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Abstract—In this paper, the statistics of quadratic forms in
normal random variables (RVs) are studied and their impact
on performance analysis of wireless communication systems is
explored. First, a chi-squared series expansion is adopted to
represent the probability density function of a quadratic form
in normal RVs and novel series truncation error bounds are
derived, which are much tighter compared to already known
ones. Secondly, it is theoretically shown that when an orthogonal
space time block coding (OSTBC) transmission scheme is used,
the signal to noise ratio (SNR) at the receiver under various
fading conditions can be expressed as a quadratic form in normal
RVs. Capitalizing on these results, a thorough error probability
and capacity analysis is presented for the performance of OSTBC
systems over Nakagami-q (Hoyt) fading channels. For all error
probability and capacity performance criteria considered, simple,
closed-form truncation error bounds expressions are derived,
which avoid the use of infinite sums and complicated functions.
The proposed theoretical analysis is validated through extensive
Monte Carlo simulations.

Index Terms—Quadratic forms in normal RVs, OSTBC,
MIMO, Nakagami-q (Hoyt) distribution, fading channels, per-
formance analysis.

I. INTRODUCTION

PERFORMANCE analysis of wireless mobile digital com-
munication systems depends mainly on two factors,

namely the channel fading statistics and the utilized diversity
scheme. In such communications systems, the transmitted
signal is impaired by fading resulting in severe performance
degradation. To combat fading, diversity schemes can be
applied at the transmitter or the receiver by properly com-
bining multiple replicas of the transmitted signal. In several
applications, fading and diversity are such that the statistics of
a quadratic form in normal random variables (RVs) need to be
evaluated. This necessity has motivated our current research
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effort since, in general, analytical closed-form expressions for
the probability density function (PDF) and the cumulative
distribution function (CDF) of a quadratic form in normal RVs
are not available. These functions are usually represented by
certain infinite series expansions [1], whose convergence is
controled by properly selecting the values of their parameters.
When a series representation is used, bounds on the truncation
error, i.e., on the error resulting after retaining a number
of leading series terms, are becoming of major importance.
Closed-form expressions of truncation error bounds for various
series expansions related to quadratic forms in normal RVs
have been reported several years ago in the statistical literature
[2], [3].

An important application, where a quadratic form in normal
RVs appears, is in studying the performance of orthogonal
space-time block coding (OSTBC) over various fading chan-
nels. In recent years OSTBC is becoming increasingly popular
as an efficient transmit diversity technique to combat fading
in wireless communications [4]. This approach offers full
spatial diversity and maximum likelihood performance with
linear decoding complexity. In the past, several performance
analysis results have been reported for OSTBC operating
over various classical fading channels, including Rayleigh [5],
Nakagami-m [6], [7], and Nakagami-n (Rice) [8]. Another
distribution, which has recently received increased attention
in modeling fading channels, is the Nakagami-q (Hoyt) distri-
bution [9]. Studies have shown that the Hoyt fading channel
model provides a very accurate fit to experimental channel
measurements in various telecommunications applications. For
instance, in [10] this model has been used in outage analysis
of cellular mobile radio systems, in [11] the capacity of Hoyt
fading channels has been studied and more recently, in [12]
an error performance analysis of M -ary modulation schemes
in Hoyt fading channels was presented. Similarly, the Hoyt
distribution can be considered as an accurate fading model
for satellite links with strong ionospheric scintillation [13].
However, regarding the performance of OSTBC schemes over
Hoyt fading channels, very few studies have been published in
the open technical literature. Such studies usually have dealt
with specific performance criteria, e.g., ergodic capacity [14],
and information outage probability [15].

A well known approach that could be used to analyze
the performance of OSTBC over Hoyt fading channels is
the moment generating function (MGF) method [9]. It is
not difficult to show that for only special cases of specific
fading parameter values, the MGF method leads to closed
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form expressions for various performance metrics. However,
for the general problem we are dealing with in this paper, the
MGF method fails to provide a compact and mathematically
tractable framework, which enables accurate performance
analysis.

Motivated by the above, in this paper, a new approach for
the performance evaluation of OSTBC wireless communica-
tion systems is introduced and analyzed. This approach is
based on the analysis of the statistics of quadratic forms in
normal RVs. To this end, we first consider the formulation of
central quadratic forms in normal RVs, i.e., quadratic forms
where the involved random variables are zero mean, which
may be statistically independent or not. Following that, the
chi-squared series expansion is used to represent the PDF and
CDF of central positive definite quadratic forms [1]. The main
advantages of our approach are its simplicity, mathematical
tractability and fast convergence. Based on these represen-
tations, new analytical closed-form expressions of truncation
error bounds are derived for both the PDF and the CDF,
which are much tighter as compared to already known ones
[2], [3]. The bounds are derived following a novel approach,
while their analytical expressions are quite simple allowing
for further mathematical manipulations.

In the sequel, a detailed performance analysis of OSTBC
operating over not necessarily identical Hoyt distributed fading
channels is presented. First, it is shown that the problem of
evaluating the performance of OSTBC reduces to the analysis
of the distribution of a central, positive definite quadratic form
in normal RVs. Hence the previously mentioned framework
analysis can be directly applied in solving this problem.
Following that an error probability as well as a capacity
analysis are conducted based on the chi-squared series rep-
resentation. Closed-form infinite series expressions for the
bit error probability (BEP) and the symbol error probability
(SEP) of various modulation schemes are presented and novel
tight truncation error bounds for these expressions are given
in a mathematically simple form. A similar analysis is also
presented for the capacity, including the information outage
probability and the ergodic capacity, of OSTBC over Hoyt
fading channels. The theoretical analysis has been also veri-
fied by means of extensive computer simulated performance
evaluation results.

The paper is organized as follows. After this introduction, in
Section II, quadratic forms in normal RVs are defined for both
independent and correlated RVs. In Section III, the chi-squared
series expansion is utilized and novel truncation error bounds
for the PDF and CDF of a quadratic form in normal RVs
are derived. Section IV, studies OSTBC for fading channels,
while a detailed performance analysis of OSTBC over Hoyt
fading channels is presented in Section V. Various performance
results (theoretical and computer simulated) are presented and
discussed in Section VI. The conclusion of the paper can be
found in Section VII.

II. QUADRATIC FORMS IN NORMAL RVS

Let A be an n × n real symmetric matrix and x an n ×
1 vector of zero mean normal RVs with a positive definite
covariance matrix C = Cov(x). Then a quadratic form in

central normal RVs is defined as follows [1]1

Q
Δ=xT Ax (1)

where (·)T denotes transposition. It should be emphasized that
irrespective of the covariance matrix C, Q can be equivalently
written as a function of zero mean uncorrelated normal RVs.
Indeed, by making the transformation

z = C−1/2x (2)

where C1/2 denotes a square root of C, (1) becomes

Q = zT Rz (3)

where R = CT/2AC1/2. Substituting the real symmetric
matrix R in (3) by its eigenvalue decomposition, i.e., R =
UT ΛU, where U is an orthonormal matrix and Λ a diagonal
matrix containing the real eigenvalues of R, yields

Q = yT Λy (4)

where y = Uz. Obviously, y has zero mean i.e., E[y] =
0, and covariance Cov(y) = I, where I denotes the identity
matrix. Equivalently, the above equation can be expressed as

Q =
n∑

i=1

λiy
2
i (5)

where for i = 1, 2, . . . , n, λi are the real eigenvalues of R
and yi zero mean independent normal RVs. When matrix A
is positive definite, then λi > 0, ∀i, and Q is characterized
as a central, positive definite quadratic form, the analysis of
which will be the main focus of this work.

As it will be shown in Section IV quadratic forms in normal
RVs show up in several applications related to performance
evaluation of wireless communication systems. Thus, in order
to obtain expressions for the various performance criteria,
the PDF and CDF of such forms must be determined in a
mathematically tractable form, which is amenable to further
manipulations. In the following section the PDF and CDF of Q
in (5) are expressed based on the chi-squared series expansion
and tight upper bounds on the series’ truncation errors are
derived.

III. QUADRATIC FORMS STATISTICS

In general, there is no known analytical expression for the
PDF and CDF of Q in (5). However, various infinite series
expansions have been proposed to evaluate the statistics of
quadratic forms in normal RVs [1]. One such a representation
is the chi-squared series expansion which offers mathematical
tractability and fast convergence. Using a chi-squared series
expansion the PDF of Q is expressed as follows [1, pp. 115 -
123]

pQ (x) =
∞∑

k=0

ckf
(
x, 2β,

n

2
+ k
)

(6)

where

f (x, b, l) =
xl−1 exp

(−x
b

)
blΓ (l)

(7)

1If A is not symmetric, symmetry can be imposed by writing Q in the

equivalent form Q = xT (A+AT )
2

x.
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while its CDF is given by

PQ (x) =
∞∑

k=0

ckF
(
x, 2β,

n

2
+ k
)

(8)

with
F (x, b, l) =

1
Γ (l)

γ
(
l,

x

b

)
. (9)

In the previous expressions, Γ(·) is the gamma function [16,
eq. (6.1.1)] , γ(·, ·) the lower incomplete gamma function [16,
eq. (6.5.2)] and β is an arbitrary positive parameter controlling
the convergence of the series. More specifically as stated in
[3], for any choice of β > 0, the uniform convergence of (6)
and (8) in any finite interval on the positive semiaxis can be
ensured. Additionally, if β is chosen such that β < 2 min

i
{λi},

the PDF and CDF series converge uniformly for all x > 0.
According to the analysis in [2], by choosing β as

β =
2 max

i
{λi}min

i
{λi}

max
i

{λi} + min
i

{λi} (10)

not only uniform convergence of (6) and (8) for all x > 0
is guaranteed, but also a sufficiently high rate of convergence
of the series (6) and (8) is achieved. Hence in [2] selection
of β as in (10) is proposed, which is also adopted in our
simulations. It must be noted that, in general, for any choice
of β the rate of convergence depends on the spread of the
values λi, i.e., on the ratio [max

i
{λi} / min

i
{λi}] with small

spreads resulting in faster convergence. The coefficients ck of
the expansions (6) and (8) can be obtained recursively as

ck =
1
2k

k−1∑
l=0

dk−lcl for k > 0 (11)

with

c0 =
n∏

i=1

(
β

λi

)1/2

and dk =
n∑

i=1

(
1 − β

λi

)k

. (12)

Although (11) and (12) provide an efficient way to compute
the coefficients of the chi-squared series, here, an alternative
expression proposed in [3] will be adopted

ck = c0E
[
Zk
]
/
(
2kk!

)
(13)

where E[Zk] is the k-th moment of a quadratic form Z defined
as

Z
Δ=

n∑
i=1

ηiy
2
i , with ηi = 1 − β

λi
. (14)

As it will become clear in the following subsection, these
expressions are more convenient in deriving truncation error
bounds of chi-squared series.

A. Truncation error bounds

In practice, a truncated version of the infinite series (6)
and (8) is used. Thus, in order to assess the accuracy of
the truncated series, derivation of bounds on the truncation
error becomes extremely important. Such bounds provide an
indication of the number of series terms that must be kept
in order to achieve a desired accuracy. Let’s first consider the
PDF from (6), and assume that N+1 series terms are retained.

To obtain a truncation error bound the following quantity must
be properly bounded [3]

e (x) =
∞∑

k=N+1

|ck| f
(
x, 2β,

n

2
+ k
)

(15)

where | · | denotes the absolute value. According to (13), to
obtain a bound on |ck|, the amplitude of the moments of
Z must be properly bounded. In [3], by considering a new
quadratic form as

W =
n∑

i=1

|ηi| y2
i (16)

and using the inequality

∣∣E [Zk
]∣∣ ≤ E

[
W k
] ≤ max

i
|ηi|k E

⎡
⎣
(

n∑
i=1

y2
i

)k
⎤
⎦ (17)

the following bound on |ck| has been proposed

|ck| ≤ c0

(
max

i
{|ηi|}

)k

Γ
(n

2
+ k
)/[

k!Γ
(n

2

) ]
. (18)

However, extensive simulation results have shown that the
bound of (18) can be extremely loose (see, e.g., Fig. 1). In the
applications of interest, as described in Section IV, the number
of terms in the quadratic form is even. By taking advantage
of this special property, a much tighter upper bound can be
derived. Indeed, let us first rewrite W as

W =
n∑

i=1

ξiu
2
i (19)

where ξi and ui are proper permutations of |ηi| and yi respec-
tively, such that ξi are in decreasing order, for i = 1, 2, . . . , n.
The basic idea here is to formulate a new quadratic form, V ,
which results from W by grouping in pairs successive squared
normal RVs u2

i , i.e.,

V =
n/2∑
i=1

ξ2i−1

(
u2

2i−1 + u2
2i

)
. (20)

Comparing (19) and (20), clearly W ≤ V and thus E
[
W k
] ≤

E
[
V k
] ∀k. Furthermore and most importantly the moments

of V can be now easily obtained using its moment generating
function (MGF), given by

MV (t) =
n/2∏
i=1

1
1 − 2ξ2i−1t

. (21)

By employing partial fractions and assuming that all ξ2i−1 are
distinct, (21) is expressed as:

MV (t) =
n/2∑
i=1

Ai
1

1 − 2ξ2i−1t
(22)

where

Ai = ξ
n/2−1
2i−1

n/2∏
l=1
l �=i

1
ξ2i−1 − ξ2l−1

. (23)
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Noting that (22) corresponds to the MGF of a RV that is a
mixture of gamma distributed RVs, it can be easily shown that
the moments of V can be expressed as:

E
[
V k
]

=
n/2∑
i=1

Aik! (2ξ2i−1)
k
. (24)

Since
∣∣E [Zk

]∣∣ ≤ E
[
W k
] ≤ E

[
V k
]
, from (13), (23), and

(24) the following very simple bound for |ck| can be obtained

|ck| ≤ c0

n/2∑
i=1

Δiξ
n/2+k−1
2i−1 , with Δi =

n/2∏
l=1
l �=i

1
ξ2i−1 − ξ2l−1

.

(25)
A tight truncation error bound, eb (x), of the PDF series (6)
can now be defined by substituting (25) in the right hand side
(RHS) of (15), i.e.,

eb (x) =
∞∑

k=N+1

n/2∑
i=1

Δic0ξ
n/2+k−1
2i−1 f

(
x, 2β,

n

2
+ k
)
. (26)

Defining the series

d (x, a, b)
Δ=

∞∑
p=0

apf (x, b, p + 1) (27)

from (7) it can be easily shown that

d (x, a, b) =
exp

[
−(1−a)x

b

]
b

. (28)

Furthermore, it can be proven that the series in (27) converges
uniformly for a > 0, as long as a < 1. Hence by selecting β as
β < 2 min

i
{λi}, the condition ξ2i−1 < 1 for all i is satisfied

and the uniform convergence of (6) and (27) can be ensured.
The truncation error bound is then expressed in closed-form
as

eb (x) = c0

n/2∑
i=1

Δig
(
x, ξ2i−1, 2β, N +

n

2
− 1
)

(29)

where

g (x, a, b, m) = d (x, a, b) −
m∑

k=0

akf (x, b, k + 1). (30)

Additionally, a truncation error bound of the CDF series (8)
can now be derived from (30) by simple integration, yielding

εb (x) = c0

n/2∑
i=1

ΔiG
(
x, ξ2i−1, 2β, N +

n

2
− 1
)

(31)

where

G (x, a, b, m) =
∫ x

0

[
d (t, a, b) −

m∑
k=0

akf (t, b, k + 1)
]
dt.

(32)
Using the incomplete gamma function γ(·, ·) the last equation
is rewritten as

G (x, a, b, m) =
1 − exp

[
− (1−a)x

b

]
1 − a

−
m∑

k=0

akγ
(
k + 1, x

b

)
Γ (k + 1)

.

(33)

Although (29) and (31) were obtained using the reasonable
assumption that all ξ2i−1 are distinct, similar expressions can
be derived for non-distinct ξ2i−1 as shown in the Appendix.
Notice also that (29) and (31) comprise simple elementary
functions only. The importance of this property will become
evident in the following sections, where the application of
central, positive definite quadratic forms in normal RVs in the
performance analysis of wireless communications systems is
studied and (29), (31) will be used to assess the estimation
accuracy of several infinite series expansions.

IV. OSTBC IN FADING CHANNELS

Let us consider an OSTBC multiple-input multiple-output
(MIMO) system with nt transmit and nr receive antennae.
The symbols to be transmitted are organized in blocks and are
properly coded in space and time so that the original MIMO
system is transformed in a number of parallel single-input
single-output (SISO) systems achieving maximal diversity. It
can then be shown that the signal to noise ratio (SNR) per bit
at the output of the system is expressed as [17]

γOSTBC =
‖H‖2

F

Rnt
γt (34)

where R is the rate of the space-time code and γt is the SNR
at the transmitter side, defined as the ratio of the transmitted
energy per bit over the noise density. In addition,

‖H‖2
F =

nr∑
p=1

nt∑
j=1

|hp,j|2 (35)

is the square of the Frobenius norm of the nr × nt channel
matrix H, and |hp,j | stands for the amplitude of the complex
fading coefficient between the jth transmit and pth receive an-
tenna. Under various fading models (e.g., Rayleigh, Ricean, or
Nakagami-q), the real and imaginary parts of hp,j correspond
to normal RVs. Consequently, from (34) and (35), the SNR
is expressed as a quadratic form in normal RVs with an even
number of terms equal to 2ntnr.

In this paper, the Nakagami-q (Hoyt) fading scenario, for
which only a few performance analysis results exist in the open
technical literature is considered. This is probably due to the
fact that in most previous efforts the Hoyt PDF was employed
directly, which is rather difficult to manipulate. Instead, in
this analysis we exploit the fact that when |hp,j | is Hoyt
distributed, the real and imaginary parts of hp,j are zero-mean
normal RVs with, in general, different variances 2.

Thus, the SNR given in (34) is a central, positive definite
quadratic form in normal RVs, and all the results presented

2Let θ and φ be zero-mean normal RVs with variances σ2
θ and σ2

φ
respectively and h = θ + jφ. Then, |h| is Hoyt distributed and its PDF
is given by [9]

p|h| (x) =

(
1 + q2

)
x

qΩ
exp

[
−
(
1 + q2

)2
x2

4q2Ω

]
I0

( (
1 − q4

)
x2

4q2Ω

)

where I0(·) is the zeroth order modified Bessel function of the first kind [16,
eq. (9.6.16)] and the parameters q and Ω are related to σ2

θ and σ2
φ as

σ2
θ =

Ω

1 + q2
and σ2

φ =
Ωq2

1 + q2
.
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in the previous section apply directly to γOSTBC . More
specifically, the quadratic form in (34) consists of 2ntnr

squared zero-mean normal RVs with, in general, different
variances σ2

i , i = 1, 2, . . . , 2ntnr. Then, from (5) and (34),
λi can be defined as λi = σ2

i γt/Rnt, i = 1, 2, . . . , 2ntnr.
The PDF and CDF of γOSTBC can be obtained by using
(6) and (8) respectively, where now the coefficients ck are
suitably defined according to (11) and (12) and λi given as
above. Consequently, several performance analysis criteria of
OSTBC over Hoyt fading can be now derived. Moreover, the
accuracy of the proposed metrics can be evaluated through
appropriate closed-form truncation error bounds.

In the following section, an error probability analysis for
various modulation schemes, as well as a capacity analysis
for OSTBC schemes over Hoyt fading is presented. Note that
the Hoyt RVs corresponding to the fading coefficients may
be correlated3. In such case, a suitable transformation of the
resulting quadratic form in (34) can be applied to obtain a
quadratic form with independent normal RVs, as explained in
Section II. Hence, the performance analysis presented in the
next section applies to both independent as well as correlated,
not necessarily identical Hoyt fading channel coefficients in
OSTBC MIMO systems.

V. PERFORMANCE ANALYSIS OF OSTBC OVER HOYT

FADING CHANNELS

In this section a detailed error probability and capacity
analysis are presented for OSTBC schemes over Hoyt fading
channels, following the approach developed in the previ-
ous sections. Based on the chi-squared series representation,
novel expressions for the symbol and bit error probabilities
of various modulation schemes as well as the information
outage probability and the ergodic capacity are presented.
For all these performance criteria, simple expressions of the
truncation error bounds, which avoid the use of infinite sums
and complicated functions, are also derived.

A. Error Probability Analysis

For the error probability analysis, the calculation of integrals
of the form

P =
∫ ∞

0

pQ (γ)P (γ) dγ (36)

is required, where P (·) is a function related to the modulation
scheme. A common approach for the calculation of such types
of integrals is by using the MGF of Q [9]. It can be shown
that by following this approach integrals of the form

M =
∫ θ

0

2ntnr∏
i=1

1(
1 + 2λi

g
sin2 φ

)1/2
dφ (37)

need to be evaluated, where θ and g are modulation specific
constants. In special cases, depending on the values of the
model parameters λi, the integral M can be evaluated in
closed form. Specifically, for this to happen, all distinct
parameters λi should appear with even multiplicities, leading

3Here, correlation among Hoyt RVs is meant as correlation among their
constituent normal RVs.

to integer powers in the denominator of the integrand in (37),
i.e.,

M =
∫ θ

0

∏
λi∈S

1
(1 + 2λi

g
sin2 φ )mi

dφ (38)

where S is the set of distinct values of the parameters λi and
mi are integers. It must be noted that when mi are integers,
the PDF of Q has a closed form expression, which can also be
obtained by properly manipulating (6), (7), (13) and (14). For
these values of mi, the PDF and the MGF approaches, given
by (36) and (37) respectively, are equivalent. Nevertheless, to
the best of our knowledge, no closed form solution exists for
(37) when the model parameters λi take arbitrary values, as
is the case in the problem under consideration in this work.
To derive closed form expressions for various performance
metrics, we propose the substitution of pQ(x) in (36) by
the infinite series representation given in (6). Then, (36) is
rewritten as

P =
∞∑

k=0

ck

∫ ∞

0

f
(
γ, 2β,

n

2
+ k
)

P (γ) dγ (39)

where f (·, ·, ·) is given by (7). Additionally, using (29) bounds
on the truncation error of the SEP and BEP series can be
obtained by evaluating the integral

E =
∫ ∞

0

eb (γ)P (γ) dγ. (40)

1) SEP Expressions: In the following SEP expressions and
the corresponding truncation error bounds are derived for
various modulation schemes.

M -PAM: For an M -PAM modulation scheme, P (γ) is
given by [9]

P (γ) = δQ (a
√

γ) (41)

where Q (·) is the Gaussian Q-function, [9, eq. (4.1)] and a,
δ are given as

a =

√
6 log2 M

M2 − 1
, δ = 2

M − 1
M

. (42)

For integer m, it is shown in [9, p. 127 ] that

L (a, b, m) =

∞∫
0

f (γ, b, m)Q (a
√

γ)dγ

=
1
2

[
1 − μ

m−1∑
l=0

(
2l
l

)(
1 − μ2

4

)l
] (43)

where

μ =

√
a2b

2 + a2b
. (44)

Thus, using (39) and (43), the SEP for M -PAM can be
expressed as

Ps
PAM = δ

∞∑
k=0

ckL
(
a, 2β,

n

2
+ k
)
. (45)

Additionally, from (29) and (43), after some manipulations,
the truncation error bound of Ps

PAM can be expressed in
closed-form as

Es
PAM = δc0

n/2∑
i=1

ΔiL
(
a, 2β, ξ2i−1, N +

n

2
− 1
)

(46)
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where

L (a, b, ρ, m) =
L (a, b/ (1 − ρ) , 1)

1 − ρ
−

m∑
l=0

ρlL (a, b, l + 1)

(47)
which can be also very easily evaluated.

M -QAM: Employing a rectangular QAM scheme with MI

amplitude levels for the in-phase channel and MQ levels for
the quadrature channel, P (γ) becomes

P (γ) = δIQ (aI
√

γ) + δQQ (aQ
√

γ)
− δIδQQ (aI

√
γ)Q (aQ

√
γ)

(48)

where the coefficients δI , aI and δQ, aQ are calculated by
setting M = MI and M = MQ in (42) respectively. Thus,
from [18] the symbol error probability becomes

Ps
QAM = δI

∞∑
k=0

ckL
(
aI , 2β,

n

2
+ k
)

+ δQ

∞∑
k=0

ckL
(
aQ, 2β,

n

2
+ k
)

− δIδQ

∞∑
k=0

ckH
(
aI , aQ, 2β,

n

2
+ k
)

(49)

with

H (aI , aQ, b, m) =
1
4
− [v (aI , aQ, b, m) + v (aQ, aI , b, m)]

(50)
and

v (a1, a2, b, m) =
1√
π

m−1∑
n=0

2n−1a1

√
bΓ (n + 3/2)

(a2
1b + 2)n+1/2

n! (1 + 2n)

− 1
4π

m−1∑
n=0

ba1a22n+1

(a2
1b + 2 + a2

2b)
n+1

× 2F1

(
1, 1 + n;

3
2
;

a2
2b

a2
1b + 2 + a2

2b

)
.

(51)

where 2F1(·, ·; ·; ·) is the Gauss Hypergeometric function [16,
eq. (15.1.1)]. In the case of a square QAM, (50) can be
simplified as [9, eq. (5.30)]. Working in a similar way and
using (40) and (48) the following bound for the SEP series
truncation error can be found:

Es
QAM = c0δI

n/2∑
i=1

ΔiL
(
aI , 2β, ξ2i−1, N +

n

2
− 1
)

+ c0δQ

n/2∑
i=1

ΔiL
(
aQ, 2β, ξ2i−1, N +

n

2
− 1
)

− c0δIδQ

n/2∑
i=1

ΔiH
(
aI , aQ, 2β, ξ2i−1, N +

n

2
− 1
)

(52)

where

H (aI , aQ, b, ρ, m) =
H (aI , aQ, b/ (1 − ρ) , 1)

1 − ρ

−
m∑

l=0

ρlH (aI , aQ, b, l + 1).
(53)

M -PSK: For the case of M -PSK it is known that [9]

P (γ) =
1
π

∫ (M−1)π/M

0

exp
(
−γ log2 M

gPSK

sin2 θ

)
dθ (54)

with gPSK = sin2(π/M). It can then be shown that the SEP
is expressed as:

Ps
PSK =

∞∑
k=0

ckJ (M, 2β, n/2 + k) (55)

where J(M, b, m) can be found in [9, eq. (8.115)]. Similarly,
the truncation error bound on the SEP series is written as

Es
PSK =

n/2∑
i=1

c0Δi
J (M, 2β/ (1 − ξ2i−1) , 1)

1 − ξ2i−1

−
n/2∑
i=1

c0Δi

N+n/2−1∑
l=0

ξl
2i−1J (M, 2β, l + 1).

(56)

2) BEP Expressions: In the following, BEP expressions
and the corresponding truncation error bounds are derived for
various modulation schemes.

M -PAM BEP: For the calculation of BEP for an M -PAM
system with Gray coding, P (γ) is defined as [19]

P (γ) =
1

log2 M

log2 M∑
j=1

Pb (j, γ, M) (57)

where

Pb (j, γ, M) =
2
M

(1−2−j)M−1∑
i=0

δM (i, j)Q (ai
√

γ) (58)

with

ai = (2i + 1)

√
6 log2 M

M2 − 1
(59)

and

δM (i, j) = (−1)�i2j−1/M�
(

2j−1 −
⌊

i2j−1

M
+

1
2

⌋)
(60)

where �·� denotes the floor operator. Consequently, using (43)
the BEP can be written as

Pb
PAM =

∞∑
k=0

ck

log2 M

log2 M∑
j=1

Pbj

(
2β,

n

2
+ k, M

)
(61)

with

Pbj (2β, m, M) =
2
M

(1−2−j)M−1∑
i=0

δM (i, j)L (ai, 2β, m)

(62)
and its truncation error bound becomes

Eb
PAM =

n/2∑
i=1

c0Δi

log2 M

log2 M∑
j=1

Pbj (2β/ (1 − ξ2i−1) , 1)
1 − ξ2i−1

−
n/2∑
i=1

c0Δi

log2 M

N+n/2−1∑
l=0

ξl
2i−1

log2 M∑
j=1

Pbj (2β, l + 1).

(63)
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M -QAM BEP: Examining again the case of a rectangular
QAM with MI amplitude levels for the I-channel and MQ

levels for the Q-channel, P (γ) can be expressed as [19]

P (γ) =
1

log2 (MIMQ)

⎡
⎣log2 MI∑

j=1

PMIMQ (j, γ, MI)

+
log2 MQ∑

j=1

PMIMQ (j, γ, MQ)

⎤
⎦

(64)

with

PMIMQ (j, γ, M0) =
2

M0

(1−2−j)M0−1∑
i=0

δM0 (i, j)Q (ai
√

γ).

(65)
In this case, the coefficients ai are computed using the
expression

ai = (2i + 1)

√
6 log2 (MIMQ)
M2

I + M2
Q − 2

(66)

while the coefficients δM0 are given by setting M = M0 in
(60) and the BEP becomes

Pb
QAM =

∞∑
k=0

ck

log2 (MIMQ)

⎡
⎣log2 MI∑

j=1

Kj

(
2β,

n

2
+ k, MI

)

+
log2 MQ∑

j=1

Kj

(
2β,

n

2
+ k, MQ

)⎤⎦
(67)

with

Kj(2β, m, M0) =
2

M0

(1−2−j)M0−1∑
i=0

δM0 (i, j)L (ai, 2β, m).

(68)
Again, the truncation error bound on the BEP series can be
calculated using (40) as

Eb
QAM =

c0

log2 MIMQ

×
n/2∑
i=1

Δi

⎡
⎣log2 MI∑

j=1

Kj

(
2β, ξ2i−1, N +

n

2
− 1, MI

)

+
log2 MI∑

j=1

Kj

(
2β, ξ2i−1, N +

n

2
− 1, MQ

)⎤⎦
(69)

where

Kj (b, ρ, m, M0) =
Kj (b/ (1 − ρ) , l + 1, M0)

1 − ρ

−
m∑

l=0

ρlKj (b, l + 1, M0).
(70)

M -PSK BEP: For M -PSK with Gray-coding, a close ap-
proximation for P (γ) is [9]

P (γ) ∼= 2
max (log2 M, 2)

max(M/4,1)∑
i=1

Q (ai
√

γ) (71)

with

ai =
√

2 log2 M sin
(2i − 1)π

M
. (72)

Hence, a useful approximation of the BEP for OSTBC over
Hoyt fading channels is

Pb
PSK

∼=
∞∑

k=0

2
max (log2 M, 2)

max(M/4,1)∑
i=1

L (ai, 2β, m).

(73)

B. Capacity Analysis

The normalized capacity of an OSTBC MIMO system,
expressed in bits/sec/Hz, is given by [4]

C = R log2

(
1 +

‖H‖2
F

Rnt
γT

)
(74)

where γT is the SNR at the transmitter side. In the per-
formance evaluation of wireless communication systems, the
most commonly used capacity related criteria are information
outage probability (IOP) and ergodic capacity.

1) Information Outage Probability: IOP is defined as the
probability that a given transmission rate C0 cannot be sup-
ported [20]. Thus, denoting IOP as Pout(C0), it holds that

Pout (C0) = Pr (C < C0) = Pr
(
‖H‖2

F < H0

)
(75)

where from (74)

H0 =
Rnt

γT

(
2C0/R − 1

)
. (76)

Consequently, the IOP can be easily evaluated as

Pout (C0) = PQ (H0) (77)

where PQ(·) is the CDF of the quadratic form ‖H‖2
F given

by (8). Moreover, the truncation error bound for the IOP is
computed using (31) as

εiop (C0) = c0

n/2∑
i=1

ΔiG
(
H0, ξ2i−1, β, N +

n

2
− 1
)
. (78)

2) Ergodic capacity: Ergodic capacity 〈C〉 is defined as
the average value of the capacity [4]. By denoting with Q0

the quadratic form

Q0 =
‖H‖2

F

Rnt
γT (79)

〈C〉 is written as

〈C〉 = R

∫ ∞

0

pQ0 (x) log2 (1 + x) dx. (80)

The integral in (80) can be evaluated noting that [21]

Ψ (b, l) =
1

(l − 1)!

∫ ∞

0

xl−1 ln (1 + x) exp
(
−x

b

)
dx

= exp
(

1
b

) l∑
i=1

biΓ
(
−l + i,

1
b

) (81)
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with Γ(·, ·) being the upper incomplete Gamma function [16,
eq. (6.5.3)], thus yielding the following expression for the
ergodic capacity

〈C〉 = R log2 (e)
∞∑

k=0

ck

Ψ
(
2β, n

2 + k
)

(2β)n/2+k
(82)

where e is the Neper number. Using (81), the following bound
on the truncation error for the ergodic capacity can be obtained

E〈C〉 = R log2 (e) c0

⎡
⎣n/2∑

i=1

Δi
Ψ (2β/ (1 − ξ2i−1) , 1)

2β

−
n/2∑
i=1

Δi

N+n/2−1∑
k=0

ξk
2i−1

Ψ (2β, k + 1)

(2β)k+1

⎤
⎦

(83)

which completes the analysis.
It is interesting to note that for high SNRs, simple approx-

imate expressions for the various performance criteria can be
obtained. As it will be shown in the next section, for high
SNR the BEP, SEP and IOP truncation error bounds decrease
very rapidly. Therefore, the number of series terms that would
be sufficient for a prescribed accuracy is reduced. Based on
this observation, for high SNR the series expressions for the
BEP, SEP and IOP could be simplified and approximated by
their first terms. For instance, from (49) the SEP of M -QAM
would be expressed as follows:

Ps
QAM ≈ c0

[
δIL

(
aI , 2β,

n

2

)
+ δQL

(
aQ, 2β,

n

2

)
− δIδQH

(
aI , aQ, 2β,

n

2

) ]
.

(84)

VI. PERFORMANCE EVALUATION AND DISCUSSION

In this section, performance evaluation results will be pre-
sented comparing the previously derived theoretical analysis
with computer simulations. In these experiments, we have con-
sidered a 2×2 MIMO system with Alamouti space-time cod-
ing [4]. In Fig. 1, truncation error bounds of the chi-squared
series PDF for two Hoyt fading scenarios are depicted. In the
first scenario, the channel fading coefficients are quite similar,
i.e., (Ω1,1, q1,1) = (0.25, 0.9), (Ω1,2, q1,2) = (0.25, 0.8),
(Ω2,1, q2,1) = (0.25, 0.75), (Ω2,2, q2,2) = (0.25, 0.7), re-
sulting in a small spread of the quadratic form parameters
λi in (5). In the second scenario, a large spread is ob-
tained by selecting the Hoyt parameters as (Ω1,1, q1,1) =
(0.4, 0.4), (Ω1,2, q1,2) = (0.3, 0.5), (Ω2,1, q2,1) = (0.2, 0.6),
(Ω2,2, q2,2) = (0.1, 0.8). In both cases, the values of the
parameter β have been chosen according to (10). Moreover,
we have considered N = 15 and N = 20 for the first
and second scenarios, respectively. It can be observed from
Fig. 1 that in both fading scenarios the proposed bound is
meaningful and much tighter than the bound derived in [3],
with the latter appearing to be impractical for large spreads of
the quadratic form parameters. In the remaining simulations
presented below, a 2× 2 Alamouti scheme following scenario
2 has been employed.

In Fig. 2, both theoretical and simulation curves of the SEP
for various modulation schemes are depicted. The theoretical
curves were obtained from (45), (49) and (55) for various
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Fig. 1. Comparison of chi-squared series PDF truncation error bounds.
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Fig. 2. SEP theoretical and simulations curves for several modulation
schemes.

values of M . To obtain a truncation error bound that is at
least one order of magnitude lower than the corresponding
SEP value, a number of N = 25 series terms was required.
It has been observed through extensive computer simulations
that one order of magnitude is a good compromise, which
allows for sufficiently tight truncation error bounds and rel-
atively small number of retained series terms. The almost
perfect match of theoretical and simulation curves verifies the
accuracy and fast convergence of the chi-squared series in
representing the PDF.

The truncation error bound on the SEP series for 4-PAM
and several values of N given in (46) is shown in Fig.
3. It can be observed that a slight increase in the number
of terms in the series leads to a significant improvement
of the proposed bound. Moreover, it can be seen that for
high SNR values the bound becomes negligibly small for all
choices of N . This is also confirmed in Fig. 4 where the
SEP series theoretical truncation error bound is plotted for
several modulation schemes and N = 25 according to (46),
(52) and (56). It can be seen from the figure that as the SNR
increases, the choice N = 25 results in very small values
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Fig. 3. Truncation error bound for the SEP series of 4-PAM for several
values of N .
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Fig. 4. SEP truncation error bound for several modulation schemes and
N = 25.

for the truncation error bound, that are multiple orders of
magnitude lower than the calculated SEP . Thus, for high SNR
values, a very small number of terms would be adequate for
the accurate calculation of the SEP. Note that the same holds
for all performance metrics considered in the sequel.

BEP theoretical and simulations results for various mod-
ulation schemes are illustrated in Fig. 5. Theoretical curves
were obtained using (61), (67) and (73). The number of terms
N was taken equal to 20. Again, it can be observed that
analytical and simulation curves almost coincide. In addition,
the truncation error bounds on the BEP series for several PAM
and QAM schemes as given by (63) and (69) are shown for
N = 20 in Fig. 6. Clearly the derived truncation error bounds
make sense and thus can be considered as a fairly reliable
criterion, when evaluating the accuracy of the chi-squared
series expansion approach. It must be noticed that due to the
different analytical expressions of various performance criteria
and their corresponding truncation error bounds, a different
number of series terms is required for each criterion in order
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Fig. 5. BEP theoretical and simulation curves for PAM, QAM and PSK
modulation schemes and N = 20.
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Fig. 6. BEP truncation error bounds for PAM and QAM and N = 20.

to attain a predefined estimation accuracy.
In Fig. 7, the IOP is plotted as a function of the SNR for

C0 = 3bits/sec/Hz and N = 25. The theoretical curves for the
IOP and the corresponding truncation error bound have been
obtained form (77) and (78), respectively. We observe that
there is a perfect match between theoretical and experimental
results, while the bound is kept at least one order of magnitude
lower than the IOP for all SNRs. Finally, theoretical and
experimental ergodic capacity curves are presented in Fig. 8.
In the same figure the theoretical truncation error bound of
the ergodic capacity series is also plotted for N = 30. The
theoretical curves shown in the figure are obtained from (82)
and (83) respectively. Again, simulations verify completely the
presented analytical results.

VII. CONCLUSION

This paper has presented a new perspective for the perfor-
mance evaluation of OSTBC wireless communication systems.
A basic property of OSTBC is that the SNR at the receiver
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Fig. 7. Information outage probability versus SNR for C0 = 3bits/sec/Hz
and N = 25.
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Fig. 8. Ergodic capacity for several values of the SNR and N = 30.

for several fading models can be expressed as a quadratic
form in normal RVs. Motivated by this, a statistical analysis
of central, positive definite quadratic forms in normal RVs
has been presented, stemming from the chi-squared series ex-
pansion approach. Novel, tight series truncation error bounds
have been derived for both the PDF and CDF of central,
positive definite quadratic forms in normal RVs. In an OSTBC
wireless communication setup, such a form appears when the
channel fading coefficients are Hoyt distributed. Based on this
property, a detailed error probability and capacity analysis
has been presented for OSTBC systems over Hoyt fading.
Novel SEP, BEP, IOP and ergodic capacity infinite series
expressions have been obtained, whose accuracy has been
evaluated by newly derived truncation error bounds expressed
in mathematically simple forms. Extensive computer simulated
performance evaluations results have also been presented,
which have completely verified the proposed analytical results.

APPENDIX

The purpose of this appendix is to derive an expression
for the truncation error bound, when the parameters ξ2i−1 in
(20) are non distinct. To this end, it is assumed that Sζ =
{ζ1, ζ2, . . . , ζl} is the subset of distinct values of the set Sξ =
{ξ1, ξ3, . . . , ξn−1} and {p1, p2, . . . , pl} are the multiplicities
of the elements of Sζ with respect to Sξ. Using Sζ , the MGF
of V is written as

MV (t) =
l∏

i=1

1
(1 − 2ζit)

pi
=

l∑
i=1

pi∑
j=1

Ai,j

(1 − 2ζit)
j (85)

where Ai,j are easily computed [22]. The moments of V will
be given by

E
[
V k
]

=
l∑

i=1

pi∑
j=1

Ai,j
Γ (j + k)

Γ (j)
(2ζi)

k
. (86)

It is thus easy to observe from (15) that in this case the bound
on the truncation error is

eb (x) =
c0 exp

(
− x

2β

)
2β
(

n
2 − 1

)
!

×
∞∑

k=N+1

l∑
i=1

pi∑
j=1

Ai,j (j)k ζk
i(

n
2

)
k
k!

(
x

2β

)n/2+k−1
(87)

with (·)k denoting the Pochhammer symbol. Thus, recalling
the definition of the Hypergeometric function 1F1(·; ·; ·), [23,
eq. (07.20.02.0001.01)],

1F1 (a; b; z)
Δ=

∞∑
k=0

(a)k zk

(b)k k!
(88)

eb(·) becomes

eb (x) =
c0

(
x
2β

)n/2−1

exp
(
− x

2β

)
2β
(

n
2 − 1

)
!

×
⎡
⎣ l∑

i=1

pi∑
j=1

Ai,j1F1

(
j;

n

2
;
ζix

2β

)

−
l∑

i=1

pi∑
j=1

Ai,j

N∑
k=0

(j)k

(
ζix
2β

)k

(
n
2

)
k
k!

⎤
⎥⎦

(89)

Note that for integer a, b and a < b, which holds in our
case, the expression of the hypergeometric function 1F1 is
simplified as in [23, eq. (07.20.03.0024.01)].
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