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Abstract—An omni-directional image (ODI) is the image that has a 
field of view covering the entire sphere around the camera. The ODIs 
have begun to be used in a wide range of fields such as virtual reality 
(VR), robotics, and social network services. Although the contents 
using ODI have increased, the available images and videos are still 
limited, compared with widespread snapshot images. A large number 
of ODIs are desired not only for the VR contents, but also for training 
deep learning models for ODI. For these purposes, a novel computer 
vision task to generate ODI from a single snapshot image is proposed 
in this paper. To tackle this problem, the conditional generative 
adversarial network was applied in combination with classconditioned 
convolution layers. With this novel task, VR images and videos will be 
easily created even with a smartphone camera. 

Index Terms—omni-directional image, generative adversarial 
networks, deep learning 

I. INTRODUCTION 

Omni-directional images (ODI), the images that have a field 

of view covering the entire sphere around the camera, have been 

expected to be widely used in many applications, including 

virtual reality (VR), demonstrations, robotics, and social 

network services. However, the available images and videos of 

ODI are still limited compared with snapshot images taken with 

ordinary cameras. Therefore, it would be beneficial for these 

applications to synthesize ODIs from ordinary snapshot images. 

Furthermore, the computer-vision tasks for ODI such as object 

detection, semantic segmentation, scene recognition, and depth 

estimation have been successfully tackled with deep neural 

networks [1], [2]. To apply the deep learning techniques to ODI, 

a large number of training images of ODIs are required to 

achieve accurate estimation. The synthesis of ODIs from 

snapshot images would be useful to create such large ODI 

datasets. 

For these purposes, a novel computer-vision task to generate 

ODI from a single snapshot image is proposed in this paper, as 

shown in Fig. 1. Since many snapshot images are widely 

available, a large number of ODIs can be easily created from 

the snapshot images. It is noted that the main purpose of the 

task is not to accurately reconstruct the grand truth of ODI, but 

to generate a natural ODI including the snapshot scene as a part 

of ODI. The generated ODIs can be used for developing 

VR applications, in addition to developing image processing 

methods for ODI with deep learning techniques. 

Recently, many image generation and conversion methods 

using generative adversarial network (GAN) [3] have been 

developed. For example, conditional GAN (cGAN) [4] can 

color line drawings or generate natural images from object label 

maps. Most of these techniques have been applied to the images 

taken with ordinary cameras, but have not been applied to ODI. 

In this paper, cGAN was adopted for generating ODI from a 

single snapshot image.  

In contrast to the snapshot image, ODI has a property of 

continuities at the edge of the image (left and right, top, bottom). 

To incorporate this property in cGAN, a padding method with 

pixel values at the other side was introduced before the 

discriminator in cGAN, to easily recognize fake images without 

the continuities. Furthermore, a class-conditioned convolution 

layer was developed to incorporate the class information to 

cGAN. Attention weights for feature-map channels in each 

class-conditioned convolution layer are calculated from the 

scene class label obtained from scene recognition of the input 

snapshot image, and then are applied to the feature map of the 

conventional convolution or deconvolution layer. All the 

convolution and deconvolution layers in cGAN were replaced 

to this class-conditioned convolution layers to realize the ODI 

generator conditioned on the scene class. 

The contributions of this paper include: 

• To propose a novel computer-vision task to generate ODI 

from a single snapshot image. 

 

Fig. 1: Concept of ODI generation system. This system can 

be used to generate ODI and extract snapshot images at 

arbitrary locations. 
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• To apply cGAN to generating ODI by padding generated 

images before the discriminator to realize the continuities 

of ODI. 

• To develop a class-conditioned convolution layer to realize 

the ODI generator conditioned on the scene class. 

The implementation of the proposed method will be available 

from https://github.com/keisuke-okb/ class-conditioned-ODI-

generator-pytorch. 

II. RELATED WORKS 

The most similar study to the ODI generation in this paper is 

the method of reconstructing a panorama image in an indoor 

scene from a partial observation [5]. This study has used RGBD 

information to predict a 3D structure and a probability 

distribution of semantic labels for a full 360 panoramic view. 

The important difference of our proposed method with this 

study is that the proposed ODI generation task does not aim at 

reconstructing the actual scene, but creating natural images 

with a partial snapshot image. 

For omni-directional image processing, several works have 

attempted to apply deep convolutional neural networks (CNN) 

to realize classification, object detection, semantic 

segmentation, and depth prediction [1], [2]. They have created 

distorted convolutional filters depending on the locations in the 

equirectangular form of ODI to process the accurate shapes on 

the sphere. Although this type of convolution filters has not yet 

been applied to the methods in this paper due to the limitation 

of the GPU memory, they will improve the quality of generated 

ODI images. 

Most of the recent image generation techniques are mainly 

based on GAN [3] composed of a generator and a discriminator. 

The generator is trained to generate an image that the 

discriminator judges as real, whereas the discriminator is 

trained to discriminate real and fake images. With the success 

of GAN, many improved and advanced methods have been 

proposed [6]. Among them, StackGAN [7] is an image 

generation method from a textual description of an animal or 

thing. StyleGAN [8] can output high resolution images by 

applying a style conversion technique. In addition, WGANgp 

[9] and SN-GAN [10] are advanced image generation methods 

by modifying the loss function, and the structure of the 

generator and the discriminator. cGAN [4] is an image to image 

translation method which converts an image to another related 

image. This cGAN was adopted in this paper as a method to 

realize ODI generation from a single snapshot image, though 

more recent advanced techniques can also be applied. 

III. METHODS 

A. Outline of ODI Generator 

The ODI generator proposed in this paper is shown in Fig. 2. 

ODI is generated in the equirectangular projection from a single 

snapshot image by extrapolating the surrounding region of the 

snapshot image using cGAN-based generator. A snapshot 

image is embedded in the equirectangular projection of ODI to 

input to the generator. Although the generator could be 

constructed with a single cGAN-based generator without scene 

class information (class-independent generator), the quality of 

the generated ODI would be better with the scene class 

information. A naive method to incorporate the class 

information is to construct multiple cGAN-based generators for 

scene classes such as a generator for each class (classspecific 

generator), but it is not efficient. Therefore, a classconditioned 

convolution layer was developed to incorporate the class 

information with a single cGAN-based generator. To generate 

the scene class label, the snapshot image is first classified into 

a scene class with a scene recognition network (Section III-B), 

and then input to the cGAN-based generator with class-

conditioned convolution layers (Section III-D) after embedded 

in the equirectangular projection (Section III-C). 

B. Scene Recognition for Snapshot Images 

To generate the class label for the class-conditioned 

generator, a scene recognition network based on ResNet, 

Places365CNN [11], was used in this study. Although any 

scene recognition networks can be used in principle, the 

ResNetbased model was adopted due to its high performance in 

the recognition and the availability of the source code. The 

network was fine-tuned using the snapshot images extracted 

from the ODI dataset. 

C. Embedding of Snapshot Image in ODI 

An input snapshot image is embedded in equirectangular 

projection before inputting to the ODI generator, as shown in 

 

Fig. 2: Structure of class-conditioned ODI generator from 

single snapshot image. 

 

Fig. 3: Network structure of ODI generator based on 

cGAN. During training the discriminator (D), labels are 

set to ‘Fake’ and ‘Real’ for (a) and (b), respectively. 

During training the generator (G), the label is set to ‘Real’ 

for (a). 



Fig. 2. When the camera direction is (θc,ϕc) in the polar 

coordinate, unit vectors in the snapshot image in the 3D 

Euclidean coordinate system are given by the following 

equations. 

 
With this unit vectors, the 2D coordinates in the snapshot image 

are transformed into the 3D coordinates, and then are 

represented in the polar coordinates to locate the points in the 

equirectangular projection. The snapshot image can be 

embedded using the located points in the equirectangular 

projection. The outside of the embedded snapshot image in ODI 

leaves to blank, as shown in Fig. 2. The extraction of a snapshot 

image from ODI can also be performed using the unit vectors, 

and used for creating the training dataset for the snapshot scene 

recognition system (Section III-B). 

D. cGAN-based ODI Generator 

The ODI generator in Fig. 2 is based on cGAN [4], which can 

be used for image to image translation. In our purpose, cGAN 

is used for translating a snapshot image embedded in 

equirectangular projection into ODI by extrapolating the 

outside of the snapshot image region. The objective of cGAN 

can be expressed as 

 

where the generator (G) tries to minimize this objective against 

an adversarial discriminator (D) that tries to maximize it. x, y, 

and z represent an input image, the optimum output, and a 

random vector, respectively. On the contrary, the objective of 

GAN [3] is expressed as 

 

where the difference from cGAN is that D does not receive the 

G input x. By incorporating the G input in D, G outputs the 

images paired with x since D can easily distinguish fake images 

that are not paired with x, as shown in Fig. 3. In addition, the 

following reconstruction loss is also added to the objective to 

train cGAN. 

 
Thus, the final objective is 

 
In contrast to the original cGAN for snapshot images, the 

generated ODI needs to have the property of continuities at the 

edges of the image. That is, the left side of ODI should be 

connected to the right side, whereas all the pixels at the top or 

bottom edge of ODI should be connected together. To realize 

this property, a padding method is applied before D 

for easily distinguishing fake images without the continuities 

at the edges. The padding method used in this paper is shown 

in Fig. 4. The left and right sides of the generated image are 

padded with the regions at the other sides, respectively. In 

addition, any one pixel at the top (bottom) edge is copied to a 

row above (below) the image. With this padding, G generates 

ODI with the property of the continuities at the edges, since D 

can easily recognize fake images based on the continuities. 

In addition to the padding, class-conditioned convolution 

layers were introduced to cGAN. Since multiple ODI 

generators for scene classes are inefficient, convolution layers 

in a single ODI generator are conditioned on the scene class 

label obtained from scene recognition for a snapshot image by 

weighing the channels of convolution filters depending on the 

scene label. This attention weights are calculated from the scene 

label using a fully-connected layer, and then are applied to the 

feature map from the convolution layer, as shown in Fig. 5. All 

the convolution/deconvolution layers were replaced by this 

 
Fig. 4: Padding method for 4 sides of input image for 

discriminator, by copying the pixel values at the opposite 

side for left or right edge, and by copying a pixel value at 

the top or bottom edge. 

 
Fig. 5: Structure of class-conditioned convolution layer 

with attention weights in class-conditioned ODI generator 

model. The class-conditioned convolution layer was used 

for each convolution or deconvolution layer in the generator 

and the discriminator of cGAN. 

 



class-conditioned convolution/deconvolution layers, whose 

attention weights were independent over all the layers. 

IV. EXPERIMENTAL SETUP 

A. Dataset 

The dataset used in the experiments is SUN360 [12]. This 

dataset includes images in 30 outdoor scenes excluding ‘others’. 

The numbers of images in the dataset are imbalanced among 

classes. Since the 6 scene classes include less than 10 images, 

these classes were excluded from the experiments. The 

numbers of images in the remaining 24 scene classes range 

from 11 to 690. Since the dataset is still imbalanced among the 

classes, the performance of the network may be affected by the 

imbalance among the classes. Therefore, the performance for 

training networks with all images was compared to the 

performance with limiting the maximum number of images for 

each class. 

In the dataset, the two sizes of ODIs are available: 1024 × 

512 and 256 × 128. The ODIs in 1024 × 512 were used with 

downsampling to 512 × 256 to train the network efficiently. 

The dataset was randomly divided into 75% images for the 

training dataset and 25% images for the test dataset. The ODI 

generator and the snapshot scene recognition network were 

trained using the training dataset, and then evaluated with the 

test dataset. 

B. Learning ODI Generator 

The ODI generator based on cGAN used in this paper was 

adapted from the pix2pix implementation in PyTorch [13]. In 

the model, the generator was composed of U-Net [14] (8 

convolution layers in the encoder and 8 deconvolution layers in 

the decoder). The discriminator was realized with the network 

of 5 convolution layers. The parameters were set to the default 

values in this implementation. The convolution and 

deconvolution layers were set to 64, 96, and 128 channels to 

compare the expressive power of the network. The width of the 

padding region was set to 50 pixels for both sides of the 

generated image in Fig. 4. 

To train the ODI generator based on cGAN, the snapshot 

images were prepared by extracting them from ODIs in the 

outdoor scene dataset. The relationship between the view angle 

of the camera for the extraction and the size of the extracted 

snapshot image is given by the following equations: 

where θa and ϕa are the horizontal and vertical view angles, 

while W1 and H1 are the width and height of the extracted image. 

L is the distance from the camera to the image plane. In the 

experiments, they were set to the following values: L = 100, W1 

= 400, H1 = 300. The camera direction, θc and ϕc in Eq. (1), was 

set to 0 degree for both latitude and longitude. One snapshot 

image was extracted from one ODI in the dataset. Using the 

pairs of the original ODIs and the extracted snapshot images, 

the ODI generator was trained for all classes with the class 

labels. 

C. Learning Scene Recognition for Snapshot Image 

The scene recognition network for snapshot images was 

adapted from Places365-CNN [11]. Among several 

implementations with various base CNN models, the model 

based on ResNet [15] with 18 layers (ResNet18 model) was 

used in the experiments. 

The network was fine-tuned using the snapshot images 

extracted from ODIs in the training dataset. To extract the 

snapshot images, the camera directions were set to 0, 60, 120, 

180, 240, and 300 degrees in the longitude with 0 degree in the 

latitude (6 camera directions). The parameters for the fine 

tuning were set to the default values in the implementation. 

D. Evaluation Measure for ODI Generator 

An important problem for the image generation task is to 

design a performance measure to evaluate the generated images. 

The ODIs generated using the proposed methods should be 

categorized into the same scene class as the original ODI from 

which the input snapshot image was extracted. In the 

experiments, the following two methods were used for the 

evaluation. 

The first is to use a scene recognition network for ODI in the 

equirectangular projection. It is noted that this network is 

different from the scene recognition network for snapshot 

images in Section IV-C, although the same architecture, 

ResNet18 model in Places365-CNN, was also used for the ODI 

scene recognition network. To train the network, all images in 

the ODI dataset including the training and test datasets were 

used. The inputs of the network were ODIs in the 

equirectangular projection to classify the input ODI into a scene 

class from the 24 classes. 

The second is to use a scene recognition network for several 

extracted snapshot images from a generated ODI. In this 

method, the scene recognition network in Section IV-C can be 

used as is. In the experiments, snapshot images were extracted 

from a generated ODI in 10 horizontal directions. 

Using these evaluation methods, the proposed ODI 

generation methods were evaluated by calculating the number 

of images that were categorized into the same class as the 

original ODI. Since the random vectors were input to the ODI 

generator to generate a variety of images, the performance of 

the ODI generators was evaluated with the average recognition 

rate of the scene recognition for ODI over 5 repetitions. 

In addition to these metrics, a standard GAN evaluation 

metric, Frechet Inception Distance (FID) [16], was also 

calculated for the generated ODIs with a small modification, 

that is the use of the ODI scene recognition model above instead 

of the Inception network in FID. 



E. Evaluation Measure for Padding 

As shown in Section III-D, the image with padding is 

inputted to the discriminator in order to reflect the property of 

continuities. The following equations were used to evaluate the 

continuities of generated ODI in the equirectangular projection 

with and without the padding. At the top and bottom sides, the 

standard deviations of the pixel values were calculated as 

 
where x, vT, NW, vT(x) are the pixel position in the horizontal 

direction, the pixel value at the top side of the image, the width 

of the image, and the average value, respectively. The standard 

deviation of the bottom side σB was also calculated. For the left 

and right sides, the root mean square of the difference between 

the left and right side pixels was calculated as 

 
where y, vL, vR, NH are the pixel position in the height direction, 

the pixel value at the left side, the pixel value at the right side, 

and the height of the image, respectively. In both equations (7) 

and (8), the smaller value represents the better continuities in 

the generated ODI in the equirectangular projection. 

V. EXPERIMENTAL RESULTS 

A. Comparison of Proposed Method with Baseline Methods 

The ODI generator with class-conditioned convolution layers 

(128ch) was compared with two baselines: a single ODI 

generator without the class-conditioned convolution layers 

(class-independent generator), and an ODI generator for each 

class (class-specific generator). In the class-specific generator, 

an input snapshot image was classified into a scene category, 

and then was input to the ODI generator trained for the specific 

scene class. Although the quality of the generated ODI was 

improved by the class-specific generator, it is inefficient since 

many generators need to be independently trained for all the 

scene classes. 

The experimental results are shown in Fig. 6, where the 

average of recognition rates over all the scene classes is plotted 

against the maximum number of training images for each class. 

The training images for each class was limited since the dataset 

was imbalanced as explained in Section IV-A. It can be seen 

from the figure that the performance of the class-conditioned 

ODI generator was much better than the class-independent ODI 

generator, and was comparable to the class-specific ODI 

generator which required much higher computational cost. 

 

 
Fig. 6: Comparison of scene recognition rates for generated 

ODI. (a) ODI in equirectangular projection. (b) Snapshot 

images extracted from generated ODI. 

 

Fig. 7: Comparison of scene recognition rates in different 

number of channels for class-conditioned convolution 

layers. 

 
Fig. 8: Comparison of scene recognition rates for generated 

ODI against scene recognition rates for input snapshot 

image. 



Furthermore, the recognition rate for each class in the 

proposed method and the baseline methods is shown in Table I. 

In each method, the maximum number of training data per class 

was set to that in the best performance in Fig. 6 (a). For the 

reference, the scene recognition rate was also shown for the 

original ODIs, which was the upper limit of the performance. 

As can be seen from the table, the average of the recognition 

rates for the proposed method was higher than the baseline 

methods, although the recognition rates varied among the scene 

classes. In addition, FID with the ODI scene recognition model 

was calculated for the proposed and baseline methods. The 

proposed method was also better than the baseline methods in 

this metric, as shown in the bottom row in Table I. 

B. Dependence on Number of Channels 

To compare the expressive power of the network in the class-

conditioned generator, the convolution and deconvolution 

layers were set to 64, 96, and 128 channels. The comparison of 

the scene recognition rates in different number of channels for 

the class-conditioned convolution layers is shown in Fig. 7. The 

scene recognition rates for 128 channels were greatly improved, 

although the scene recognition rates for 64 and 96 channels 

were almost the same. This tendency was similar both in ODI 

in the equirectangular projection and in the extracted snapshot 

images. 

C. Dependence on Snapshot Scene Recognition Performance 

To investigate the dependence of ODI generator performance 

on the scene recognition for the input snapshot images, the 

scene recognition rates for the generated ODIs in the proposed 

method were plotted against the input snapshot scene 

recognition rates in Fig. 8. In addition to the ResNet18, several 

scene recognition networks were constructed for the snapshot 

scene recognition model, including Alexnet and ResNet50. The 

ideal scene recognition was also included, that is the case of 

perfect scene recognition for input snapshot image. As can be 

seen from Fig. 8, the ODI generator performance depended on 

the scene recognition for the input snapshot images. 

 

TABLE I: Comparison of class-conditioned ODI generator to baseline methods (class-independent generator and class-

specific generators). The ODI generation was repeated 5 times for each snapshot image input. The values outside and inside 

the parentheses indicate the scene recognition rates for ODI in equirectangular projection and for extracted snapshot images 

from ODI, respectively. 

 

TABLE II: Evaluation of continuities with or without padding. In all cases, the average of 24 classes is shown. 

 
 



 

 
Fig. 9: Sample images of generated ODI. From the left to right, (a) input snapshot image, (b) original ODI, (c) class-

independent ODI generator (baseline), (d) class-specific ODI generator (baseline), (e) class-conditioned ODI generator 

(proposed). The top and bottom 5 scenes are the scenes with high and low recognition rates in the evaluation. 



 

D. Evaluation of Padding 

To compare the continuities with or without the padding, the 

class-conditioned generator and the class-specific generators 

were trained both without and with the padding. The continuity 

indexes defined in Eqs. 7 and 8 were calculated for the top, 

bottom, and left/right sides of the generated ODI in the 

equirecgtangular projection. The averages over all the test 

images are shown in Table II. It can be seen from the results 

that the continuities were improved by training with padding. 

E. Generated Sample Images 

The sample images generated by the proposed ODI generator 

are shown in Fig. 9, in addition to the sample images by the 

baseline methods. As can be seen from the sample images, the 

natural scenes such as desert and forest can be represented in 

ODI, although the difference between the embedded region of 

the input snapshot image and its outside was still large. On the 

other hand, the scenes including man-made things such as a 

building and parking lots were difficult to be generated in all 

generators. From the sample images, the class-conditeiond 

generator (e), and the classspecific generators (d) were slightly 

better than the classindependent generator (c). The network 

architecture for the generator and the discriminator should be 

further investigated to improve the quality of the generated 

images. 

F. Computational Cost in Training and Inference 

In the proposed method (class-conditioned ODI generator) 

with 128 channels, it took 0.13 seconds in GPU (NVIDIA 

GeForce GTX1080Ti) for generating ODI from a snapshot 

image, compared with 0.09 seconds for the class-independent 

generator and 0.17 seconds for the class-specific generator. For 

training of the generators, it took 24 hours in the 

classconditioned generator, and 40 hours in the class-specific 

generators. Furthermore, the amount of network weights in the 

proposed method (800 MB) was much smaller than the amount 

of weights in the class-specific generators (5.0 GB). Thus, the 

proposed method saved the computational cost in both training 

and inference, in addition to the network size, compared with 

the class-specific generators. 

VI. CONCLUSIONS 

The novel computer-vision task was proposed to generate an 

omni-directional image from a single snapshot image. To solve 

this task, cGAN-based ODI generator was developed using 

padding for improving the continuities in the generated ODI, 

and using class-conditioned convolution layers for 

incorporating scene class information. It was confirmed in the 

experiments that the performance on the proposed method of 

the class-conditioned generator was as high as the baseline 

method of the class-specific generators with lower 

computational cost, although still more work to improve the 

quality of the generated images is needed. 

In the future work, it will be possible to improve the 

generator and the discriminator networks by incorporating the 

recent advance in GAN-based image generation techniques. 

Especially, the resolution of the generated images can be 

improved by applying these techniques. Futhermore, the 

convolution filters designed for omni-directional images can be 

also applied in the networks. This will remove the distortion of 

the generated images. 
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