;(iii) the OS includes in the SC the
state of the pipes connectingFE andBE.

To continue execution after the connection migrates to the
new server, the system migrates the SC, passes the migrated
connection to the destinationFE, and reinstates the state of
the pipes connecting the new process pair now servicing
the client. Using the migrated SC, the newFE and BE
processes restore state pertaining to the migrated client
session (the request and the sequence number of the last
executed transaction, respectively), and resume execution.
The FE passes the request arguments toBE, and BE
resumes service by executing the next transaction in the
sequence.

An SC must guarantee exactly-once communication seman-
tics across migration for the new pair of processes and must
assist it in providing consistent service to client. In addition,
session migration needs a transport protocol that supports
dynamic migration of a live connection between multiple
IP addresses.

3 Service Continuations

In this section, we describe our system model and introduce
the SC idea, present the SC migration API and its service
guarantees, and provide some background on Migratory
TCP [26, 23], the connection migration protocol we use
with our SC implementation.

3.1 System Model

Essential to the service continuation idea is the assumption
that the state of a server application can be logically parti-
tioned among the clients it services, such that there exists a
well-defined,fine-grained stateassociated with each client.
As a consequence, the point reached in servicing a given
client session can be defined independently of other concur-

time
P1 P2 P3

S1 S2 S3

Client

Cont

Figure 2:A process service set and the application view of
a service continuation spanning it.

rent sessions. To migrate a live client session, we assume
that there exists aconnection migration protocolthat can
be used to transfer the associated state between the kernels
of the origin (old) and destination (new) server hosts. Any
other non-specific state needed to resume service on a
migrated session is deemed accessible at the new server.

The per-client server application state may span multiple
communicating processes in aprocess service setexecuting
work for the client. This computation model is described by
Figure 2, where the process service setfP1;P2;P3g handles
the service session of one client. Only a select process in
the set, called the root or accepting process (P1 in Figure 2),
communicates directly with the client. The other processes
can be either workers (processes spawned on behalf of
and dedicated to servicing one client) or servers (processes
that service multiple clients concurrently). The split-state
assumption applies to any server process in the service set.
In particular, the state of the root process can be logically
split among its incoming connections. Every process has a
well-defined and reproducible initial state with respect to a
client.

Processes in a process service set communicate via IPC
channels (e.g., pipes, fifos, etc.). We assume a uniform
abstraction of communication channels (inter-process and
client-server) as reliable byte streams.

We assume that execution of each process in the process
service setwith respect to a clientcan be modeled as a
contiguous sequence of intervals delimited by well-defined
states (represented as rectangles in Figure 2). Process
execution within an interval can be either deterministic or
nondeterministic. In a deterministic interval, changes of
per-session state in a process are determined only by the
data it receives over its incoming communication channels.
When a process executes in a deterministic interval, it will
always produce the same stream of data on the outgoing
channels, given that it receives the same stream of data on
its incoming channels.

3.2 Per-Client Service Continuation

For the server application, aservice continuation(SC)
is a cut in the global execution state that maps into the

3

P1 P2 P3

S1 S2 S3

Application

OS

Client

SC

Figure 3: The operating system view of a service
continuation: application saved continuations and the state
of communication channels.

most recent well-defined states reached in servicing a client
session by each individual process in the service set. For
example, in Figure 2,Cont= fS1;S2;S3g is an SC with three
per-process components, each describing the point reached
by that process while servicing the client. Each component
can be individually and independently used by its respective
process to resume its service to client. In the OS, an SC
is reflected as an ordered set1 of individual per-process
state snapshots, whose content is opaque to the system. A
process in the service set would declare a continuation point
by saving a state snapshot in the system. Note that state
snapshots in an SC arenot full checkpoints of a process and
do not include processor execution context.

Resuming service from an SC involves more than the simple
transfer of session state between two hosts. We identify two
requirements from the OS support for service continuations.
First, in the operating system and at the transport protocol
level, a user-level service continuation must be associated
with the state of the communication channels (inter-process
and client-server). Figure 3 describes the OS view of
a service continuation, which includes the continuation
points saved by processes in the service set, along with
the communication state. A service continuation needs OS
support for reinstating the state of communication channels
at the destination host.

Second, the OS must perform synchronization of SC state.
Note that our model does not impose any form of syn-
chronization on the server processes, nor between the root
process and the client. Declaring and saving a continuation
point, as well as resuming from it, are operations performed
independently by each process in the service set. Note
also that the model does not impose any restriction on
when a migration may occur, i.e., migration is completely
asynchronous with respect to server execution. This re-
quires the OS support to synchronize the two endpoints of
a communication channel when resuming service from an
SC.

1For presentation purposes, the process service set is represented as a
chain, although in practice the set might be organized as a tree. In this
case, there exists a total order, e.g., given by a tree traversal algorithm on
the set, that can be enforced by the system.

3.3 Migration API

SC provides a minimal API that allows a server application
to enable migration of a client session by establishing
continuation points in any process in its service set. A
process must export/import asnapshotof application state
associated with a client to/from an SC object. The state
snapshot must completely describe the point the process has
reached in the ongoing service session, so that it can be used
as a restart point after a migration. The exported state is
opaque to the OS and to the underlying migration protocol.

The SC service interface can be best described as acontract
between an application process and the system. According
to this contract, a process must execute the following
actions:(i) upon starting service to a client, associate with
the service continuation all the communication channels
it needs to be restored after migration;(ii) export state
snapshots during service;(iii) import the last state snapshot
at the new server after a migration and resume service to the
client. In exchange, the system:(i) transfers the state of the
service continuation to the new server, and(ii) synchronizes
the state of processes in the service set with the state of their
associated communication channels.

The main primitives of the SC API are:

cont = create cont(conn)
export state(cont, state snap)
import state(cont, state snap)
associate(cont, ch set)
cont = open cont(ch)

wherecont is the SC object associated with a client (an OS-
specific identifier),conn is the client connection in the root
process,ch identifies an IPC channel, andstate snap is an
application memory buffer summarizing the client session
state in a process.

A root process creates an SC usingcreate cont on the
accepted client connection. Processes in the service set
useexport state to save state snapshots to an SC and
import state to retrieve them after a migration. The
associate primitive is used by a process in the service
set to enable service continuation support by the OS for a
selected setch set of its communication channels. The
open cont primitive returns the SC object to which channel
ch was previously associated.

A process must associate channels to an SC, for example
before passing or connecting them to other processes and
starting communication. The SC object can be either passed
between processes, or a process may query an existing
channel usingopen cont to retrieve the SC object it was
associated with, then use it to associate its own channels to
that SC. Theassociate andopen cont calls transitively
propagate channel membership in the SC, starting from the
root process down the chain, and allocate system resources
for stateful channels that must be restored after a migration.

Figure 4 shows the pseudocode for the example in Sec-

4

/* Front-end process (parent) */
while (conn = accept()) f

sc = create cont(conn)
if (import state(sc, req) == NULL) f

receive(conn, req)
export state(sc, req)

g

args = parse(req)
pipe = create pipe()
associate(sc, pipe)
if (fork() == 0)

exec(backend, args)
else

while (read(pipe, buff) != EOF)
send(conn, buff)

g

/* Back-end process (child) */
sc = open cont(pipe)
if (import state(sc, flast, tidg) == NULL) f

connectDB()
last = 0

g

else f

status = reconnectDB(tid)
write(pipe, status)

g

goto last + 1
1: tid = txn begin() /* start transaction 1 */

... do work for txn 1
export state(sc, f++last, tidg)
status = txn commit()
write(pipe, status)

2: tid = txn begin() /* start transaction 2 */
...

Figure 4:Pseudocode for front-end (left) and back-end (right) server processes in the Section 2 example.

tion 2, structured as a parent-child process pair, with SC
API calls highlighted. The session state consists of:(i)
front-end: the request stringreq; (ii) back-end: the se-
quence numberlast and the transaction identifiertid of
the transaction about to commit. The front-end exportsreq
to an SC to ensure the original client request is preserved
across migration(s). The back-end exportsflast, tidg
to the SC to ensure correct resumption of execution after
migration.

For convenience, we assume that the state of a transaction
in the DB system can be obtained at any server by calling
reconnectDB() with the transaction identifiertid.

Note that the same code runs at all servers. If the connection
is with the original server,import state returnsNULL and
the session state is initialized locally. If the connection is
with a different server (due to migration)import state
retrieves the state exported to the SC at a previous server.
For example, the request string is read from the connection
at the initial front-end and retrieved from the SC after
migration to another server. (All SC and IPC calls may fail
after a migration; error checking is omitted for clarity.)

If the application follows the terms of the SC API contract,
the system supports service resumption in all processes in a
process service set and guarantees integrity and consistency
of their data streams. The migration API decouples the
server application logic from the actual migration time by
enabling asynchronous migration, makes the scheme light-
weight and yields good performance.

3.4 Connection Migration Protocol

To enable SC, a connection migration protocol is needed
as carrier of SC-encapsulated state of a client session.
The protocol must also support transparent resumption of
communication on a migrated client connection.

To prototype our system, we have used Migratory TCP (M-
TCP) [26, 23], a protocol previously designed by us that
supports connection migration in single-process server in-
stances. In addition, the protocol enables a stateful server to
resume execution by transferring an application-controlled
amount of specific state with the migrated connection.

M-TCP provides enabling mechanisms for the cooper-
ative service model of Figure 1, in which an Internet
service is represented by a set of (geographically dis-
persed) equivalent servers. A client connects to one of
the servers using a reliable connection with byte-stream
delivery semantics. The complete client interaction with
the Internet service from the initial connect to termination
represents a service session. M-TCP enables the session
to be serviced by different servers through transparent
connection migration. Connection migration involves only
one endpoint (the server side), while the other endpoint (the
client) is fixed. The M-TCP protocol layers at the old and
the new server cooperate to facilitate connection migration
by transferring endpoint state.

The mechanism for connection migration in M-TCP rein-
carnates the migrating endpoint of the connection at the des-
tination server. The mechanism can also be used to establish
a restart point for the server application by transferring
supporting SC state. Depending on the implementation, the
transfer of state can be either(i) on-demand, i.e., at the time
migration is initiated, or(ii) proactive, i.e., in anticipation
of migration.

Figure 5 describes the sequence of steps in a migration.
Initially, the client contacts the service through a connection
Cid to a serverS1. During connection setup,S1 supplies
the addresses of its cooperating servers, along with migra-
tion certificates. At some later point during connection’s
lifetime, the client-side M-TCP may initiate migration of
Cid by opening a new connection to one of the cooperating

5

S1

C SYN + MIGR_REQ <Cid >

(a)

<Cid>

cooperative
 servers

(c)

S2

(b)(d)

Figure 5:Migration mechanism in M-TCP. Connection Cid

migrates from S1 to alternate server S2.

servers (S2), sending the migration certificate in a special
option (Figure 5 (a)). To reincarnateCid at S2, M-TCP
transfers associated state fromS1. Figure 5 shows the on-
demand transfer version:S2 sends a request(b) to S1 and
receives the state(c). If the migrating endpoint is reinstated
successfully atS2, thenC andS2 complete the handshake,
the new connection takes over andS1 drops its endpoint(d).

During the migration handshake, the client, the destina-
tion and the origin server exchange information (sequence
numbers, buffered unacknowledged segments, etc.) to
synchronize the new endpoints of the connection. M-
TCP is heavily optimized to minimize the amount of data
(protocol specific state) transferred between servers during
a migration. The protocol overlaps the migration with data
transfer on the original connection in order to reduce its
impact on the client application.

When migration is initiated, theC endpoint of the original
connection enters aMIGRATING state, in which M-TCP
continues to receive, acknowledge and deliver to the client
application any data that may still arrive fromS1. While
the client application is still able to do I/O operations on
its connection endpoint, theMIGRATING state blocks the
upstream data flow fromC toS1, as it would waste resources
to send data to a server from which the connection is
moving away.

If migration to S2 fails, the original connection can either
be seamlessly restored to its previous state and continue
with S1 as an endpoint, or it can continue trying to migrate
to another server. If migration succeeds, the client-side
endpoint of the old connection is forced into a special
BLACKHOLE state. Its role is similar to that of TCP’s
TIME WAIT state, with the exception that protocol output
from this state is completely suppressed.

Migration of a synchronized connection in M-TCP is possi-
ble in any state of its endpoints except for theTIME WAIT
state, may occur many times and at any point during
connection lifetime without disrupting the ongoing traffic,
and is totally transparent to the client application.

4 SC Synchronization

One of the salient features of the SC abstraction is that
it does not enforce synchronization on the process service
set or between the client and the root process. In this
section, we describe the mechanism used by the OS service
continuation support for synchronizing the per-session state
of a process and the state of its communication channels.
For this we assume, without loss of generality, that a
communication channel can be modeled as a unidirectional
reliable byte stream between a writerW and a readerR. The
client-server connection itself can be viewed as a pair of
such streams, hiding TCP’s reliability mechanisms.

In order to resume service to a client at a new server,R
andW import state snapshots from an SC. Since the cor-
responding processes at the old server did not synchronize
when exporting their snapshots, and because migration is
asynchronous with respect to process execution,R andW
will not be synchronized when resuming service. Similarly,
while executing, the in-kernel data buffering and the active
read/write communication cause the state of a channel at a
given moment in time to go out of sync with respect to the
state reached byRandW as a result of reading/writing data
from/to the channel.

R W

Sr

Sw

time/seq#

lsr

lsw

log

discard

ignore

migration

Figure 6: Synchronization with service continuations.
Reader behind writer.

R W

Sr

Sw

time/seq#

lsr

lsw
discard
replay

discard

ignore

migration

Figure 7: Synchronization with service continuations.
Reader ahead of writer.

Figure 6 shows an example of execution where readerR
is behind the writerW in taking its state snapshot. The

6

vertical bar represents a virtual infinite buffer abstracting
the channel over which the two processes communicate.
For convenience, we use as timeline for events in a process
the sequence number of the next byte of interest in the
buffer. For example, the moment at which a process takes its
snapshot is marked by the sequence number of the first byte
it will read/write after the snapshot. ForR, lsr denotes the
first byte to read after taking its last snapshotSr . Similarly,
lsw denotes the first byte to be written byW after its last
snapshotSw. In Figure 6, sincelsr < lsw, upon resuming
service at the new server,Rwill issue reads for data that can
no longer be supplied byW.

To solve the problem of synchronization between
application-level state and the communication state in
the OS, we use alimited form of log-based rollback
recovery [10] to restore the session state in a process at the
new server. Upon restarting service for a migrated client
at the new server, a process in the service set imports the
last state snapshot from the SC and uses it to initialize its
local session state. After resuming execution, the process
may replay execution already done at the old node since
the snapshot. This includes reading data that was read at
the old node, and writing data that was already written.

To support the replay of data read from a communication
channel, the system mustlog and transfer from the old node
data that cannot be generated by the writer at the new node.
In Figure 6, the synchronization log consists of only the
[lsr; lsw) region of the buffer. Data at sequence numbers
less thanlsr can be discarded as it will not be needed by
R after restart. Data in the interval[lsw;migration℄ can be
ignored by the system (not included in the SC state), since
W’s replay will regenerate it after restart.

Figure 7 shows the case when the reader is ahead of the
writer in taking its snapshot, i.e.,lsr > lsw. In this case,
during replay,R will read only from sequence numbers
larger thanlsr. These can be regenerated byW’s replay,
and thus ignored by the system. WhenR takes its snapshot
at lsr, the system discards any previous log. During replay,
the system will discard any write issued byW in the interval
[lsw; lsr).

This model can be easily mapped into the TCP connection
migration protocol used between client and server, taking
into account the presence of a reliability mechanism. Note
that although the client does not take state snapshots, we
can emulate itslsr and lsw by considering the data that
theprotocolendpoints at clientC and origin serverS1 have
received and acknowleged at the moments when migration
is initiated and takes place. The two values are computed
at S1, at the time of migrationtmigr, using the protocol
state of the connection endpoints. For client as a reader:
lsr = max(nxtC(tinit);unaS1

(tmigr)). For client as a writer:
lsw= max(unaC

(tinit);ackS1
(tmigr)).

Here, unaE
(t) is the sequence number of the first un-

acknowleged byte sent from endpointE, nxtE
(t) is the

sequence number of the next byte expected to be received
at E, andackE

(t) is the sequence number of the next byte

to be acknowledged byE, all at timet. t init andtmigr are,
respectively, the moments when migration is initiated by
the client-side connection migration protocol, and when
migration takes place and state is transferred fromS1 to S2.

Because it relies on execution replay, SC synchronization
must take into account potential nondeterminism. Recall
that the SC model in Section 3 allows nondeterministic
intervals (NDI) of process execution. When executing in
an NDI, writes from a process must not propagate to client
or to other processes, as this may trigger state changes
that cannot be reproduced by replay. In Figure 7, suppose
thatSw marks the beginning of an NDI. Then, if resuming
from Sw after migration,W may issue different writes from
those issued at the old server. Note however thatR’s
state has already advanced based on old writes. In effect,
when resuming the session at the new server, theSr and
Sw snapshots will be inconsistent and may cause incorrect
replay.

The solution is to disable write propagation from an NDI,
and re-enable it when writes have become stable with
respect to a potential migration, i.e., when the NDI can no
longer be replayed. This happens at the moment a new
snapshot is recorded in the SC. With this observation, the
problem can be easily solved by annotating NDIs. For ex-
ample, with a simple extension of the API,export state
can include a flag to declare the type of interval the process
will enter after export. If the interval is an NDI, the OS will
block write propagation on output channels until the next
export operation.

The most recent service continuation, including
application-level continuations as state snapshots and
the communication state, allows any process in the service
set to: (i) restart servicing the client session from the state
snapshot on,(ii) replay data read at the old server that
cannot be supplied (regenerated) by a writer process or
by the client, and(iii) supply data it had produced at the
old server before the last snapshot (i.e., data that it cannot
regenerate by execution replay at the new node). The above
three guarantees, coupled with piece-wise deterministic
execution and controlled propagation of writes issued in
nondeterministic intervals, ensure that the new server can
resume service to the client consistently after migration.

5 Building Services with SC

5.1 SC and Nondeterministic Execution

The execution model adopted by SC (Section 3) assumes
that there exist deterministic execution intervals in a process
during which the onlyexternalcause of changes in the state
of a given session is the contents of its byte-stream input
channels. This model limits the amount of nondeterminism
in an application in order to achieve apractical solution to
what essentially is a distributed recovery problem [10]. SC
exploits it in its synchronization scheme.

In distributed consistent recovery protocols, communica-

7

tion channels are a major source of nondeterminism. To
deal with it, processes either coordinate during normal
operation to establish a consistent recovery line, or compute
it during recovery. None of these is a feasible solution in
the case of Internet service sessions, as we do not want to
force coordination on processes and, moreover, we have no
control over those running on the client side. By replaying
and generating (within deterministic intervals) the same
sequence of bytes2 on input/output channels before and
after migration, an SC ensures deterministic behavior with
respect to a client throughout its process service set and
eliminates reads from communication channels as a source
of nondeterminism.

The remainingknown sources of nondeterminism in the
execution of a process reside in all the other synchronous
interactions with the kernel (system calls). They can be
eliminated if the application can ensure that a nondeter-
ministic change in state does not affect the environment
of a process (including its output channels), so ultimately
it is not made visible to the client. This can be achieved
using application knowledge in two ways:(i) annotate
nondeterministic intervals as described before (the system
will block output propagation from such intervals until they
are closed), or(ii) take a snapshot before committing a
nondeterministic change of state (i.e., before propagating
its effects on output channels) and include it in the snapshot.
For example, if the server must send to a client the result of
a gettimeofday() call, it must take a snapshot before the
send, recording the result in the snapshot. If the session
migrates to another server, then, after restart from the
snapshot, the new server must send the value imported from
the snapshot instead of executinggettimeofday() locally.

Note that our model cannot account for purely
asynchronous events like signals. Replay of asynchronous
signals is a hard problem in itself which was not directly
solved even in dedicated fault-tolerant systems like [7].
Such systems achieve accurate signal replay in two steps:
(i) convert signals to messages sent oversignal channels
and log them at dedicated backup processes;(ii) keep a
primary-backup process pair strictly synchronized at the
time a signal is delivered, so that a restart of the backup
always begins with a signal delivery event. A similar
scheme could be used with SC if the system can take
forced snapshots in a process, which may not be possible
in general. What we essentially achieve with the SC
synchronization scheme in the general case is a reasonable
tradeoff between controlled nondeterminism and system
complexity.

5.2 Migration Policies

SC provide only the mechanism to support migration of
live instances of service sessions. Definition and evaluation
of migration policies is beyond the scope of this paper.
In [26] we proposed, in the context of M-TCP, a migra-

2For the purpose of the SC synchronization scheme itself, enforcing the
samenumberof bytes would suffice.

tion architecture that decouples a migration mechanism
from policy decisions, including the events that trigger a
migration. This allows various migration policies to be
designed and evaluated independently. In this architecture,
migration triggers can be placed:(i) at the client side, to
dynamically switch to another server if the current server
becomes unavailable or if it does not provide a satisfactory
level of service; (ii) at the server side, under control
of the server application, to implement a load balancing
scheme by shedding some of the connections to other
less loaded servers, or to implement an internal policy on
content distribution among groups of clients. In one of the
experiments in Section 7 we use a sample policy designed
for experimental purposes which can also be applied in
practice.

5.3 Application Classes

Under the cooperative service model, SC can be used to
react to adverse conditions that hamper service availability
and/or quality of service received by clients. Such condi-
tions include server overload, network failure or congestion
on a given path, etc. In these cases, migrating the session to
another server ensures sustained service to the client.

To benefit from migration, an application must be willing to
incur a cost, which should be amortized in terms of either
better service quality or increased service availability over
the lifetime of the connection. For example, it does not
make sense to enable migration for short lived connections
when the service is not critical to the client. We identify two
classes of services that can benefit from SC support:

(i) Applications that use long-lived reliable connections.
Examples are multimedia streaming services [11], applica-
tions in the Internet core that use TCP communication over
large spans of time [19], etc. In Section 7, we report on our
experience with such applications.

(ii) Critical applications. Characteristic to this class is
that users expect both correctness and good response time
from the service. Examples are Internet banking and e-
commerce. In [25] we made a detailed case study of
integrated system support for migration in a transactional
database system [18] accessed over the Internet, that can be
used in this class of applications.

5.4 SC Programming Tradeoffs

With the SC API, a server application may have to exploit
certain performance tradeoffs. One tradeoff is between the
size of the state snapshot and the amount of SC state in
the system. Delaying export of a snapshot for too long in
order to optimize its size may increase the amount of logs.
In general, a reader from a “fat” communication channel
should take snapshots frequently to allow the system to
discard logs it maintains for it. In Section 6 we describe
an efficient implementation of the export primitive that
practically eliminates the overhead of frequent snapshots.

Another tradeoff is between the snapshot frequency and the

8

amount of work redone at the new server after migration:
a larger frequency may mean more overhead but less work
to be redone. Increasing the snapshot size may, in some
cases, capture more computation and might result in less
work being redone after restarting at the new server. On
the other hand, larger snapshots may increase the run-time
overhead and impact the migration time.

Programming with SC requires an effort in understanding
the SC model (Section 3) and defining computation of a
server process on behalf of a client as a sequence of state
intervals. Most existing servers work in this way. Still,
programming errors may occur if application logic does not
obey the SC model, as illustrated by the following example.
Suppose a process servicing a client reads a chunkA of data
from a channel and, before consuming it, it immediately
exports to an SC a snapshotSthat doesnot reflect a change
in the client session state as a result of readingA. If a
migration occurs right after the export, the corresponding
process at the new server will resume service fromS. If
the process naively attempts to “read”A now, will instead
receive the next chunk in sequence. While it may appear as
if chunk A has been “lost,” this behavior is in fact normal.
The OS discardedA from the channel log at the timeSwas
exported, asA had been read before and the OS assumes
that S incorporates changes in session state caused byA.
This simple example exposes in fact a programming error
in using the SC. A correct program must not attempt/expect
to “read” data it has read before exporting a snapshot since,
according to the state-driven execution model of Section 3,
the state snapshot must reflect the fact that the read has
already been performed. Because anexport state call
aggressively discards logs from the system, data that has
been read from a channel is not “safe” until written on
another channel or reflected in a state snapshot.

However, it is possible that a process does not change the
sessionstate based on data it reads from a channel. As an
example, consider a process whose only task is to forward
data in a process chain by reading chunkA from an input
channel and immediately writing it to an output channel.
While apparently the process does no explicit computation
based onA, its state with respect to the client sessiondoes
change after the read, as it now includes the raw data inA.
For this reason, the process must ensure that, at the time
it does an export, it has forwarded on its output channels
all data it has previously read. If not, it has to save this
data in an exported snapshot to avoid losing it in case of
migration. In conclusion, a forwarding process must not
take a snapshot with buffered data, as this data isvolatile
with respect to migration between the read from a channel
and its forwarding on another channel.

With SC, a server application must obey a certain program-
ming discipline, using our API to export/import to/from
the system state associated with a potentially migrating
client session. The client application is not required to
change. From our experience with three real, widely-used
server applications described in Section 7, we believe that

the programming effort involved in using SC should be
fairly low, and expect the API not to be very intrusive
to application logic. Adhering to a certain programming
discipline and API is the effort a server writer may want
to invest in order to take advantage of dynamic server-side
migration of live client sessions.

6 Implementation

We have implemented service continuations in the FreeBSD
4.3 kernel, including support for migrating TCP sockets
and OS pipes. We use M-TCP as the underlying con-
nection migration protocol. Our M-TCP implementation
is compatible and inter-operates with the existing TCP/IP
stack. The protocol works as an extension to TCP, with M-
TCP control information sent as TCP options, thus enabling
coexistence of hosts that are M-TCP capable with those
which are not. At connection setup time, the client and the
server side negotiate their capabilities in terms of support
for connection migration. If either of the parties does not
run M-TCP, then the connection defaults to a regular TCP
connection. For state transfer between two server hosts, M-
TCP uses a TCP connection established between the kernels
of the two machines, possibly over a dedicated network.

In terms of overhead, supporting SC requirestime (spent
for export operations and logging data in the system) and
memory(used to store SC state). Logging is essentially
zero-cost in terms of time, being done in-place in already
existing kernel buffers, on every write operation. However,
since logs are kept in system memory, their size must be
limited.

An important performance issue with the SC API is that a
server process must cooperate with the system and export
state snapshots. As seen in Section 4, an export operation
by a reader is beneficial to the system in two ways: it
discards logs maintained in the system, and reduces the
amount of state to be transferred to a destination server
during migration. In general, an export operation may
also benefit the application as it reduces the amount of
work to be re-executed after migration. However, to the
application, frequent exports mean run-time overhead dur-
ing migration-free execution. We thus have two conflicting
requirements: for the system, frequent exports are desirable
to reduce resource usage; for the application, they may
incur high overhead during migration-free execution. This
means that theexport state primitive must be carefully
implemented.

One way to implement the export primitive iseager export,
by copying a snapshot in the SC on every call. Eager export
suffers from the unavoidable overhead of copying state
from user to kernel space, which may become significant
if snapshots have a large size and their frequency is high.

An alternative implementation calledlazy exportis pos-
sible, based on two observations. First, in certain cases,
snapshots may represent only soft state in a service con-
tinuation. If such a soft snapshot is ignored or delayed,

9

the performance of the system might be affected (more
resources are used and more work is lost by restart from an
older snapshot). However, the correctness of the system is
not compromised. In the lazy export implementation, we
choose to deferrecording a snapshot until the following
read/write operation of the process on a communication
channel, thereby saving an extra system call.

A second observation is that the actual copying of the
snapshot into the SC can be further delayed until it is actu-
ally needed, i.e., until migration time. To defer recording
and copying a snapshot, the process must use a special
register call to register a pair of alternating snapshot
buffers with the SC. Theregister call pins the user-
level buffers into physical memory and maps them into
kernel memory; the system copies the last snapshot into
the SC at migration time. When a new snapshot becomes
available, the process increments a sequence number in the
buffer to help the system identify it as the most recent.
A pair of buffers is needed since migration may occur
asynchronously and the snapshot copied into the SC while
its buffer is being modified in the application. With these
optimizations, the cost of lazy export reduces to a one-time
register operation. Experiments with real servers under
load show that pinning and mapping snapshot buffers adds
little system memory overhead.

Our implementation supports both variants of export and
their arbitrary mix in an application program. A perfor-
mance comparison is presented in Section 7.

7 Experimental Evaluation

7.1 Microbenchmarks

The goal of our evaluation is to show that SC can be
implemented efficiently and has little impact on application
performance. We perform three experiments to estimate the
migration costs, the migration-free run-time overhead of the
SC API, and the impact of using SC on performance metrics
of interest to a client.

In the first experiment, we use a microbenchmark appli-
cation to measure the time taken for migration and its
breakdown into various components. This quantifies the
responsiveness of the system to migration triggers. In the
second experiment, we modify the TTCP [28] benchmark to
use SC on the server (sender) side, and measure the through-
put perceived by a client in several migration scenarios. In
the third experiment, we use SC in a synthetic streaming
server. We employ a client-side rate-based migration policy
to achieve good streaming throughput by migrating a client
connection when server performance degrades.

The experimental setup consists of two identical Intel
Celeron 400MHz PCs as servers and a 233 MHz Pentium II
PC as client, all running our modified FreeBSD 4.3 kernel
that includes SC and M-TCP. All nodes have 128 MB RAM
and are connected by 100 Mb/s Ethernet on an isolated
subnet. Server hosts are interconnected through a second

100 Mb/s Ethernet interface dedicated to M-TCP control
traffic. The cooperative server applications service client
requests on the primary (service) interfaces, while M-TCP
uses the secondary (control) interfaces.

7.1.1 Migration Costs

The first experiment estimates the migration costs for one-
process and two-process SC, as a function of the SC
state size. In the two-process case, server processes are
connected by three OS pipes. We use a migration-aware
synthetic server application that does not generate data.
This eliminates any logging for SC synchronization, and
thus variability in the amount of state transferred between
servers. At the same time, we control the amount of SC state
by conveniently varying the size of the exported snapshots
in the server, between 0 and 10 KB. In the two-process SC,
the whole state is exported only by the root process. We do
not consider other state size distributions across processes,
as the dominant parameter in our experiments is thetotal
amount of SC state transferred from the old to the new
server during migration.

Table 1 and Table 2 show the time breakdown into various
components at the client (C), new (S2) and old (S1) server,
for a single one-way migration, in the single-process and
two-process SC, respectively. The components shown are:
(i) C: time to initiate, wait for completion, and complete
a migration; (ii) S2: time to prepare a SC state request,
wait for the state, and reinstate the migrated SC;(iii) S1:
time to prepare a SC state reply. Times are measured inside
the kernel, using the processor cycle counter. To eliminate
the impact of the nondeterministic network on the fine-
grained measurements, we selected values corresponding to
the minimum client Wait time observed over 200 runs.

When a measured interval is opened by the receipt of a
message in M-TCP, the value includes the time spent in
M-TCP processing (columns 5, 8), i.e., the timer is started
when processing enters the transport protocol software. If
an interval is closed by the receipt of a message (columns
3, 6), then the measured value includes all associated stack
processing. Although this does not account for all the time
spent in the protocol stack, it allows us to compare the
values against measured ICMP latency for the “empty” and
“full” TCP segments characteristic to the M-TCP control
traffic in our setup. The average RTTs measured are:C-S
link, empty segment: 138µs; S1-S2 link, empty segment:
124µs; S1-S2 link, full segment: 460µs.

From Tables 1 and 2 we note that the cost of the migration
(C Wait) is, as expected, dominated by network latency,
mainly due to the SC state transfer fromS1 to S2 (S2

Wait reply). The actual time spent in host processing, for
manipulation of SC state at the server side and handling
migration at the client side, is the sum of columns 2-8
except for the two “Wait” columns. Our in-kernel SC/M-
TCP implementation takes only 213µs and 331µs at the
two servers combined, for the single and two-process SC,
respectively, for the largest amount of state transferred

10

State size Client Server 2 Server 1
[KB℄ [µs] [µs] [µs]

Initiate Wait Complete Prepare req. Wait reply Reinstate Prepare reply

0 68 360 6 69 183 17 77
1 71 503 6 71 317 21 86
5 76 980 6 76 789 20 135
10 71 1,590 6 81 1,392 23 132

Table 1:Breakdown of migration time for one-way migration with a single-process SC.

State size Client Server 2 Server 1
[KB℄ [µs] [µs] [µs]

Initiate Wait Complete Prepare req. Wait reply Reinstate Prepare reply

0 70 485 6 108 250 23 132
1 70 608 6 100 388 22 146
5 70 1,066 6 101 844 22 183
10 73 1,681 6 99 1,458 25 232

Table 2:Breakdown of migration time for one-way migration with a two-process SC.

in the experiment. Note that additional time is spent in
protocol processing atS2 but this overlaps with the network
latency included in the Wait reply component.

As expected, from Tables 1 and 2 it can be seen that the
client Wait time increases almost linearly with the SC state
size. Correspondingly, other times that depend on the state
size (Prepare reply and Wait reply) increase with it. An
anomaly is the decrease of Prepare reply value at 5 and 10
KB in Table 1. We suspect it is due to our choice of the
best client-side migration time value, which, combined with
network-induced variability, selects values that might be
affected by noise at a server (note that, for a given state size,
values in columns other than client Wait arenot minima in
their class).

A last observation is that the sum of the three client com-
ponents in Tables 1 and 2 represents the actual migration
time as perceived at the client side. It is important to
note that this time is an interval between twoprotocol
events, i.e., between the moment at which the client-side
protocol software initiates migration to a new server and
the moment when data exchange can start with this server.
With a connection migration protocol like M-TCP, which
heavily overlaps migration with data delivery from the old
server, the client-side migration time doesnot necessarily
reflect a gap in communication for the client application and
therefore may not represent a direct cost to the client.

7.1.2 Migration Overheads

The second experiment evaluates the migration-free run-
time overhead of using the SC primitives and the overhead
of migration, by measuring their impact on client-perceived
performance. We modify the TTCP benchmark [28], using
SC on the server side to migrate and resume a data transfer
at a new server, from the point where the previous server
left off. The performance metric is the effective throughput
perceived by a client when receiving 400 MB in a continu-
ous data stream. Throughout a run, the client connection is

either stationary (has a fixed server endpoint), or it migrates
periodically between two TTCP servers.

We run experiments with single-process and two-process
TTCP servers. In the two-process case, the second process
writes data over a pipe to the first process which sends it
to the client. A server process takes state snapshots using
theexport state primitive, after every 8 KB of data sent.
In the two-process case both processes take snapshots using
thesamevariant of theexport state primitive, i.e., either
eager or lazy (Section 6). The actual state snapshot consists
of one integer that represents the position in the stream
reached by the server. We pad this up to the state size
required by a particular run of the experiment. Similarly
to the previous experiment, all the state is exported by the
first process, i.e., the second process takes 0-size snapshots.

We first measure the effective throughput sustained by a
“base” TTCP server that does not use the SC migration
API, therefore does not experience any run-time overhead
for migration support. The values observed for the single
and two-process base server are 7,988 KB/s and 7,934 KB/s,
respectively.

To estimate the migration overheads, we next run two SC-
enabled cooperative servers and measure the throughput
seen by a stationary client and by clients that migrate
between servers at intervals of 2, 5 and 10 seconds, respec-
tively. We run each client for three values of the exported
server state size (1, 5, and 10 KB). For a given size, we
repeat the experiment with servers that differ in the variant
(eager or lazy) of theexport state implementation they
use. To eliminate network-induced variability, we take the
maximum values observed over 200 runs of each configura-
tion. Figures 8 and 9 plot the results for the single-process
and two-process server, respectively. Graphs are scaled to
emphasize differences otherwise small in absolute value.

The loss in performance from the base server case for
a stationary client gives a raw measure of the run-time

11

Figure 8:Performance of a 400 MB TTCP transfer from a
single-process SC-enabled server.

Figure 9:Performance of a 400 MB TTCP transfer from a
two-process SC-enabled server.

overhead of adding SC to an existing server. For a migratory
client, this performance loss is further compounded by
migration-induced costs.

In Figure 8, the stationary client has no performance loss
with a lazy server, while with an eager server it exhibits an
overhead increasing with state size. Across all migratory
clients, the largest performance hit (under 1%) is taken by
a client with the smallest migration period (2 s), serviced
by eager servers with the largest amount of per-client
state (10 KB).

In the two-process case in Figure 9, the stationary client has
a small drop in performance with a lazy server, regardless of
the state size. With an eager server, the loss increases with
state size up to 1%. The fact that in the lazy case the loss is
not correlated to the state size confirms our expectation that
a lazy server should not introduce direct overheads related
to taking snapshots (as also seen in the single-process case).
However, theexistenceof a loss can be explained by other
side-effects of IPC logging, like an increase in the frequency
of context switches. Since we do not change the default
pipe buffer size of the system, the extra space temporarily
occupied by logs in the buffer may cause the writer to block
and trigger a context switch for the reader to consume data
and free up space. This effect can be eliminated by tuning
the default pipe buffer size. The largest performance hit
taken by a migratory client in the two-process case is 1.5%,

Figure 10:Performance of the TTCP two-process transfer
when the second process does not take snapshots.

again with the smallest migration period and eager 10K
servers.

Several general observations can be made on trends exhib-
ited by the two figures with respect to server type, state
size and migration frequency:(i) a lazy server does not
introduce any run-time overheads related to state size, and
introduces no overhead for a single process server;(ii)
a lazy server performs consistently better than its eager
counterpart; (iii) the eager server performs worse with
increasing state size;(iv) for the migratory clients, the
migration overhead increases with increasing migration
rate, across all state sizes and server types;(v) for the same
migration rate, the eager server performance decreases
more abruptly with state size as compared to that of the
lazy server. Since the migration-free performance of a lazy
server is unaffected by the state size, this means that, for
the cases under study, the migration overhead is relatively
smaller than the migration-free overhead of an eager server.
All these observations confirm behaviors we expected from
the SC design and implementation.

Figure 10 is a particularly interesting case of a TTCP
two-process server that demonstrates the impact of write
discards during replay at high migration rates. In this ex-
periment, the first process (the pipe reader) takes snapshots,
while the second process (the pipe writer) does not. As a
result, the SC state of the pipe records that, after a migration
and restart, writes by the second process must be discarded
before it is allowed to generate new data for the reader (and
implicitly for the client). Because the reader does advance
its state (the position in the stream) with every snapshot,
while the writer always starts its replay from the beginning,
more and more data from the second process has to be
discarded after each migration. In addition, the lower the
migration period, the more time the writer spends doing
useless work because its writes are discarded, relative to
the time during which it generates new data. Less new
data generated from each server translates into an overall
drop in throughput with increasing migration rate, visible in
Figure 10 when compared against Figure 9. This example
demonstrates “bad” application behavior, and makes the
point that an application should be concerned with the

12

State sizeeager exportimport associateregisterunregister
[KB℄ [µs] [µs] [µs] [µs] [µs]

1 22 26 150 124 69
5 47 68 151 148 80
10 114 121 154 154 81

Table 3:Cost of SC system calls for three application state
sizes.

600000

650000

700000

750000

800000

850000

900000

950000

1e+06

80 85 90 95 100 105 110 115 120

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

600000

650000

700000

750000

800000

850000

900000

950000

1e+06

80 85 90 95 100 105 110 115 120

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

600000

650000

700000

750000

800000

850000

900000

950000

1e+06

80 85 90 95 100 105 110 115 120

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

600000

650000

700000

750000

800000

850000

900000

950000

1e+06

80 85 90 95 100 105 110 115 120

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

Figure 11:TTCP transfer trace. The first gap corresponds
to a migration.

length of replay in case of migration. Note that in this
case there are no pipe logs since reader’s snapshots are
always ahead of the nonexistent snapshots of the writer. The
server processes should, however, stay “close” enough in
taking snapshots, in order to reduce potentially long, useless
replays.

Note that we run TTCP as a microbenchmark, so small
differences in server run-time overhead between eager and
lazy servers may not count too much in this case. However,
for a real server with thousands of clients, the difference in
implementing an efficient system call would definitely pay
off, especially at large state sizes.

For completeness, Table 3 shows the cost of SC primitives,
measured as time that a process spends in the corresponding
system calls, in the two-process TTCP server. All calls,
except forexport, are one-time operations over the period
during which a client stays connected to a given server.
Note that the cost of the eagerexport call increases with
the state size, while the cost ofregister also increases
slightly. Recall, however, from Section 6 thatregister is
a helper call used with lazy export, issued only once by a
process per serviced client. In contrast, in an eager server,
an export call is made every time a process must take a
snapshot (in our TTCP experiments, about 50,000 such calls
are made by a process during a run).

To further understand why a long TTCP transfer suffers a
small loss in performance even with frequent migrations,
we collected a fine-grained trace of sequence numbers of
segments received on the connection from single-process
eager 10 KB servers. The trace samples an equal number of

segments before and after a migration. Figure 11 shows a
detail of the trace, including the migration (first gap) along
with another event that disrupts the transfer. Time and
sequence numbers are relative to the first recorded segment
arrival. The vertical lines mark, in order from left to right:
the first segment seen from the old serverafter migration
was initiated, the last segment seen from the old server,
and the first segment received from the new server after
migration. Note the high degree by which M-TCP overlaps
the migration with data being received and delivered from
the old server.

The second disruption in Figure 11 is caused by a burst of
incoming segments which generates a flurry of interrupts
from the network interface. This prevents normal input
protocol processing by the receiver, until the sender stops
sending because the receiver window has filled up. During
the burst, the received segments are queued up. When
protocol processing resumes, it first consumes all queued
segments, proceeding at a high rate (as seen from the steep
slope of the trace after the gap), then continues at the steady
arrival-driven rate.

Comparison of the two gaps in the trace shows that a
disruption due to migration is not much worse than those
caused by other events in the system, which means that
migration should not be a heavy hit to the client. The low
migration costs and the ability of the connection migration
protocol to receive data from the old server while migrating
the connection explain the overall good performance of the
migration.

7.1.3 Sustained Performance

The third experiment tests the sensitivity of an SC mi-
gration enabled streaming service to degradation in server
performance, when using a rate-based migration policy.
We use a synthetic single-process streaming server that
sends data to a client at regular intervals as a sequence of
chunks of 1 KB. After sending a chunk, the server takes
a snapshot (using the eager export primitive) recording
the position it has reached in the stream. After sending
32 KB on a connection, we simulate a degradation in
server performance by gradually increasing delays between
successive chunks. This behavior affects the throughput as
perceived by the client. On the client side, an in-kernel
migration policy module uses the inbound data rate as
metric and triggers migration when the estimated rate drops
by 25% from the maximum rate seen on the connection
from the current server.

Figure 12 shows the trace of byte sequence numbers ob-
served by the client-side M-TCP on the connection, up to
the maximum of 256 KB, where we cut the stream. The
graph shows four cases, one without migration and three
with migration for SC state snapshot sizes of 2, 10, and
16 KB. The stationary trace exhibits the decaying service
profile of a server. In the migratory traces, each slope
discontinuity corresponds to a migration, after which data is
received at the best rate from the new server. The net result

13

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140 160

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

Snap 2 KB

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140 160

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

Snap 10 KB

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140 160

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

Snap 16 KB

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140 160

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

No migration

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140 160

B
yt

e
se

qu
en

ce
 n

um
be

r

Time [msec]

No migration

Figure 12:Traces from a single-process streaming service
on stationary and migrating sessions.

Figure 13: Apache and M-Apache throughput under load
(Rutgers trace). M-Apache migrates a connection if the
transfer takes more than 10 s.

is that the effective rate at which the client receives data is
fairly close to the average sending rate of a server before
its transmission rate drops sharply. The graph also exhibits
the cumulative effect of the time taken by each migration
and of the (eager) export overhead, reflected in the longer
time it takes the client to receive the stream as the snapshot
size increases. The experiment shows that the effective
throughput perceived by a client improves by transparently
migrating the connection in case the server cannot provide
a satisfactory rate, and validates the feasibility of using SC
for sustained streaming service.

7.2 Real Applications

Web Server. We have modified the Apache [2] web
server to use our SC API, enabling transparent migration
of client browser connections between different M-Apache
(Migratory Apache) servers. The SC API adds just 50
lines of code to the base Apache and supports migration
for transfers of both static and dynamic (CGI) content. A
per-client state snapshot in M-Apache consists of the client
request and one integer for the file offset reached during
transfer. M-Apache exports a state snapshot after every 8
KB sent on a connection and after having sent a whole reply.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 256 384 512 640 768 896

F
ra

ct
io

n
of

 fi
le

s

File size (KB)

Complete trace
Migrated connections

Figure 14:CDF of file sizes for the complete trace and for
the connections migrated by M-Apache.

We run two load experiments on base Apache and on M-
Apache to show that SC can improve availability of the
service under load while not affecting server performance.
The load is generated by httperf [15] clients running on
four 300 MHz Pentium II PCs connected over 100 Mb/s
Ethernet. The servers are 550 MHz, 1 GB RAM Pentium II
PCs. We use a real trace collected on the Rutgers DCS web
server over 18,370 files with average file size 27.3 KB and
average reply size 19 KB. Each run of the trace lasts 300 s.
A request that has not completed within 20 s is considered
failed. The performance metric is the number of successful
replies/s.

The first experiment shows how M-Apache exploits SC mi-
gration to improve overall server throughput. In this experi-
ment, M-Apache migrates transfers that have not completed
within 10 s. Figure 13 plots the aggregate client-perceived
throughput for base Apache and M-Apache. Vertical bars
show the number of connections migrated by M-Apache.
We see that at small loads both base Apache and M-Apache
perform identically and, as expected, M-Apache does very
few migrations. However, while base Apache reaches
saturation at 600 requests/s and “chokes” under increasing
load, M-Apache continues to sustain good throughput well
beyond this point by migrating ongoing transfers off of
their origin server. When M-Apache reaches saturation
at 800 requests/s, it can sustain twice the throughput of
base Apache by migrating just about 10,000 of the 400,000
requests in the run. The average state size of a migrated SC
was 9,386 bytes.

To understand this result, we compare the distribution of
file sizes over all requests made to a server against the file
size distribution on the migrated connections. Figure 14
plots the CDF of the file sizes over all requests, and over
migrated requests. While most requested files are small
(90th percentile less than 128 KB), file sizes for migrated
requests are much larger (90th percentile larger than 384
KB). This shows that migrating requests for large files
allowed the server to service more requests for smaller files
and thus sustain a higher throughput.

14

100

200

300

400

500

100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
pl

ie
s/

s)

Offered load (requests/s)

Apache
M-Apache eager

M-Apache lazy

Figure 15: Apache and M-Apache web server throughput
with the Rutgers trace.

Finally, note that the system was able to sustain up to 10,000
migrations over a period of 300 s under heavy load, showing
its ability to handle high migration rates under load without
losing performance.

The second experiment evaluates the run-time and memory
overhead of using SC in M-Apache with the two variants
of export state primitive (eager and lazy). We compare
base Apache against M-Apache under the same static load
(i.e., without migrating transfers in M-Apache). The M-
Apache snapshot amounts to a fixed part of the request of
18 bytes, plus, for our trace, a constant 24 bytes for the
anonymized file name. Internally, a per-client SC uses an
amount of system memory equal to the snapshot size for
eager M-Apache, and a worst case of 5 memory pages for
lazy M-Apache.

Figure 15 plots the reply throughput with increasing request
rate until saturation, the perfect overlap of the three curves
showing that M-Apache servers have performance similar
to Apache regardless of load. The system memory overhead
is negligible for eager, and a maximum of 1.44 MB for
lazy M-Apache. We conclude that the use of SC to support
migration in M-Apache has practically no impact on server
or system performance.

Transactional DB Server. We have integrated migra-
tion support in PostgreSQL [18], an open-source transac-
tional database system, and built a sample web-interfaced
PostgreSQL application that uses SC and runs as a CGI
script in our M-Apache web server. The resulting system
allows a client to start a sequence of transactions with one
front-end and transparently continue its execution on other
front-ends if necessary, while preserving ACID semantics
and deterministic execution. The design of Migratory
PostgreSQL is described as a detailed case study in [25].

Audio Streaming Server. We have incorporated SC in Ice-
cast [11], an open-source Internet audio streaming server,
enabling client media player connections to transparently
migrate between different servers, without interruption or
distortion of the received stream. The SC API adds 350

lines to the base server code. In Icecast, a per-client state
snapshot depends on the type of client media player, but
can be reduced to a core of about 50 bytes in size. Its
critical components are a stream identifier and one integer
recording the client’s position in the stream. The server
exports a state snapshot after every 8 KB sent to a client.

8 Future Work

The SC idea opens interesting avenues of research in
fine-grained OS support for fault-tolerant, self-healing and
restartable systems and services. We plan to develop and
apply it to these areas in our future research.

SC can be augmented with support for fault tolerance by
making the volatile SC-encapsulated state persistent across
server crashes. Two solutions are possible:(i) use some
form of stable storage to store the SC state on the server
side, or(ii) store the SC state with the client. In the first
case, due to the highly dynamic nature of the SC state, the
stable storage support has to be efficiently implemented.
This is possible for example if the servers are connected
(in a cluster) through a memory-mapped communication
architecture like VIA [29]. This idea has been applied
succesfully in previous work [32], where memory-mapped
communication was used for fast failover of nodes in a
cluster by establishing efficient checkpoints in the memory
of other nodes.

A mechanism similar to SC can be developed and used
in the area of system restartability for recovery-oriented
computing (ROC) [16]. Restarting a system may be nec-
essary, for example, because its internal state has been
corrupted due to software bugs, environmental factors, etc.
OS mechanisms may be used to preserve some portion of
system and application state that can be salvaged, like that
associated with serviced clients. A server application can
later restart from this state and rebuild missing components
based on internal semantics, external (logged) input, etc.

The SC idea can be further extended and viewed as the
OS mechanism that enables transfer of a portion of ”good”
per-client state from one server (or multiple servers) to
other server(s), if the rest of the state is compromised.
The SC can be used as the abstraction of state distributed
“horizontally” across multiple application processes and
servers. In addition, SC can be extended to “vertically”
extract and manipulate state from various OS layers that
need to be replaced and/or restarted. An SC can therefore
be used to (temporarily) transfer the clients to other servers
while the system is being restarted.

We also intend to explore how SC can be used in IP-based
storage networking for providing transparent fault tolerance
and load balancing. Newly emerging industry standards
for the transport of SCSI storage protocols over IP, like
iSCSI [21], use TCP connections from a client to a “target”
host that controls the storage device. A device server
receives commands, relays them to the device, and returns
results to the client. Such a system presents an interesing

15

case for SC, as client connections are long-lived, have
unpredictable load, and are sensitive to host unavailability
or device failure. SC can provide an immediate mechanism
for offloading client iSCSI connections to alternate storage
device servers, for example in case of an unexpected load
surge or to hot-swap a host system. In systems with
replicated storage, SC can provide transparent failover in
case of device failures. We plan to study the possibility of
using SC in the iSCSI protocol.

9 Related Work

SC is closely related to work in process migration, fault-
tolerant operating systems, and in providing high availabil-
ity for Internet services through protocol support.

Process migration [14, 30, 4, 9] is a heavy-weight, generic
mechanism that enables seamless execution of an applica-
tion process at multiple nodes during its lifetime, targeting
load sharing and balancing in clusters. SC differs from
classical process migration in that it trades off transparency
for finer migration granularity, by application-level control
of migrated state. While the goal of process migration is
to transparently move and restorewhole execution contexts,
SC require the application to cooperate in defining fine-
grained specific state distributed across multiple processes
to be moved and restored indifferent execution contexts. SC
addresses the problem of transparently restoring the state
of open communication channels of an application when
the execution site changes. Unlike most process migration
schemes, SC does not freeze execution, and does not require
inter-process or client-server synchronization. This comes
at the expense of potential re-execution after a migration.
Most existing systems supporting process migration are
custom operating systems designed from scratch with built-
in migration support [30, 4, 9]. In contrast, we provide a
fairly straightforward implementation of SC in a general-
purpose OS.

The idea of using logs at the OS level for deterministic
execution replay can be traced back to early fault-tolerant
operating systems like NonStop [5] and Auros [6, 7]. In
the NonStop kernel, a message logging scheme was used to
provide single-failure fault tolerance with primary-backup
process pairs. This was probably the first system to use
logging on inter-process communication channels to ensure
deterministic replay at the OS level during fault recovery.
SC uses a similar technique to synchronize the application
and communication state, thereby ensuring deterministic
behavior after a migration.

The SC synchronization scheme is similar to log-based roll-
back recovery techniques used in fault-tolerant distributed
systems [10]. Unlike these, an SC does not use full
checkpoints of process state, and limits the rollback and
replay to restore only a small part of process state, specific
to exactly one client.

Providing high availability for Internet services through
protocol support has been approached in several ways:

using connection migration in application-specific solu-
tions [22, 31], fault tolerance for TCP [1], and new transport
protocols [24]. None of these approaches provides the
OS support required for migrating and resuming complex,
multi-process service instances.

A scheme that enables HTTP connection endpoints to
migrate within a pool of support servers is described
in [22]. Migration is supported by broadcasting per-
connection HTTP and TCP state within the server pool.
The scheme adds an HTTP aware module at the transport
layer that extracts information from the application data
stream to be used for connection resumption. While this
achieves transparency, it creates a strong dependency on
the content of the application data stream and on HTTP
specifics. Connection migration is limited to HTTP, for
which it can only migrate static transfers. In contrast,
our SC abstraction provides support for fine-grained
connection migration, through a generic mechanism that
can be used with any application, and which is not limited
to single-process servers. With SC, a server application
must change to assist migration. However, no knowledge
of application specifics is required at the OS/protocol level
for resuming the service after migration.

In [13], a technique for fault-resilience in a cluster-based
HTTP server is described using a front-end dispatcher to
monitor client connections serviced by back-end nodes.
In case of failure, the dispatcher restores the serviced
connections on another node using a scheme similar to
[22]. The dispatcher is involved in correct CGI execution
by caching dynamic content. The scheme is application-
specific, limited to clusters, and makes the dispatcher a
single point of failure and a potential bottleneck. In
contrast, SC is a generic solution, does not use centralized
control, can support multiple processes and works over
wide area.

FT-TCP [1] provides masked recovery of a crashed server
process with open TCP connections. A wrapper around
the TCP layer intercepts and logs reads by the process
for replay during recovery, and shields the remote client
endpoints from the failure. The scheme uses full process
context checkpoints to recover from a crash and works only
for single process servers. Compared to FT-TCP, SC allows
dynamic and fine-grained connection migration of client
sessions with state distributed over multiple communicating
processes.

TCP connection handoff is used in [3] for load balanc-
ing in clustered HTTP servers by distributing incoming
client requests from a front-end host to back-end server
nodes. Migration is limited to the initial connect. Multiple
handoffs of persistent HTTP/1.1 connections at request
granularity are mentioned, but no design or implementation
are described. In contrast, SC allows dynamic migration
between multi-process servers that can be distributed across
a WAN. SC can be used in load-balancing schemes where
load may be monitored at a finer granularity than a fixed,
application-specific unit. For HTTP servers, SC supports

16

migration with dynamic content execution and persistent
connections.

10 Conclusions

In this paper, we have introduced service continuations
(SC), an OS mechanism that supports seamless dynamic mi-
gration of Internet service sessions between multi-process
cooperating servers. Service continuations provide a server
application with a simple and easy to use abstraction to mi-
grate the service state, along with the serviced connection,
to another server, at any point during service.

We have implemented SC in FreeBSD and present results
of an experimental evaluation which shows that SC can
efficiently provide support for dynamic migration of client
sessions. We have succesfully used SC in three real applica-
tions: the Apache web server, the PostgreSQL transactional
database server, and the Icecast streaming server.

A software distribution of SC/M-TCP in FreeBSD
along with applications will be available soon. More
details about the project can be found at our site:
http://discolab.rutgers.edu/sc.

References

[1] L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov. Wrapping Server-Side TCP to Mask
Connection Failures. InProc. IEEE INFOCOMM ’01, Apr.
2001.

[2] Apache HTTP Server. http://httpd.apache.org.
[3] M. Aron, P. Druschel, and W. Zwaenepoel. Efficient

Support for P-HTTP in Cluster-Based Web Servers. InProc.
USENIX ’99, 1999.

[4] A. Barak and O. La’adan. The MOSIX Multicomputer
Operating System for High Performance Cluster Comput-
ing. Future Generation Computer Systems, 13(4–5):361–
372, 1998.

[5] J. F. Bartlett. A NonStop Kernel. InProc. 8th Symp. on
Operating Systems Principles (SOSP), 1981.

[6] A. Borg, J. Baumbach, and S. Glazer. A Message
System Supporting Fault Tolerance. InProc. 9th Symp. on
Operating Systems Principles (SOSP), 1983.

[7] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.
Fault Tolerance under UNIX. ACM Transactions on
Computer Systems (TOCS), 7(1):1–24, 1989.

[8] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. InProc. 3rd USENIX Symp. on
Internet Technologies and Systems (USITS), Mar. 2001.

[9] F. Douglis and J. K. Ousterhout. Transparent Process Mi-
gration: Design Alternatives and the Sprite Implementation.
Software - Practice and Experience, 21(8):757–785, 1991.

[10] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols
in Message-Passing Systems.ACM Computing Surveys
(CSUR), 34(3):375–408, 2002.

[11] Icecast Streaming Server. http://www.icecast.org.
[12] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study

of Internet Stability and Backbone Failures. InProc. 29th
Symp. on Fault-Tolerant Computing (FTCS), June 1999.

[13] M.-Y. Luo and C.-S. Yang. Constructing Zero-Loss Web-
Services. InProc. 20th IEEE Intl. Conf. on Computer
Communications (INFOCOM), June 2001.

[14] D. Milojicic, F. Douglis, Y. Panedeine, R. Wheeler, and
S. Zhou. Process Migration.ACM Computing Surveys
(CSUR), 32(3):241–299, 2000.

[15] D. Mosberger and T. Jin. httperf – A Tool for Measuring
Web Server Performance, 1998.

[16] D. Patterson et al. Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies. Tech-
nical Report UCB//CSD-02-1175, UC Berkeley Computer
Science, Mar. 2002.

[17] J. Postel. RFC 793: Transmission Control Protocol, Sept.
1981.

[18] PostgreSQL. http://www.postgresql.org.
[19] Y. Rekhter and T. Li. RFC 1771: A Border Gateway

Protocol 4 (BGP-4), Mar. 1995.
[20] Service Availability Forum. http://www.saforum.org.
[21] J. Satran et al. iSCSI, IETF Draft, Sept. 2002.
[22] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-

Grained Failover Using Connection Migration. InProc.
3rd USENIX Symp. on Internet Technologies and Systems
(USITS), Mar. 2001.

[23] K. Srinivasan. M-TCP: Transport Layer Support for Highly
Available Network Services. Technical Report DCS-TR-
459, Rutgers University, Oct. 2001.

[24] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzberger, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. RFC 2960: Stream Control Transport Protocol,
2000.

[25] F. Sultan et al. Migratory TCP: Highly Available Internet
Services Using Connection Migration. Technical Report
DCS-TR-462, Rutgers University, Dec. 2001.

[26] F. Sultan, K. Srinivasan, and L. Iftode. Transport Layer
Support for Highly-Available Network Services. InProc.
HotOS-VIII, May 2001. Extended version: Technical Report
DCS-TR-429, Rutgers University.

[27] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Connection Migration for Service Continuity in the
Internet. InProc. ICDCS 2002, July 2002.

[28] Test TCP (TTCP). ftp://ftp.arl.mil/pub/ttcp.
[29] The Virtual Interface Developer Forum.

http://http://www.vidf.org.
[30] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.

The LOCUS Distributed Operating System. InProc. 9th
Symp. on Operating Systems Principles (SOSP), pages 49–
70, 1983.

[31] C.-S. Yang and M.-Y. Luo. Realizing Fault Resilience in
Web-Server Cluster. InProc. SuperComputing 2000, Nov.
2000.

[32] Y. Zhou, P. M. Chen, and K. Li. Fast Cluster Failover using
Virtual Memory-mapped Communication. InProc. 13th
International Conference on Supercomputing, pages 373–
382. ACM Press, 1999.

17

