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Abstract—WiFi-based human activity recognition has drawn
a lot of attention in recent years due to the low cost and high
popularity of WiFi devices. The wireless monitoring system is
able to efficiently detect abnormal activities like falling and body
shaking, without privacy invasion. In this paper, we propose a
framework using Doppler Frequency Shift-based methodology
to extract the features and classify different activities with
channel state information collected from WiFi devices. The
experimental results demonstrate the reliability of our method
for the application of activity recognition.

Index Terms—human activity recognition, channel state infor-
mation, Doppler effect, WiFi sensing, deep learning

I. INTRODUCTION

Human activity recognition (HAR) plays a significant role in
healthcare monitoring. Most monitoring systems are developed
based on video camera, which poses several privacy concerns.
Wearable devices, on the other hand, do not pose significant
privacy concerns, however they have to be mounted on the body,
which is very challenged, especially for the elder and disabled
persons. Moreover, the use of wearable devices means patients
can simultaneously use the same device, which can induce the
transmission of viruses and diseases like the current COVID-
19 virus. Thereby, device-free wireless sensing is a viable
alternative to be applied to the daily healthcare monitoring.

A. Related Work

For indoor monitoring task, frequency modulated continuous
wave radar [1]], [2], ultra wide band [3]], and WiFi devices [4]
have demonstrated their reliability and efficiency. WiFi-based
sensing is becoming popular due to the wide applications of
low-cost, commercial and off-the-shelf (COTS) WiFi devices.
Several research studies have proposed the use of WiFi based
wireless sensing for localization [5]-[8]], tracking [9]—[13],
activity detection [14]]-[[17]], biometrics estimation [[18]], vital
signs monitoring [[19]-[21]] and pose estimation [18]], [22].

Doppler-based gesture recognition [15[] was proposed to
construct body velocity profile by using 3-6 WiFi devices. The
recognition method correlates the Doppler frequency spectrum
(DFS) collected from different devices to estimate body
velocity along different directions and improves the robustness.
Meanwhile, gait recognition [23], localizing and tracking [|10]],
[12], and speed estimation [24], [25] all employed Doppler
analysis. Besides, many systems have demonstrated that the
deep neural network (DNN) is available in Doppler-based
methodology to improve the performances. For instance, [15]

also proposed a DNN learning model for gesture recognition.
Moreover, the authors in [25]], proposed a model based on
convolutional neural network to obtain the mapping relationship
between Doppler spectrum and velocity profile.

B. Technical Background

a) Channel State Information (CSI): In the wireless
transmission path, the signal is interrupted by the physical
environment, which results in reflection, scattering and multi-
path fading, causing different signal strength and phase of
the signal transmitted on each sub-carrier. The channel state
information matrix of given subcarrier with frequency f and
time ¢ can be represented as [26]:

Ng
H(f,t) = e ™ H(F) + Y ai(f,1)e 720N (1)

i=1

where e 727Aft represents the phase shift of WiFi devices,
H, represents the CSI from static paths, containing the signals
reflected from stationary objects and transmitted in the Line-
of-Sight area. In the parenthesis, all the terms represent the
summation of signals from all the signals influenced by
dynamic objects. N, is the index of dynamic path, a;(f,t)
represents complex attenuation factor and initial phase of i*"
path, =727 (YA represents the phase change of i'" path, d;(t)
is the length of *" path and \ is wavelength of wireless
signal. For each CSI packet, the structure is shown in the
Fig. (1l , where M and N stand for the number of transmitter
antennas and receiver antennas, respectively, and K represents
the different subcarrier index.

subcar}'[V‘ Hi1x Himx
’ Hiqx Hy p e
Hiiq Hima
Rx Hi,j,l
Hya1a Hy ma
Tx

Fig. 1: CSI packet structure of WiFi devices



b) Transformer: Transformer is a classical natural lan-
guage processing model proposed by the Google in 2017 [27].
It uses self-attention mechanism and does not use the sequential
structure of recurrent neural networks. Alternatively, the model
is trained in parallel and can acquire global information. The
parallel processing capability of the Transformer model has
demonstrated significant improvement in processing time as
compared to mainstream sequential models. This was estimated
to be 1.83 - 3.37 times faster in CSI-based activity classification,
according to [28].

In this paper, we propose a DFS-based WiFi sensing frame-
work using Transformer to correlate different DFS information
with one transmitter and two receivers, to accurately classify
different activities.

II. METHODOLOGY AND SYSTEM DESIGN

We focus on the design of an indoor activity classification
system using COTS WiFi devices. With multiple WiFi devices
placed surrounding the monitoring area, wireless CSI data
can be collected, but is distorted by human activities. In this
section, we introduce the overall processing and classification
procedures, including data collection, pre-processing, Doppler-
based feature extraction and Transformer-based recognition.
Accordingly, the proposed system can be divided into two
modules, Doppler-based feature extraction module and the
activity recognition module.

A. System Setup

a) System Implementation: The proposed system is imple-
mented based on one WiFi transmitter and two WiFi receivers,
equipped with Intel 5300 wireless network interface controller
(NIC) and the relevant CSI driver [29]. Given few interfering
radios, the driver is set with monitoring mode on the channel
at 5 GHz with 40 MHz bandwidth. The transmitter is set to
broadcast the rate of WiFi packets at 1,000 packets per second
with the receivers activated in a line, where there is a 5 cm
(larger than the half-wave wavelength) distance to avoid the
interference of closed antennas.

b) Evaluation Setup: Our system was tested in one
indoor environment illustrated in Fig. 2a] with a 2.4 m x
1.6 m rectangular monitoring area, as shown in Fig. 2b] Two
volunteers participated in the designed experiments where each
performed five different activities for data collection, to increase
the inter-class variation and strengthen the AI model. In the
experiment, all the volunteers were asked to finish one activity
in three seconds and each data sample contains 3,000 packets
CSI data. The overall dataset contains 500 samples of different
activities including walking, jogging, leaning forward and back,
putting both hands up and down, and waving left hand. The
choice of activities was in relation to the envisioned applications
and use cases of this system, which includes future healthcare
sensing for in-home care (walking, jogging, leaning forward
and back) and smart-home control (gesture recognition).

B. Pre-processing of WiFi CSI data

WiFi CSI data is not only influenced by high-frequency
noise and phase offset but also disturbed by the static and

dynamic motion from other sources, as indicated in Eq. [T} It
is necessary to reduce the noise in the data before performing
feature extraction. There are three noise components that
require attention:

o Static components of CSI data from the environment.
o High-frequency noise from the communication hardware.
o Phase offset from the NIC.

Fortunately, a number of methods have been proposed to
solve the above problem. For the phase offset, Widance system
[30] provided a reliable phase offset removal methods. Given
that the phase offset of all antennas should be the same which
are produced from single NIC, the method uses the phase
information from a selected antenna with lower sensitivity of
dynamic information to unify the phase offset of the rest two
antennas. IndoTrack [11] proposed an amplitude adjustment
method to reduce the influence of static components in CSI data.
Then, Butterworth band-pass filter and principle component
analysis were applied to filter other noise [15]]. Our proposed
system applies all of the previously mentioned pre-processing
techniques to extract the DFS.

C. Doppler Frequency Shift Extraction

In this section, the Doppler method is used for feature
extraction to get the profile of different persons’ activities.
The DFS generated by different limb movements can be used
to identify the specific human activities. As the CSI data has
been pre-processed, we applied the short-time Fourier transform
on the dataset to get the Doppler spectrum, which represents
the velocity variation of torso and limbs. There are two DFS
representing two activities as shown in Fig. [3]

In Fig. 34| the spectrum illustrates the activity of leaning
forward and back, with a peak representing the fastest speed
of the torso. In Fig. the abrupt change stands for the fast
movement of the arms.

D. Activity Recognition

Our HAR monitoring system is achieved by a two-stream
Transformer model, which performs human activity classifica-
tion by learning the features of DFS. It involves extracting both
the temporal and spatial features which contain the information
within the entire sequence. The core of this model is the multi-
scale convolution augmented transformer. The input DFS, with
Gaussian encoding, is input into the two-stream self-attention
layers to extract features, and finally pass through the feature
fusion layer to obtain the prediction of human activity.

III. EVALUATION
A. Network Training

The input of our network is the Doppler spectrum extracted
from raw CSI data, as shown in Fig. [3| The input size of each
sample is 121 x 3000, where the 121 represents the resolution
of frequency from -60 Hz to 60 Hz, and 3000 represents the
time series of milliseconds, where each sample lasts 3 seconds.
To focus on the human activity monitoring, and improve the
efficiency of the neural network, we adjusted the frequency
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Fig. 2: Layout of experiment setup
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Fig. 3: Doppler spectrum of indoor activity profile

range to -20 Hz to 20 Hz, 3000 sets of CSI data was down-
sampled to 500. Besides, due to the relatively small size of our
dataset, we use a single temporal module to train Transformer.
At first, the dataset of five activities from two people is training
and then the third people is introduced. Finally an identity
classification for the first two users is conducted. The whole
dataset is divided into two sets, where 80% data are used as
training set and 20% as test set.

B. Results

To quantitatively measure the performance of our system,
we applied 5-fold cross validation, which divided sample data
randomly into five parts, each time one is selected as the test
set and the rest was used for training the system. The results
of five activities of two volunteers achieve 87.6% accuracy (on
average) in the 5-fold cross validation, with the best result of
five achieves 92.7%. Table [] shows the confusion matrix.

TABLE I. Confusion matrix for all five classes with
Transformer-based activity classification

All Five Classes - Accuracy (87.6%)
Class Predict Class

1 2 3 4 5

v |1 Walking 81 | 16 | 2 1 0
S 2 Jogging 676 4070
o | 3 Leaning forward and back 2 2 94 0 0
E 4 | Put the hands up and down | 1 0 0 | 91 8
5 Wave left hand 0 0 0 4 96

The table illustrates similarities between different actions.
For example, jogging and walking classes are partially confused
because the two activities have similar body movements.
To explore the factors that influence activity recognition
performance, the identity classification is conducted on a single
walking behavior of user-1 and user-2. The dataset is randomly
divided into 80% and 20% for training and testing, respectively.
Our proposed system performs an overall accuracy of 77%,
which shows that different identities influence the Doppler-
based human activity classification result and it is possible to
recognize the identity of different persons.

IV. CONCLUSION

In this paper, we develop an HAR system based on the
Doppler feature extraction, exploiting low-cost WiFi devices
operating at 5 GHz. The results demonstrate that the DFS
information is highly related to each movement of individual.
Using transformer neural network, the system is capable of
classifying the activities as well as identifying the subjects’
identity with an accuracy of 87.6% and 77%, respectively, in
the test set. In our future work, the indoor gesture detection,
the activity status detection such as walking and jogging, the
abnormal activity detection such as leaning forward and back
(regarded as falling) with larger dataset and more types of
activities. This will satisfy the requirements of future smart-
home design and healthcare monitoring.
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