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Towards Understanding the Effects of

Evolving the MCTS UCT Selection Policy
Fred Valdez Ameneyro and Edgar Galván∗

Abstract—Monte Carlo Tree Search (MCTS) is a sampling
best-first method to search for optimal decisions. The success
of MCTS depends heavily on how the MCTS statistical tree is
built and the selection policy plays a fundamental role in this.
A particular selection policy that works particularly well, widely
adopted in MCTS, is the Upper Confidence Bounds for Trees,
referred to as UCT. Other more sophisticated bounds have been
proposed by the community with the goal to improve MCTS’s
performance on particular problems. Thus, it is evident that
while the MCTS UCT behaves generally well, some variants
might behave better. As a result of this, multiple works have
been proposed to evolve a selection policy to be used in MCTS.
Although all these works are inspiring, none of them have
carried out an in-depth analysis shedding light under what
circumstances an evolved alternative of MCTS UCT might be
beneficial in MCTS due to focusing on a single type of problem.
In sharp contrast to this, in this work we use five functions
of different nature, going from a unimodal function, covering
multimodal functions to deceptive functions. We demonstrate
how the evolution of the MCTS UCT might be beneficial in
multimodal and deceptive scenarios, whereas the MCTS UCT is
robust in unimodal scenarios and competitive in the rest of the
scenarios used in this study.

Index Terms—Monte Carlo Tree Search, UCT.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a sampling method

for finding optimal decisions by performing random samples

in the decision space and building a tree according to partial

results. The evaluation function of MCTS relies directly on the

simulation’s outcomes. The optimal search tree is guaranteed

to be found with infinite memory and computation [22].

However, in more realistic scenarios, MCTS can produce good

approximate solutions [12], [13].

MCTS has gained popularity in two-player board games

partly thanks to its success in the game of Go [28], including

beating professional human players. The diversification of

MCTS in other research areas is extensive. For instance,

MCTS has been explored in energy-based problems [12],

[13] and in the design of deep neural network (DNN) archi-

tectures [31]. These two extreme examples, along with the

applicability in games [16], [30], demonstrate the successful

versatility, use and applicability of MCTS in different problem

domains.

The success or failure of MCTS depends heavily on how the

MCTS statistical tree is built. The selection policy, responsible
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for this, behaves well when using the Upper Confidence

Bounds for Trees (UCT) [23]. Some conditions are to be

met for this to work well, for example, the selection of a

child of a given node is based on the exploration/exploitation

trade-off. To this end, the UCT expression is normally used,

yielding good results. Some of the parameters’ values can be

changed contributing to a better performing MCTS. Moreover,

some sophisticated bounds have been proposed such as the

single-player MCTS, adding a third term to the UCT formula

and changing the value of a parameter [27]. The UCB1-tuned

also modifies the UCT expression to reduce the impact of

the exploration term [2]. Thus, it is evident that while the

UCT performs well on a range of problems, its adjustment or

modification can have a more positive effect.

It is clear then to see that the MCTS’s selection policy when

adjusted properly can have a more positive impact on a given

problem. Motivated by this, we use Evolutionary Algorithms

(EAs) [9] to evolve the UCT formula. Specifically, we use

a semantic-based approach to do so inspired by the positive

impact that semantics has in Genetic Programming [24] as

shown by multiple works [17], [11], [29] including our studies

in Multi-Objective GP [18], [14].

There are some interesting works using EAs in MCTS.

Cazenave [8] used GP to evolve the UCT formula to be

used in MCTS. The author used Swiss tournament selection,

reproduction and mutation to be applied in the 128 or 256

individuals. The author tested his approach using the game

of Go. He demonstrated how his GP approach outperformed

MCTS and RAVE when a relatively small number of play

outs were used, but UCT outperformed his approach when

more play outs were allowed.

Motivated by Cazenave’s studies, a decade later, Bravi et

al. [5] evolved the MCTS UCB1 formula tested in the General

Video Game AI framework. They used a population of 100

GP trees and the initial population started with a seeded

UCT individual and 99 random trees. In their studies, they

considered three different scenarios: (a) only given access to

the same information as UCB1, (b) given access to additional

game-independent information, and (c) given access to game-

specific information. The authors showed that, on average,

Scenario (c) outperformed the rest of the scenarios including

the UCB1.

Holmgård et al. [20] used GP to evolve persona-specific

evaluation formulae to be used in MCTS instead of the UCB1

in the deterministic game of MiniDungeons 2. To evolve the

100 GP individuals over 100 generations, the authors used

selection, crossover, mutation and elitism, as well as an island

model. They reported that their evolved personas were able to

http://arxiv.org/abs/2302.03352v1


2

play the game more efficiently compared to the UCB1 agents.

Other interesting works include those carried out by Alhejali

and Lucas [1], where they used a GP system to enhance

MCTS during the roll out simulations tested in the game of

Ms PacMan. The authors used multiple functions including

comparison, conditional, logical operators. They used 100

or 500 individuals evolved, using selection and mutation

operators, over 50 or 100 generations, where a single run took

around 18 days to finish, for the latter case.

Another interesting work is related to handling prohibitive

branch factors in MCTS through EAs, as proposed by Baier

and Cowling [4] in the deterministic game of Hero Academy.

Lucas et al. [25] used an EA as a source of control parameters

to bias the roll outs of MCTS. They showed how their

proposed approach significantly outperforms the vanilla MCTS

using the Mountain Car benchmark problem and a simplified

version of Space Invaders.

These works are inspiring, but the contributions of this work

are novel and timely.

1) Firstly, instead of using a single type of problem as

normally done so far by the community, we use five

functions of different nature and complexity, going from

a unimodal function, covering multimodal functions, to

deceptive functions.

2) Secondly, we use a state-of-the-art EA algorithm, inspired

by semantics, to evolve a selection policy to be used

instead of the MCTS UCT.

3) Thirdly, instead of using a large population size and a

large number of generations as done in all the previous

works described before, we use a small population size

evolved by a few generations to see if it is possible to

successfully evolve a selection policy to be used in lieu

of the MCTS UCT.

4) Fourthly, we compare five different variants of the MCTS

UCT vs. our semantic-inspired EA and shed some light

under what circumstances an evolved selection policy

might have a positive effect on MCTS.

The rest of this paper is organised as follows. Section II

provides some background in MCTS, EAs, semantics and in

the functions used in this work. Section III discusses in detail

the controllers used in this work. Section IV presents the

experimental setup. Section V discusses the results obtained

by each of the controllers. Section VI draws some conclusions.

II. BACKGROUND

A. The Mechanics Behind MCTS

MCTS relies on two key elements: (a) that the true value

of an action can be approximated using simulations, and (b)

that these values can be used to adjust the policy towards a

best-first strategy. The algorithm builds a partial tree, guided

by the results of previous exploration of that tree. Thus, the

algorithm iteratively builds a tree until a condition is reached

or satisfied (e.g., number of simulations, time given to Monte

Carlo simulations), then the search is halted and the best

performing action is executed. In the tree, each node represents

a state, and directed links to child nodes represents actions

leading to subsequent states. Like many AI techniques, MCTS

has several variants. Perhaps, the most accepted steps involved

in MCTS are those described in [6] and are the following:

(a) Selection: a selection policy is recursively applied to

descend through the built tree until an expandable (a node

is classified as expandable if it represents a non-terminal state

and also, if it has unvisited child nodes) node has been reached,

(b) Expansion: normally one child is added to expand the

tree subject to available actions, (c) Simulation: from the

new added nodes, a simulation is run to get an outcome

(e.g., reward value), and (d) Back-propagation: the outcome

obtained from the simulation step is back-propagated through

the selected nodes to update their corresponding statistics.

Simulations in MCTS start from the root state (e.g., actual

position) and are divided in two stages: when the state is added

in the tree, a tree policy is used to select the actions (the

selection step is a key element and it is discussed in detail later

in this section). A default policy is used to roll out simulations

to completion, otherwise.

One element that contributed to enhance the efficiency in

MCTS was the selection mechanism proposed in [23]. The

main idea of the proposed selection mechanism was to design

a Monte Carlo search algorithm that had a small probability

error if stopped prematurely and that converged to the optimal

solution given enough time. That is, a selection mechanism

that nicely balances exploration vs. exploitation, explained in

the following paragraphs.

B. Upper Confidence Bounds for Trees

As indicated previously, MCTS works by approximating

‘real’ values of the actions that may be taken from the current

state. This is achieved through building a search or decision

tree. The success of MCTS depends heavily on how the tree

is built and the selection process plays a fundamental role in

this. One particular selection mechanism that has proven to

be reliable is the UCB1 tree policy [23]. Formally, UCB1 is

defined as:

UCT = Xj + C

√

2 · ln · n
nj

(1)

where n is the number of times the parent node has been

visited, nj is the number of times child j has been visited and

K > 0 is a constant. In case of a tie for selecting a child node,

a random selection is normally used [23].

Thus, this selection mechanism works due to its emphasis on

balancing both exploitation (first part of Eq. 1) and exploration

(second part of Eq. 1).

C. Evolutionary Algorithms

Evolutionary Algorithms (EAs) [3], [9], also known as

Evolutionary Computation systems, refer to a set of stochas-

tic optimisation bio-inspired algorithms that use evolutionary

principles to build robust adaptive systems. The key element

to these algorithms is undoubtedly flexibility in allowing

the practitioner to use elements from two or more different

EAs techniques. Consequently, the boundaries between these

approaches are no longer distinct allowing a more holistic EA



3

framework to emerge, such as the one adopted in this research.

EAs work with a population of µ-encoded (representation of

the) potential solutions to a particular problem. Each potential

solution, commonly known as an individual, represents a point

in the search space, where the optimal solution lies. The

population is evolved by means of genetic operators, over

a number of generations, to produce better results to the

problem. Each individual is evaluated using a fitness function

to determine how good or bad the individual is for the problem

at hand. The fitness value assigned to each individual in

the population probabilistically determines how successful the

individual will be at propagating (part of) its code to future

generations.

The evolutionary process is carried out by using genetic

operators. Selection, crossover and mutation are the key op-

erators used in most EAs. The selection operator is in charge

of choosing one or more individuals from the population

based on their fitness values. Multiple selection operators have

been proposed. One of the most popular selection operators is

tournament selection where the best individual is selected from

a pool, normally of size = [2 − 7], from the population. The

stochastic crossover, also known as recombination, operator

exchanges material normally from two selected individuals.

This operator is in charge of exploiting the search space.

The stochastic mutation operator makes random changes to

the genes of the individual and is in charge of exploring the

search space. The mutation operator is important to guarantee

diversity in the population as well as recovering genetic

material lost during evolution. This evolutionary process is

repeated until a stopping condition is reached such as until

a maximum number of generations has been executed. The

population, at this stage, contains the best evolved potential

solutions to the problem and may also represent the global

optimal solution.

The field has its origins in four landmark evolutionary meth-

ods: Genetic Algorithms [19], Evolution Strategies [26], Evo-

lutionary Programming [10] and Genetic Programming [24].

In this work we briefly describe the two methods employed

in this work: Evolution Strategies and Genetic Programming.

The second author’s work in Neuroevolution in Deep Neural

Networks [15] provides a nice summary of all of these EAs.

1) Evolutionary Algorithm: Genetic Programming (GP):

This EA was popularised by Koza [24]. GP is a form of

automated programming where individuals are randomly cre-

ated by using functional and terminal sets required to solve

a given problem. Multiple types of GP have been proposed

in the literature with the typical tree-like structure being the

predominant form of GP in EAs.

2) Evolutionary Algorithm: Evolution Strategies (ES):

These EAs were introduced in the 1960s by Rechenberg [26].

ES are generally applied to real-valued representations of

optimisation problems. In ES, mutation is the main operator

whereas crossover is the secondary, optional, operator. His-

torically, there were two basic forms of ES, known as the

(µ, λ)-ES and the (µ+λ)-ES. µ refers to the size of the parent

population, whereas λ refers to the number of offspring that

are produced in the following generation before selection is

applied. In the former ES, the offspring replace the parents

whereas in the latter form of ES, selection is applied to both

offspring and parents to form the population in the following

generation.

D. Semantics

For clarity purposes, we first briefly give some definitions

on semantics, based on the first author’s work [11], that will

allow us to describe our approach later in Section III.

Let p ∈ P be a program from a language P . When p is

applied to an input in ∈ I , p produces an output p(in).
Def. 1: The semantic mapping function s : P → S maps

any program g to its semantics s(g).
This means, s(g1) = s(g2) ⇐⇒ ∀in ∈ I : g1(in) = g2(in).

The semantics specified in Def. 1 has three properties. Firstly,

every program has only and only one semantics. Secondly,

two or more programs can have the same semantics. Thirdly,

programs that produce different outputs have different seman-

tics. Def. 1 is general as it does not specify how semantics

is represented. This work is inspired by a popular version of

semantics GP where the semantics of a program is defined

as the vector of output values computed by this program for

an input set (also known as fitness cases). The latter are not

available in MCTS. We then extrapolate this idea to the fitness

space. Thus, assuming we use a finite set of simulations, as

normally adopted in MCTS, we can now define, without losing

the generality, the semantics of a program in the simulations.

Def. 2: The semantics s(p) of a program p is the vector of

values from each independent simulation sim,

Thus, we have that the semantics of a program in MCTS

is given by s(p) = [p(sim1), p(sim2), · · · , p(siml)], where

l = |I| is the number of independent simulations.

Based on Def. 2, we can define the Sampling Semantics

Distance (SSD) between two programs (p, q). That is, let P
= {p1, p2, ..., pN} and Q = {q1, q2, · · · , qN} be the sampling

semantic of Program 1 (p1) and Program 2 (p2) on the same set

of sample points, then the SSD between p1 and p2 is defined

as SSD(p, q) = (|p1 − q1|+ |p2 − q2|+ ...+ |pN − qN |)/N ,

where Sp = {p1, ..., pN} and Sq = {q1, ..., qN} are the SS of

programs p and q based on simulations.

We are now in position to use the well-known semantic sim-

ilarity (SSi) proposed by the first author and colleagues [29].

This indicates whether the SSD between two programs lies

between a lower bound α and upper bound β or not. It deter-

mines if two programs are similar without being semantically

identical. The SSi of two programs p and q on a domain is

formally defined as

SSi(p, q) = (α < SSD(p, q) < β) (2)

where α and β are the lower and upper bounds for semantic

sensitivity, respectively. In our work, we set these 5 and 10,

respectively.

E. Test Functions

We use five different functions, each of different degree

of difficulty, going from unimodal functions, including multi-

modal functions to highly deceptive functions. These functions
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Fig. 1. Functions used for the function optimisation problem.

are shown in Figure 1, and for simplicity, we constrain the

domain and range of the functions to be in the interval [0, 1].

The first function, shown in Figure 1, f1, depicts a unimodal

function. The global optima is shown by a vertical red line.

The function is defined by Eq. 3,

f1(x) = sin(πx) (3)

The second function, shown in Figure 1, f2, is a multimodal

function, with a global optima situated in the right-hand side

of the figure as denoted by the vertical red line. The function

is defined by Eq. 4,

f2(x) = 0.5 sin(13x) sin(27x) + 0.5 (4)

The third function, inspired by [21], is shown in Figure 1,

f3. It shows a function with a high degree of ruggedness (left-

hand side) containing multiple global optimum (not indicated

as done with f1 and f2). In sharp contrast, the function also

denotes smoothness in the right-hand side. The function is

defined by Eq. 5,

f3(x) =

{

0.5 + 0.5| sin( 1
x5 )| when x < 0.5,

7
20 + 0.5| sin( 1

x5 )| when x ≥ 0.5.
(5)

The fourth function used in this work is shown in Figure 1,

f4. This is a deceptive function, where the global optimum is

depicted by the red vertical line in the left-hand side of the

figure. This function is defined by Eq. 6,

f4(x) = 0.5x+ (−0.7x+ 1) sin(5πx)4 (6)

The fifth and final function used in this work is shown in

Figure 1, f5. This is also a deceptive function, slightly harder

compared to f4. This function is defined by Eq. 7,

f5(x) = 0.5x+ (−0.7x+ 1) sin(5πx)80 (7)

III. AI CONTROLLERS

A. Monte Carlo Tree Search

The core idea of MCTS is based on its four functions:

Selection, Expansion, Rollout and Backpropagation. The com-

pletion of these stages is known as a single simulation. When

all simulations conclude, normally the node with the highest

action value is chosen, which is the approach taken in this

work. The MCTS is explained in detail in Section II.

B. Semantic-inspired Evolutionary Algorithm in MCTS

We now turn our attention to the proposed AI controller

based on EAs to evolve online the mathematical expression

to be used during the selection phase of the MCTS. To this

end, we use (µ,λ)-ES (see Section II). We first use the UCT

formula as parent to later generate the offspring. We evolve

a candidate solution in every turn that we need to make a

decision. At each turn, a new evolved solution is built from

scratch. Similar to [21], “in the simulation phase, actions

are executed uniformly randomly until a terminal state is

encountered, at which point some reward is received. Let f
be the function and c be the midpoint of the state reached by

the rollout. At iteration t, a binary reward rt, drawn from a

Bernoulli distribution rt ∼ Bern(f(c)), is generated”. This is

how the fitness is assigned to each evolved potential solution.

The value of these are used to update a copy of the MCTS

statistical tree, from the selected node to the root including

the nodes given in a branch. We perform 30 simulations to

compute the fitness of the evolved expression. The fitness of

our evolved individual is the average of these 30 simulations.

We pick the offspring based on semantics to act as parent.

A potential major limitation in using a small population size,

as adopted in this work, could be the lack of diversity leading

to poor performance. To prevent this, we use semantics as

inspiration to promote diversity (see Section II). We dubbed

this method Semantic-inspired Evolution Algorithms in Monte

Carlo Tree Search (SIEA-MCTS).

We first get the highest fitness, Hf , from the offspring . If

there is more than one offspring with Hf , we compute the

sampling semantic distance from each offspring with respect

to Parent. We then proceed to compute the semantic similarity

metric using thresholds. If there is more than one individual

from the offspring population that falls within this threshold,

defined by α and β, then the individual closest to the α value

is picked. Otherwise, we select an individual randomly from

the offspring population.

Our proposed method aims to evolve mathematical expres-

sions that can replace UCT with the goal to get better or

competitive results compared to UCT. Thus, ES is called

during the selection step in MCTS. Once a node has been

selected by our evolved expression, we proceed to compute

the fitness of the evolved expression. We do so by performing

roll outs as done in MCTS.

IV. EXPERIMENTAL SETUP

A. Function and Terminal Sets

The terminal set is defined by T =
{Q(s, a), N(s), N(s, a),K}, where N(s) is the number
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TABLE I
MCTS AGENTS PARAMETERS.

Parameter Value

All MCTS agents

C 1

2
, 1,

√

2, 2, 3

Rollout playouts 1
Iterations 5000

SIEA-MCTS
(µ,λ)-ES µ = 1, λ = 4

Generations 20

Type of Mutation Subtree (90% internal node, 10% leaf)
Initialisation Method Initial formula: UCB1
Maximum depth 8

Iterations 2,400 EA evaluations + 2,600 iterations

of visits to the node from the MCTS search tree, N(s, a) is

the number of visits to a child node, Q(s, a) is the child’s

node action-value and K is the exploration-exploitation

constant. When K is chosen to be mutated, it can take a

random value from the following set r = {0.5, 1,
√
2, 2, 3}.

The function set is defined by F = {+,−, ∗,÷, log,
√},

where the division operator is protected against division

by zero and will return 1 for any divisor less than 0.001.

Similarly, the natural log and square root operators are

protected by taking the absolute values of input values. The

values used for all our controllers are shown in Table I.

B. Function Optimisation

The test functions used in this work, commonly known as

function optimisation as described in [7], [21], is a problem

where each state s represents a domain [as,bs], starting at

[0,1]. The available actions from state s are b evenly spaced

partitions of the domain, sized as−bs
b

each, where b is the

selected branching factor. The objective is to find the state

where the global maxima of a given function f lies. A state is

said to be terminal if its domain is smaller than the threshold

t, in other words bs−as < t. The threshold is set as t = 10−5

and the branching factor is set as b = 2.

The MCTS rollouts use a random uniform default policy.

When a terminal state is reached, f is evaluated at the state’s

central point cs = (as−bs)
2 . The reward rs can either be

1 or 0 and is sampled from a Bernoulli distribution rs ∼
Bern(f(cs)). Thus, 0 ≤ f(x) ≤ 1|x ∈ [0, 1] is ensured for

every function f .

V. DISCUSSION OF RESULTS

We are interested in knowing the effects of MCTS using

different values of the UCT C constant and compared them

with evolved functions that are used in the selection policy

in lieu of the UCT formula. To do so, we keep track of how

the search is carried out during the 5,000 iterations used by

the MCTS and 2,600 iterations used by the EA (plus 2,400

evaluations). Thus, we will naturally observe a less number of

nodes expanded in particular regions of a given formula when

using the EA approach.

We divided these iterations equally by three. The first part

is plotted with a light grey colour in Figures 2–6, the second

part of this number of iterations is represented by a darker

Fig. 2. Histogram of the location of the nodes for Function 1.

Fig. 3. Histogram of the location of the nodes for Function 2.

grey colour. Finally, the last part of is represented in black.

In these figures, the x-axis correspond to the domain of the

function and the y-axis corresponds to the number of nodes

expanded in a particular region. The results are averaged from

30 independent runs for each AI controller. The histograms are

generated by sorting the nodes of the tree into bins, according

to the location of the center of their states. The goal is to

illustrate how and when the nodes are expanded in different

regions of the domain.

Let us start our analysis by analysing our first function (see

Section II), re-plotted at the end of Figure 2 for convenience.

This is an unimodal function and the easiest to be solved.

The first five plots, from top to bottom, correspond to MCTS
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Fig. 4. Histogram of the location of the nodes for Function 3.

using C={0.5, 1,
√
2, 2, 3}. As can be seen, as the C value

increases, the MCTS explores larger regions. For instance, see

the fifth plot, where C = 3, compared to the first plot, where

C = 0.5. In the former case, there are close to 400 nodes

around the global optima, compared to almost 1,000 nodes

when using the latter. Let us now turn our attention to our EA

method. We can see in plot sixth, from top to bottom, that this

method has more variations compared to MCTS, regardless of

the UCT C value used. This is expected given that at each node

selection, we evolve an alternative UCT formula. Despite this,

it is interesting to note that our EA method is able to expand

a good number of nodes close to the global optima (center of

the Function 1 as seen at the bottom of Figure 2).

Let us continue with our second function (see Section II),

seen at the bottom of Figure 3. This multimodal function has

also a global optima located in the right-hand side of the figure.

When we focus our attention on how the MCTS behaves

using this function (see first five plots from top to bottom

in Figure 3), we can observe that as C is higher, the MCTS

tends to expand nodes in the global optima as well as in local

optima. This is depicted in the fifth plot, where there are three

peaks. This situation changes as the UCT C value decreases,

except when UCT C = 0.5, where two peaks are formed, one of

them being where the global optima lies. Another point worth

noting is the fact that the MCTS UCT C = {1,
√
2} exhibit a

similar behaviour: both expand nodes around the global optima

region as well as expanding a small number of nodes in a local

optima region. When we turn our attention to the EA, we can

see again a large variation in exploring/exploiting the search

space. It has around seven peaks, one of them formed around

the global optima region.

We now focus our attention on the third function used in this

work (see Section II) and depicted at the bottom of Figure 4.

This shows a high degree of rugedeness, left-hand side of

the last plot, where multiple global optimum exist. In sharp

Fig. 5. Histogram of the location of the nodes for Function 4.

contrast, this function also denotes smoothness in the right-

hand side. As can be seen in the first five plots, from top to

bottom, of Figure 4, MCTS with a high UCT C value tends to

explore more and so, the nodes tend to expand in ‘incorrect’

areas of the search space, as seen when C = {2, 3}. This is also

visible when C = {
√
2}. The situation changes dramatically as

UCT C decreases, for instance, see the first plot, where UCT C

= 0.5. In this case there is a good number of nodes expanded in

a narrow region where the global optimum lie. When we turn

our attention to how the EA behaves, we can see an interesting

trend: there is a good number of peaks, albeit small, nicely

spread in the correct region where multiple global optimum

are. This is in contrast to what is observed when using MCTS

UCT C = 0.5, where some peaks are formed in just a fraction

of the ‘correct’ part of the search space.

Let us focus our attention on the fourth function, defined

in Section II and plotted at the bottom of Figure 5. This

is a deceptive function, with a global optimum located in

the left-hand side. Most of the MCTS perform well on this

type of function. Although it is fair to say that MCTS UCT

C = 1 outperforms the rest of the UCT C values as it

has the highest number of nodes expanded where the global

optimum lies. When we proceed to analyse the behaviour of

the EA approach, we can see that this exhibits some interesting

behaviours. For example, it is able to spend some time in the

region where the global optimum lies, although this is only a

single line with a few number of nodes (around 35). The EA

also spends some time in local optima as shown by the peaks

formed as a result of the number of expanded nodes.

We finally proceed to focus our attention on the fifth func-

tion, defined in Section II, shown at the bottom of Figure 6.

This is a deceptive function, harder compared to the fourth

function, also deceptive, analysed previously. We can see that

now the MCTS UCT C = 2 performs better compared to the

rest of the UCT C values used, since it is able to spend more
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Fig. 6. Histogram of the location of the nodes for Function 5.

time in the global optimum located in the left-hand side of

the function (bottom of Figure 6). This is in sharp contrast to

what we observed in Function 4, as aforementioned, MCTS

UCT C = 1 performed better in this type of function. When

we proceed to analyse the results of the EA, sixth plot from

top to bottom of Figure 6, we can see that now the algorithm

manages to spend more time in the correct area compared to

the behaviour shown in Function 4 (a deceptive function too

with smooth areas). Although it is fair to say that the EA also

spends time in local optima, as shown by the peaks formed in

other parts of the function.

From this analysis, we can see that MCTS UCT behaves

very well in f1 and f2. For the rest of the functions, it also

performs well, although a correct UCT C value is needed

as discussed before. For example, we have argued that for

a deceptive function with some degree of smoothness (f4), the

MCTS UCT = 1 behaves very well, but for a harder deceptive

function (f5), the MCTS UCT C = 2 is preferred. Perhaps this

is one of the reasons why some researchers have carried out

some research in evolving a selection policy that can be used

in lieu of the MCTS UCT. When we observe the behaviour

of the EA on the evolution of an alternative formula, we can

see that this attains a poorer performance with MCTS UCT.

However, it should be noted that in some cases, the use of the

EA in MCTS can have a positive effect, such as in Functions 3

(high degree of ruggedness containing multiple global optima)

and 5 (highly deceptive function).

VI. CONCLUSIONS

Monte Carlo Tree Search (MCTS) is a sampling best-first

method to search for optimal decisions. The success of MCTS

depends heavily on how the MCTS statistical tree is built and

the selection policy plays a fundamental role in this. A MCTS

selection policy that works particularly well is the Upper

Confidence Bounds for Trees, referred to as UCT. However,

some tuning is necessary for this to work well. Moreover, some

sophisticated bounds have been proposed by the community

to be used in lieu of the MCTS UCT.

As a result of this, some works e.g., [8], [5], [20] have

proposed evolving the MCTS UCT in hope to get a better

performing MCTS. Although all these works are inspiring, the

entirety of these have focused their attention on a particular

problem rather than a set of problems with certain features.

This has limited generalising their findings and knowing under

what circumstances the evolution of the MCTS UCT might be

beneficial.

In this work, we have shown how the evolution of the MCTS

UCT might be beneficial in multimodal scenarios as well as in

deceptive ones. In contrast to this, the MCTS UCT performs

incredibly well in unimodal scenarios and is competitive in

the rest of the scenarios. Thus, we argue that it is important

to know the features of the problem at hand when attempting

to evolve the MCTS UCT to be used in lieu of the UCT

commonly adopted in Monte Carlo Tree Search.
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Mora, editors, Applications of Evolutionary Computation, pages 349–
360, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[26] I. Rechenberg. Evolution strategy: Nature’s way of optimization.
In H. W. Bergmann, editor, Optimization: Methods and Applications,

Possibilities and Limitations, pages 106–126, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

[27] M. P. D. Schadd, M. H. M. Winands, M. J. W. Tak, and J. W. H. M.
Uiterwijk. Single-player monte-carlo tree search for samegame. Knowl.

Based Syst., 34:3–11, 2012.
[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[29] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. G. López.
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