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BLAS: Broadcast Relative Localization and
Clock Synchronization for Dynamic Dense

Multi-Agent Systems
Qin Shi, Xiaowei Cui, Sihao Zhao, Shuang Xu, and Mingquan Lu

Abstract—The spatiotemporal information plays crucial roles
in a multi-agent system (MAS). However, for a highly dynamic
and dense MAS in unknown environments, estimating its spa-
tiotemporal states is a difficult problem. In this paper, we
present BLAS: a wireless broadcast relative localization and clock
synchronization system to address these challenges. Our BLAS
system exploits a broadcast architecture, under which a MAS
is categorized into parent agents that broadcast wireless packets
and child agents that are passive receivers, to reduce the number
of required packets among agents for relative localization and
clock synchronization. We first propose an asynchronous broad-
casting and passively receiving (ABPR) protocol. The protocol
schedules the broadcast of parent agents using a distributed time
division multiple access (D-TDMA) scheme and delivers inter-
agent information used for joint relative localization and clock
synchronization. We then present distributed state estimation
approaches in parent and child agents that utilize the broadcast
inter-agent information for joint estimation of spatiotemporal
states. The simulations and real-world experiments based on
ultra-wideband (UWB) illustrate that our proposed BLAS cannot
only enable accurate, high-frequency and real-time estimation
of relative position and clock parameters but also support
theoretically an unlimited number of agents.

Index Terms—Relative Localization, clock synchronization,
multi-agent system, ultra-wideband, wireless sensor network.

I. INTRODUCTION

ALONG with the artificial intelligence tendency and the
rapid development of electronic, sensor and control tech-

nologies, agents such as unmanned aerial vehicles (UAV) and
unmanned ground vehicles (UGV) have been made possible
to autonomously move in harsh environments and operate
remotely without human intervention. Because of their flex-
ibility, reconfigurability, and intelligence, there has been a
tremendous increase in the use of such intelligent agents
in tasks like target search and track [1], photovoltaic plant
inspection [2], and planet exploration [3]. Over the past few
years, systems containing only a single agent have been
intensively investigated and used. However, the capability of a
single agent is limited. In the future applications with growing
complexity and uncertainty, deploying a team of small agents,
namely a multi-agent system (MAS) is anticipated to offer
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better capabilities beyond only a single agent, in terms of
robustness, scalability, and effectiveness.

Realizing this vision will require MASs to overcome some
new unique challenges. Among these, real-time precise relative
localization and clock synchronization are two key challenges.
Relative localization is the process of determining the multi-
agent dynamic topology, and clock synchronization provides a
common time reference for distributed agents. The spatiotem-
poral determination is crucial for MASs to perform basic oper-
ations: 1) Coordination: Spatiotemporal coordination between
agents is necessary for a MAS to collaboratively carry out
tasks effectively. The difficulty of the coordination operations
strongly lies in the knowledge of the relative position and clock
parameters among the agents. If these parameters are known,
effective coordination can be achieved by involving the state of
all the agents at the same time [4]. 2) Data fusion: Data fusion
is an essential operation to share and integrate sensory data
collected by distributed agents. To fuse in a meaningful way,
these data are coupled with time and location information.
However, the information is expressed with respect to each
agent’s local reference and needs to be transformed to a
common reference. Such a transformation requires relative
localization and clock synchronization of MASs. Moreover,
the inter-agent collision avoidance, collaborative environment
mapping, and formation control etc. also require spatiotem-
poral information. Therefore, relative localization and clock
synchronization have become pressing issues in the design and
advancement of MASs.

Using external spatiotemporal reference is a practical so-
lution. External reference options, such as the well-known
Global Positioning System (GPS), optical motion capture
systems, and the trendy ultra-wideband (UWB) anchors, have
powered MASs for recreational or professional use [5]–[7].
Terrestrial wireless communications and the broadcast signals
of opportunity (SOPs), such as cellular signals [8]–[11] and the
signals from Iridium system [12], have also been demonstrated
to navigate MASs in recent studies. In all cases, by comparing
absolute position and time relative to the external reference,
the relative localization and clock synchronization among each
agent can be straightforwardly determined. However, such
references require pre-installed infrastructures, which restricts
the maneuverability of agents and are not always available or
reliable in unknown environments.

To enable future multi-agent applications in any environ-
ment, relative localization and clock synchronization must rely
on inter-agent measurements other than external references

ar
X

iv
:1

91
1.

11
99

5v
1 

 [
cs

.R
O

] 
 2

7 
N

ov
 2

01
9



Preprint of article submitted to IEEE Transactions on Aerospace and Electronic Systems

[13]. We notice that in the wireless sensor network (WSN)
community, relative localization and clock synchronization are
also necessary for spatiotemporal information acquisition in
each sensor node for meaningful sensory data processing.
Typically, the localization of sensor nodes requires inter-node
ranging measurements. Regarding the ranging measurements,
a popular choice is to use the time-of-arrival (TOA) metric,
which relies on precise clock synchronization and time man-
agement. The clock synchronization is typically conducted
in a two-way timing message exchange mechanism, which
requires two-way TOA measurements between nodes [14].
Accordingly, the synergy between relative localization and
clock synchronization is obvious. Various methods for joint
localization and synchronization (JLAS) in WSN using TOA
measurements have been proposed [15]–[17].

Indeed, a MAS can be treated as a mobile WSN, which
motivates us to jointly perform relative localization and clock
synchronization in MASs using the aforementioned methods
in WSNs. However, the aforementioned methods are only suit-
able for static (or partially static) and sparse WSNs with low
updating frequency requirements, which are difficult to apply
to MASs. For MASs without external spatiotemporal reference
support, we identify the additional three main challenges to the
relative localization and clock synchronization problems:

1) High-density. MASs typically consist of dense small
agents and act like swarms. Deriving two-way TOA
measurements in a round-robin way for all agents is
time and power consuming. Special considerations on
communication protocol should be given in developing
relative localization and clock synchronization methods,
thus supporting theoretically unlimited agents simulta-
neously.

2) High-maneuverability. MASs are characterized by its
high mobility and dynamics, e.g., with a maximum
speed of 50 m/s. The collaboration control operations
need high-frequency and real-time (e.g., 100 Hz) input
of spatiotemporal information of all agents. However,
conventional relative localization and clock synchroniza-
tion methods in WSNs typically only provide one-shot
estimates during a long period.

3) SWaP constraints. Last but not least, small agents
usually come with size, weight, and power (SWaP)
constraints, limiting their sensory payload and onboard
resources for computation, signal processing, and com-
munication.

To address all these challenges, we present BLAS, a precise,
effective and reliable relative localization and clock syn-
chronization system based on wireless broadcast architecture.
The broadcast architecture is introduced to reduce the inter-
agent communication overhead devoted to localization and
synchronization in the networked MAS. Under the architec-
ture, a MAS is categorized as parent and child agents as
shown in Fig. 1. Parent agents act like moving beacons by
periodically broadcasting wireless packets and child agents
only passively receive the on-air packets. In BLAS, we first
propose an asynchronous broadcasting and passively receiving
(ABPR) communication protocol. The protocol serves two

Fig. 1. A MAS is categorized into parent and child agents. Parent agents act
like moving beacons by periodically broadcasting wireless radio packets, and
child agents only passively receive the packets.

purposes: it schedules the broadcast of the parent agents using
a distributed time division multiple access (D-TDMA) scheme
and it also specifies the information embedded in broadcast
packets, which is dedicated to joint relative localization and
clock synchronization for both parent and child agents. Using
the protocol, a two-way link can then be established between
any pair of parent agents. We then present distributed state
estimation approaches in parent agents to establish a moving
spatiotemporal reference frame using the two-way packets. A
distributed approach in child agents is also presented to jointly
estimate the spatiotemporal states with respect to the pre-
defined moving spatiotemporal reference, by only passively
receiving the broadcast packets.

We note that BLAS only requires the broadcast packets
to yield the inter-agent TOA measurements, thus can be
considered as an enabling technique for MASs operating in
any environment. The main contributions of this paper are
summarized as follows:

• A novel wireless broadcast architecture based on which
a relative localization and clock synchronization system
is developed for dynamic and dense MASs with little
resource requirements.

• A versatile communication protocol that simultaneously
supports joint relative localization and clock synchroniza-
tion for both parent and child agents.

• Real-time implementation of the system utilizing the off-
the-shelf low-cost and light-weight hardware.

The rest of the paper is organized as follows. We first
review the related literature on relative localization and clock
synchronization in Section II. We then give our model formu-
lations in Section III. In Section IV, we present our proposed
ABPR protocol. We then present the joint relative localization
and clock synchronization methods of parent agents and child
agents in Section V and Section VI. Finally, simulations
and real-world experiments are evaluated in Section VII and
Section VIII. Section IX concludes the paper with comments
on future works.

2



Preprint of article submitted to IEEE Transactions on Aerospace and Electronic Systems

II. RELATED WORK

This section gives a concise review of related literature on
relative localization and clock synchronization. These prob-
lems have been widely studied in various areas, including
wireless sensor networks, robotics, and signal processing. The
related scholarly works are extensive and hence we just focus
on the most relevant papers.

A. Relative Localization

Relative localization refers to the problem of perceiving the
position of other agents in the surroundings. The perception
requires onboard sensors to provide inter-agent measurements.
Numerous implementations have been developed utilizing dif-
ferent onboard sensors. According to the sensory modality, we
can categorize these implementations into two groups: indirect
and direct relative localization.

Indirect relative localization in MASs relies on optical
sensors and/or laser scanners that can extract the environment-
specific static features and landmarks. In these agents, the
relative position is indirectly derived from observations of
the same features and landmarks. For example, cameras are
mounted in three unmanned aerial vehicles (UAVs) to identify
the common objects in the environment, and the relative posi-
tion between UAVs is calculated from these correspondences
[18]. An alternative method exchanges the laser range scans
between pairs of robots and determines the relative positions
by estimating the overlap of their partial maps [19]. However,
observation of the same scene is occasional and with great
uncertainty. In the robotics community, the relative localization
is always coupled with the environment mapping process,
which leads to the multi-robot Simultaneous Localization
and Mapping (SLAM) problem. The precise and continuous
relative position estimates are derived by localizing the robots
in a common global incremental map. Recent research has
experimentally shown that multi-robot SLAM utilizing cam-
eras [20] or laser scanners [21] can produce accurate relative
position estimates. Such an approach builds on high-resolution
cameras or high-quality laser scanners and on computationally
expensive algorithms, such as smoothing [20] and particle
filtering [21], to reduce uncertainty. Consequently, SLAM
based relative localization requires heavy sensor payload and
a powerful processor which is not always available on SWaP
constrained agents.

Alternatively, direct relative localization is pursued using
direct inter-agent measurements. For example, an audio-based
approach directly perceives the neighbors by exploiting the
direction and intensity of the sound emitted by its neighboring
agents’ onboard piezo [22]. However, the accuracy is relatively
low due to the sound noise of engines and/or propellers
[23]. High-frequency-modulated infrared have been used to
enable nearby agents to determine the relative position of the
sender with a fast update rate [24], however, the relatively
short operating range of a few meters is not suitable for
large-scale environments. A vision-based approach detects
the relative position of neighbors by recognizing the unique
localization image patterns attached to neighboring agents
[25]. However, the constraints specified by camera shutter

frequency and field of view prevents its use for high dynamic
agents. The natural weakness of visual methods is obvious at
night or in light-changing environments. In all cases, the inter-
agent measurements are derived between each pair of agents
which produces redundancy and need more measuring time.
Therefore, scalable implementations for high-density agents
are impractical.

A much preferable approach for scalable relative localiza-
tion is to communicate the inter-agent measurements through
the networked MASs, to which we refer as mutual relative
localization [26]. Hence, there is a need for MASs to establish
a communication link between the agents as well as to produce
inter-agent measurements. UWB is a promising sensory tech-
nology to endow MASs with the ability of simultaneous com-
munication and range measuring [27], [28]. The fine temporal
resolution and robustness to multipath enable reliable and
precise direct inter-agent ranging measurements. Additionally,
the advent of small, low-cost and low-power UWB transceiver
chips makes it a suitable sensory choice for small SWaP
constrained agents. To this end, our work builds on the UWB
technology to realize mutual relative localization in MASs.
To the best of our knowledge, no studies have demonstrated
a UWB based mutual relative localization for high-density
and high-maneuverability agents. Of particular relevance is
the numerous works for the mutual relative localization of
static agents in the WSN community [29]–[31]. Closest in
spirit to our approach is the work of ”SHARP” [29], which
first localized several reference nodes then localized the rest of
the nodes with respect to the reference nodes. The difference
between our work and the works in WSN is that our work
deals with the dynamic agents with the assumption that all
agents are in the UWB communication range of each other.

B. Clock Synchronization

In MASs, there is no global clock. Each agent has its own
internal clock that reads its own time notion. Although they
might be synchronized when they start, the frequency of the
oscillators in each agent slightly differs from each other, thus
leading to a drift in the notion of time. Clock synchronization
has been widely investigated in wired networks, for example,
the well-known Network Time Protocol (NTP) has been
widely used for time synchronization on the Internet [32].
However, they are not suitable for wireless networked MASs
which have potential motion, SWaP constraints and signal
interference.

Clock synchronization is also a widely studied topic in
the WSN community [14]. In WSNs, it can be achieved
by sending a sequence of timing messages to the receiver
sensors. The receiver sensors record the receiving time of
the broadcasting messages and extract the embedded broad-
cast time information for synchronization processing. Gen-
erally, there are two different approaches according to the
message transferring protocol: sender-receiver synchronization
(SRS) and receiver-receiver synchronization (RRS). SRS is
performed using the traditional two-way message exchange
mechanism to synchronize the receivers with the sender, such
as Romer’s protocol [33]. Instead of interacting with the
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sender, RRS compares the receiving time of a same broadcast
timing message among a set of receiving nodes to synchronize
the receivers. A typical approach is the Reference-Broadcast
Synchronization (RBS) [34]. However, to achieve network-
wide synchronization, SRS and RRS approaches require a
numerous number of timing messages, thus are time and power
consuming, and increase communication overheads in dense
networks. The Pairwise Broadcast Synchronization (PBS) is
a promising way to reduce the overall consumption, which
innovatively combines the RRS and SRS protocols [35]. In
PBS, groups of nodes are synchronized by only passively
receiving timing messages from parent nodes which perform a
pairwise synchronization using SRS mechanism. This mainly
motivates our work in this paper to tackle the high-density
challenge of MASs. However, PBS assumes the distances
between some nodes are known, which is not suitable for
dynamic networks, e.g., networked MASs.

C. JLAS

The need to recover the distances between nodes for
clock synchronization has driven the development of JLAS
algorithms. As we have mentioned in the previous section,
the distances can be recovered through TOA measurements,
which require fine clock synchronization between nodes.
Consequently, the distance based localization problem and
the clock synchronization problem is highly related and can
be jointly tackled. An early work [15] jointly solved the
problems by first conducting clock synchronization and then
localization using the same communication means, which
is designed for static WSNs requiring low updating rate.
Recently, JLAS have been solved simultaneously in one step.
For example, a joint maximum likelihood estimator and a
least squares (LS) estimator were proposed to determine the
spatiotemporal information of an unknown sensor node with
accurate anchors available, and a generalized total LS scheme
is proposed with inaccurate anchors [36], however, they are
computationally expensive. A low-complexity solution based
on the linearized equations from TOA measurements and a
weighted least square (WLS) criterion have proven to achieve
a better estimation performance [37]. Approximately efficient
and closed-form solutions were developed in [38]. However,
all these methods require pre-installed static anchors with
known positions and clock parameters. They have not yet been
extended to the case with mobile anchors of unknown states.

An insightful JLAS approach considering unknown anchors’
states was proposed in [39]. It adopted a collaborative radio
SLAM framework to simultaneously estimates the anchors’
states with the MASs’ states. Under the framework, each agent
fused its onboard inertial information, GPS information, TOA
measurements from anchors and inter-agent information from
its neighboring agents to estimate all the states. In contrast
to this fusion strategy, we choose to separately estimate the
states of the mobile anchors (i.e., parent agents), and the
states of each agent (i.e., child agent) using only UWB TOA
measurements. In this way, the potential algorithm complexity
improvement due to inter-agent information for a dense MAS
can be eliminated.

Our proposed system can be treated like GPS in some
aspects. JLAS in child agents using TOAs can be considered
the same process in GPS user end, which was addressed
using Bancroft algorithm [40]. However, Bancroft assumes
the TOAs are measured concurrently, which is reasonable
in GPS due to the code division multiple access (CDMA)
scheme. For MASs utilizing TDMA scheme, the TOAs are
measured consecutively. If the minor time difference between
the consecutive TOAs are not taken into account during joint
estimation, significant error can arise for high-maneuverability
agents.

III. MODEL FORMULATION

A. Problem Statement

This paper studies the problem of relative localization and
clock synchronization for a highly dynamic and dense MAS in
unknown environments utilizing UWB technology. We focus
on 2D space localization due to its practical advantages of
easier implementation and experimental evaluation. Extension
to 3D space of our proposed ideas is not difficult.

Suppose a MAS M is composed of M mobile agents and
is categorized into P parent agents and C child agents. Let
P = {1, · · · , P} denotes the set of parent agents with unique
identification indices and C = {P + 1, · · · , P +C} the set of
child agents. The cardinality of the sets, i.e., P and C gives the
total number of parent agents and child agents in the MAS,
and M = P ∪ C. Every agent is equipped with an UWB
transceiver. For parent agents, the UWB transceiver is able to
broadcast and receive UWB packets. For child agents, it only
passively receives the on-air packets. We assume that the child
agents are in the communication range of parent agents and
the communication link between parent agents are available all
the time. This is reasonable considering the maximum UWB
communication range is relatively long and the topology size
of swarmed MASs is relatively small. The goal of this paper is
to real-time estimate the relative positions xi(t) = [xi, yi]

T of
agent i ∈M with respect to a reference coordinate attached to
the reference agent j (usually j = 1), as well as the relative
clock parameters T j

i (t), ωj
i (t) with respect to the reference

agent.

B. Clock Model

Each UWB transceiver hosts an internal hardware clock,
which is used to 1) timestamp the receiving and broadcasting
event of UWB packets; 2) schedule the signal broadcasting;
3) synchronize the agents’ clock. Here we note that the clock
synchronization between the agent and its UWB transceiver
is addressed by a wired connection. For simplification, we
refer the clock of an agent as the clock of the corresponding
UWB transceiver. The clock value Ti(t) of an agent i ∈M is
then read by counting the oscillations in the hardware clock
oscillator which runs at a particular frequency, where t is
the absolute reference time. For a perfect clock, Ti(t) = t.
However, the physical oscillators in each agent slightly differ
from others due to environment changes, such as ambient
temperatures and magnetic field, thus leading to frequency
instabilities and the variation of clock value [41]. Using the
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terminology in [42], we denote the clock offset of agent i
with respect to the perfect clock as T 0

i (t), and the clock skew
(the difference in the frequencies) of agent i with respect to
the perfect clock as ω0

i (t). The clock value of agent i is then
given as

Ti(t) = t+ T 0
i (t). (1)

The agent clock parameters are given by c0
i = [T 0

i , ω
0
i ]T ,

which consist of its clock offset and clock skew. The agent
clock’s dynamics can be modeled as [43]

˙c0
i (t) = Fc0

i (t) + ni(t), (2)

F =

[
0 1
0 0

]
, ni =

[
nT 0

i

nω0
i

]
,

where nT 0
i

and nω0
i

are modeled as mutually independent
zero-mean white noises. It is assumed that the collections of
{nT 0

i
| i ∈ M} and {nω0

i
| i ∈ M} are both independent

and identically distributed with power spectra SnT
and Snω ,

respectively.
However, there is no global absolute time reference in

MASs, the clock offset and the clock skew of an agent cannot
be measured. Typically, any agent’s clock can be chosen as
a time reference, hence we only concern about the relative
clock offset and relative clock skew. Therefore, we define the
relative clock offset and clock skew of agent i with respect to
agent j at time t, T j

i (t) and ωj
i (t), as follows:

T j
i (t) = T 0

i (t)− T 0
j (t), (3)

ωj
i (t) = ω0

i (t)− ω0
j (t). (4)

If agent i and agent j are perfectly synchronized, then we
have: T j

i (t) = 0 and ωj
i (t) = 0. It can be readily seen that the

relative clock parameters evolve according to:

˙
cji (t) = Fcji (t) + n(t), (5)

cji =

[
T j
i

ωj
i

]
, n =

[
nT
nω

]
,

where nT and nω are with power spectra 2SnT
and 2Snω ,

respectively.

C. Measurement Model

Consider an UWB packet broadcast from a parent agent
j ∈ P to an arbitrary agent i ∈ M, the broadcasting time
tj�i
tx and reception time tj�i

rx , both expressed in absolute time
reference, are related by:

tj�i
rx = tj�i

tx + τ ji (ttx), (6)

where τ ji (ttx) is the signal delay that can be characterized into
several distinct parts:

τ ji (ttx) = τj + τ ij(ttx) + τi, (7)

where τj is the broadcasting antenna delay of agent j, τi the
receiving antenna delay of agent i, and τ ij(ttx) the propa-
gation delay. The antenna delays are constant and dependent
on the antenna design, thus are considered as a bias in the
TOA measurement [44]. In this paper, we assume that they

are deterministic and can be pre-calibrated. The propagation
delay τ ij(t) is given by:

τ ij(t) =
dij(t)

vc
,

where vc is the light speed, and dij(t) is the distance between
agent i and j, dij(t) = ‖xj(t)− xi(t)‖.

Typically, the reception time and broadcasting time are
measured using individual agents’ internal clocks according
to (1). We denote the measured broadcasting timestamp at
agent j and the reception timestamp at agent i as Tj(t

j�i
tx ) and

Ti(t
j�i
rx ) respectively. The TOA measurement is then given by:

τ(tj�i
tx ) = Ti(t

j�i
rx )− Tj(tj�i

tx ) + nij(tj�i
rx ), (8)

where nij(tj�i
rx ) denotes the random delay caused by estima-

tion errors on the stamping process, such as due to noise and
multipath. The random delay is modeled as independent and
identically distributed Gaussian noise [34], nij ∼ N (0, ξ2).
Since the clocks between agents are not synchronized, using
(1), (3), (2) and (6) the TOA measurement has the following
form:

τ(tj�i
tx ) = T j

i (tj�i
tx ) + τ ji (tj�i

tx ) +

∫ tj�i
rx

tj�i
tx

Ṫ 0
i (τ)dτ + nij(tj�i

rx ).

The first item of the equation corresponds to the relative clock
offset between the broadcasting and the receiving agent at
broadcasting time. The sum of following two items corre-
sponds to the signal delay which is expressed in the agent
i’s clock. Practically, the magnitude of the clock skew ω0

i is
unknown and can be up to ±20 parts per million (ppm) as the
IEEE 802.15.4a standard indicates [45]. Consider the worst
case ω0

i of a constant 20 ppm over the propagation interval,
the integration part is then approximately 2× 10−5 · τ ji (tj�i

tx ),
which is obviously much smaller than τ ji (tj�i

tx ). Consequently,
by ignoring the integration term, we come to the following
approximation of TOA measurement:

τ(tj�i
tx ) ∼= T j

i (tj�i
tx ) + τ ji (tj�i

tx ) + nij(tj�i
rx ). (9)

At this point, we have shown that the TOA measurement is a
function of the clock parameters and the physical relative posi-
tions of agents (correspond to the signal delay). Consequently,
TOA measurements can be used for joint relative localization
and clock synchronization.

IV. THE ABPR PROTOCOL

In our proposed BLAS system, the broadcasting of UWB
packets is only performed by parent agents. All the remaining
M −1 agents (including other parent agents and child agents)
will receive the broadcast packets to derive the TOA mea-
surements for state estimation. In order to support such an
architecture, we employ an ABPR communication protocol,
which schedules the broadcast of packets in parent agents and
specifies a common packet format used for relative localization
and clock synchronization in both parent and child agents.

5



Preprint of article submitted to IEEE Transactions on Aerospace and Electronic Systems

Fig. 2. The ABPR protocol with an example sequence of the broadcast UWB
packets, which are scheduled by D-TDMA scheme. Solid lines refer to the
packets received by parent agents, in which case a two-way link is formed.
Dotted lines refer to the passively received packets in child agents.

Fig. 3. The ABPR protocol with a D-TDMA frame containing P packets
(upper). Each packet contains specially designed data contents for common
use (bottom).

A. D-TDMA scheduling

In order to achieve collision-free broadcasting of UWB
packets between parent agents, the broadcasting is scheduled
in a round-robin way as illustrated in Fig. 2. We employ a dis-
tributed time division multiple access (D-TDMA) scheduling
scheme, which is implemented on individual parent agents to
decide if and when to broadcast a packet. Fig. 3 shows a D-
TDMA frame containing P UWB packets. Typically, agents
are allocated a predefined time slot for packet broadcasting
[7]. However, the clocks between agents will drift in a long-
running, thus leading to a collision of the predefined time
slots. Consequently, it is necessary for the MAS to adjust
the broadcasting time slots during operation. This is enabled
through information exchange between agents in D-TDMA,
which is summarized in Algorithm 1.

D-TDMA starts with an initialization procedure. Once pow-
ered on, parent agent i will listen on the on-air packets for
a specific while to see if any other parent agent already
broadcasting. If no packets are received, it is the first one pow-

ered on (line 3). It then broadcasts a first packet (line 4) and
determine the delay time tdelay until next packet broadcasting
(line 5). Straightforwardly, the delay time is determined by
the multiplication of the number of parent agents and time
slot intervals ∆ts, i.e., the time interval of a D-TDMA frame.
Otherwise, it will receive a first packet from neighboring
parent agents, and extract the identification of the broadcasting
agent embedded in the packet (line 6). It then schedules its
broadcasting according to the identifications (line 7-10). After
initialization, subsequent adjustment procedure of D-TDMA
adjusts the scheduled broadcasting delay upon receiving a
packet. When parent agent i broadcasts a packet according
to scheduling, it immediately sets the broadcasting delay of
the next packet (line 16). The broadcasting delay is then
adjusted by comparing the broadcasting agent identifications
(line 18-22). Note that, the adjustment is performed repeatedly
on every packet reception (line 17). In this way, the broadcast-
ing time slots of parent agents are allocated and adjusted in a
global scope during run time.

Since the D-TDMA is performed in real time, parent agents
may be inserted to or removed from the MAS during operation,
making the system dynamically scalable and robust to failure.
For example, when a new parent agent is inserted, it will
first listen to the on-air UWB signals and then synchronize
to the network to find an available time slot. If a time slot
is available, it successfully joins the network and then begins
to broadcast UWB packets. If no time slots are available, we
can theoretically combine other channel access methods, such
as frequency division multiple access (FDMA) to expand the
capability of the UWB network.

Algorithm 1 D-TDMA Scheduling
1: let i be an arbitrary parent agent.
2: procedure INITIALIZATION
3: if i is the first one powered on then
4: Broadcast a first packet.
5: tdelay ← P ·∆ts.
6: else if Receive a first packet from j ∈ P \ {i} then
7: if j < i then
8: tdelay ← (i− j) ·∆ts.
9: else if j > i then

10: tdelay ← (i+ P − j) ·∆ts.
11: end if
12: end if
13: end procedure
14: procedure ADJUSTMENT
15: Broadcast a packet according to scheduling.
16: tdelay ← P ·∆ts.
17: if Receive a packet from j ∈ P \ {i} then
18: if j < i then
19: tdelay ← (i− j) ·∆ts.
20: else if j > i then
21: tdelay ← (i+ P − j) ·∆ts.
22: end if
23: end if
24: end procedure
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B. Packet format
D-TDMA requires information of the broadcasting agent

identification embedded in the packet. Furthermore, clock syn-
chronization and relative localization also require information
exchange between agents. To this end, we specify the packet
format in Fig. 3. Each packet begins with a synchronization
header consisting of ranging preamble and a start-of-frame
delimiter (SFD), after which follow the PHY header (PHR)
and a data field. The packet format is compatible with the
IEEE 802.15.4a standard [46]. Data contents are embedded in
the packet data field, which contains the unique identification
index i ∈ P , the reported broadcasting timestamp Ti(ti�tx ), the
relative position xi, and local clock parameters Ci evaluated
at the broadcasting time. The local clock parameters are
described in Section V-A.

We note that the relative position and local clock parameters
are tracked between parent agents using the reported broad-
casting timestamp, as described in Section V, and the states
of child agents are determined using all the data contents, as
described in Section VI. To this end, the specially designed
packet format can be used for general purposes, which signif-
icantly reduces the communication overhead.

Given specific D-TDMA slot interval, the system broadcast
rate is dependent on the number of parent agents, as the child
agents only receive packets. In practice, we set the slot interval
∆ts = 1 ms, which is longer than the UWB packet length of
approximate 0.3 ms. By deploying P = 10 parent agents,
we achieve a 100 Hz broadcast rate. This enables a relatively
high-frequency estimation of clock parameters and relative
positions, which supports MASs with high maneuverability.

V. JLAS OF PARENT AGENTS

This section illustrates how parent agents can jointly track
their relative positions and clock parameters using two-way
broadcast packets. The JLAS is conducted in a two-step
approach, which first performs clock synchronization and then
relative localization. In contrast to [15], which adopts a similar
two-step approach for static networks with low updating rate,
we focus on the high-frequency and real-time estimation for
parent agents.

We choose to track the local clock parameters for every
parent agent using two-way TOA measurements. Further, we
do not physically modify the internal clocks and just track the
clock parameters to achieve virtual clock synchronization. This
is in contrast to the standard clock synchronization approaches,
which aim to achieve optimal global clock parameters and
synchronize every clock to this optimal global reference. In
practice, we implement the clock synchronization algorithms
in a distributed way. Every parent agent locally holds multiple
Kalman filters to track the pairwise pseudo-clock parame-
ters with respect to other parent agents. This enables high-
frequency and real-time clock parameter estimation. After two-
way synchronization completion, the two-way range between
a pair of parent agents can be derived in one round, i.e., in
one D-TDMA frame. This is time-efficient when compared
to conventional two-way ranging algorithms [45], [47], which
require two rounds due to unavailability of clock skew in-
formation. We assume that in one D-TDMA frame length,

which is a relatively short time, e.g., 10 ms, the motion of
parent agents is negligible and the range between parent agents
remains constant. We can then recover the topology of parent
agents from inter-agent ranges with 100 Hz frequency.

A. Distributed clock synchronization in parent agents

Since the parent agents are dynamic, the propagation delay
τ is not deterministic. As we can see from (9), the relative
clock parameters are then not observable using only one-
way TOA measurements. Therefore, we propose to track the
pseudo-clock parameters which consist of the relative clock
parameters and the propagation delay in the parent agent’s
local perspective.

Without loss of generality, we discuss the case of an
arbitrary parent agent i ∈ P synchronizing to its neighboring
parent agents P \ {i}. The local clock parameters to be
estimated are defined as Ci = [C1

i , · · · ,CP
i ], and Cj

i are
the pseudo-clock parameters of i with respect to j:

Cj
i = [T̃ j

i , ω
j
i ],

where

T̃ j
i = T j

i + τ ji , (10)

is the pseudo-clock offset and ωj
i is clock skew of i. For each

Cj
i , we establish a Kalman filter. Under the assumption that

the motion of parent agents is negligible in a small interval
(10 ms), the Kalman filter linear dynamic model is given using
(5):

˙
Cj

i (t) = FCj
i (t) + n(t).

Further, the states are observed upon the reception of an UWB
packet by (9), with the Jacobian matrix H defined with respect
to the state as H =

[
1 0

]
.

Algorithm 2 outlines the recursive state estimation steps
for parent agent synchronization using discrete-time Kalman
filters. This algorithm is implemented in each parent agent.
During initialization, a number of P − 1 Kalman filters are
established (line1-3). Upon reception of an UWB packet,
the parent agent reads the broadcasting agent id and extract
the TOA measurement (line 6-7). Then it switches into the
corresponding Kalman filter process and calculates the discrete
reception time interval (line 8). The Kalman filter state and
covariance matrix is then propagated (line 10) and updated
using the TOA measurement (line 11), where the discrete-time
noise covariance matrix is given by [48]

Q =

[
2SnT

∆t+ 2Snω

∆t3

3 Snω
∆t2

Snω∆t2 Snω∆t

]
.

During implementation, we also set thresholds for the values
of the estimation error covariance matrix to detect whether a
parent agent have left the network. The covariance grows if
no UWB packets are received from the left parent agents, and
if it exceeds the thresholds, the associated clock parameters
will not be embedded in the broadcast packet.

7
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Algorithm 2 Distributed clock synchronization in parents
1: let i be an arbitrary parent agent.
2: for j ∈ P \ {i} do
3: Initialize jth Kalman filter with initial state Cj

i,0 and
initial state error covariance matrix Pj

i,0.
4: end for
5: while system running do
6: Receive the kth packet from agent j ∈ P \ {i}.
7: Extract the TOA measurement: (8).
8: Calculate the reception interval: ∆t = T j�i

rx,k−T
j�i
rx,k−1.

9: Compute the discrete-time state transition matrix:

Fd = I2 + ∆tF.

10: Propagate the jth Kalman filter:

Cj
i,k ← FdC

j
i,k−1,

Pj
i,k ← FdP

j
i,k−1F

T
d + Q.

11: Update the jth Kalman filter using TOA τ j�i
k :

K = Pj
i,kH

T (HPj
i,kH

T + ξ2)−1,

Cj
i,k ← Cj

i,k + K(τ j�i
k − T̃ j

i,k),

Pj
i,k ← (I2 −KH)Pj

i,k.

12: end while

B. Inter-agent range estimation in parent agents

When the local clock parameters are acquired in parent
agents, the inter-agent range can be estimated from the ex-
changing packets. Consider a pair of parent agents i and
j, (i < j) as illustrated in Fig. 4, parent agent i first broadcasts
an UWB packet and then receives one from parent agent j in
one D-TDMA frame interval. The relative clock offset of i
with respect to j at broadcasting time tj�i

tx , T j
i (tj�i

tx ) is given
by (3):

T j
i (tj�i

tx ) = Ti(t
j�i
tx )− Tj(tj�i

tx ) = −T i
j (tj�i

tx ),

which is the negative of relative clock offset T i
j (tj�i

tx ) of j with
respect to i at the same time. Using (10), τ ji can be written
in terms of the pseudo-clock offset estimated respectively in i
and j as:

τ ji (tj�i
tx ) =

1

2
(T̃ i

j (tj�i
tx ) + T̃ j

i (tj�i
tx )). (11)

However, this requires parent agent i and j broadcast a
packet at the same time to estimate the corresponding pseudo-
clock parameters and exchange them without latency, which
is unpractical for D-TDMA scheduling scheme. Therefore, we
choose to propagate the pseudo-clock parameters in agent j
until broadcasting as an approximation of T̃ i

j (tj�i
tx ):

T̃ i
j (tj�i

tx ) ∼= T̃ i
j (ti�j

tx ) + ∆t · ωi
j(t

i�j
tx ),

where ∆t = Tj(t
i�j
tx ) − Tj(t

j�i
tx ) ≈ (j − i) · ∆ts. This

is the main reason why we embed the propagated pseudo-

Fig. 4. Packet sequence in two-way ranging. Parent agent i first broadcasts an
UWB packet and then receives one from parent agent j (solid lines). However,
two-way ranging requires pseudo-clock parameters T̃ i

j (tj�i
tx ) and T̃ j

i (tj�i
tx )

estimated at the same time tj�i
tx , which means that parent agent i should

physically broadcast a packet at tj�i
tx (the dotted line). This is unpractical.

Therefore, we choose to propagate the pseudo-clock parameters in agent j
until broadcasting as an approximation of T̃ i

j (tj�i
tx ).

clock parameters in the UWB packets as the aforementioned
protocol.

To this end, after reception of an UWB packet from j, the
parent agent i can estimate the pseudo-clock offset T̃ i

j (tj�i
tx )

and extract the embedded pseudo-clock offset T̃ j
i (tj�i

tx ), the
inter-agent range can then be estimated using (11):

dij(tj�i
tx ) = vc ·

( T̃ i
j (tj�i

tx ) + T̃ j
i (tj�i

tx )

2
− τi − τj

)
. (12)

We note that the distance is estimated using two-way
packets in one round, i.e., in one D-TDMA frame. Even
with the case of packet loss, for example, the kth packet
from i to j is lost, parent agent i can still estimate the
distance as long as it receives the kth packet from j to i,
since we can propagate T̃ i

j (tj�i
tx ) according to ∆t (though

with increasing uncertainty). Also we note that the inter-
agent ranges are estimated in a distributed way. Each parent
agent is able to track the pair-wise distances between parent
agents: {dij | i ∈ P, j ∈ P, i 6= j}. Since they are aware
of the pair-wise clock parameters by receiving the broadcast
UWB packets. Consequently, a distributed relative localization
algorithm in parent agents can be achieved.

C. Relative localization in parent agents

If the inter-agent ranges are known for each pair of parent
agents, the topology of parent agents can be recovered. In
other words, the relative positions of each parent agents
can be estimated. In the context of WSN localization, given
the inter-agent range measurements, a configuration of the
sensor positions can be estimated using the classical MDS
method. A distributed implementation of MDS can be found in
[49]. However, high-maneuverability MASs are with varying
topology, thus requiring real-time and high-frequency relative
localization. Further, SWaP constrained agents pose additional

8
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requirement on the complexity of localization algorithms.
Therefore, in the context of dynamic MASs, it is often hard
to adapt the MDS method, which requires many computation
resources to minimize a rather complex cost function.

To this end, we choose to determine the topology by assum-
ing that the parent agents 1, 2, 3 can uniquely construct a 2D
reference Cartesian coordinate. The origin of the coordinate is
set as the position of agent 1, positive x-axis along the parent
agent 2, and positive y-axis in the direction of parent agent 3.
The rest of parent agents can then determine their positions
relative to this coordinate using the range measurements with
respect to the first three parent agents and the broadcast
information of parent agents’ positions. In this way, the initial
relative position of parent agents can be given in closed-form
as:

x1 =
[
0 0

]T
,

x2 =
[
d21 0

]T
,

xi =
[
d212

+di12−di22

2d21 ±
√
di1

2 − x2
i

]T
, i = 3, · · · , P,

where the y coordinate of parent agent 3 is set to be posi-
tive and the sign of y-coordinates of other parent agents is
determined by comparing their distance to parent agent 3.

We then use all the mutual distance mesurements to refine
the initial results. We seek to distributely estimate the relative
position xi for parent agent i by minimizing the following
local cost function:

S(xi) =
1

2

∑
j∈P\{i}

(dij − ‖xj − xi‖)2,

where the distance dij and the position xj of its neighboring
parent agents are extracted from the received UWB packets.
The optimization problem is solved using an iteratively least
squares method under the constraints of x1 = 0, y1 = 0, y2 =
0.

We note that the accuracy of the relative position estimate is
highly related to the inter-agent range accuracy. Since we do
not have access to global position and orientation or the odom-
etry information over time, we can only determine a rough
topology of parent agents in local perspective. Future improve-
ments to obtain more precise and smooth relative position of
parent agents would be possible by utilizing additional sensors,
such as cameras and inertial measurement units (IMUs). Then
by fusing with inter-agent range measurements, the parent
agents can act like moving beacons broadcasting UWB packets
with their absolute and smooth positions embedded. This is
beyond the scope of this paper and left as our future work.

VI. JLAS OF CHILD AGENTS

Along with the synchronized clocks in parent agents, the
spatiotemporal reference is then obtained in a high frequency
and real-time embedded in the broadcast UWB packets. Upon
passively receiving the broadcast packets, our aim is to esti-
mate the state of the child agents c ∈ C:

Xi
c = [T i

c(ti�c
tx ), ωi

c(t
i�c
tx ),xc(t

i�c
tx )],

which consists of the relative clock parameters with respect to
a reference parent agent i and the relative position.

We choose to utilize an iterative least squares estimator
for joint estimation using the TOA measurements. However,
the joint estimation faces two problems. One lies in the D-
TDMA scheduling scheme, which leads to asynchronous TOA
measurements (see Fig. 2). The other lies in the virtual clock
synchronization in parent agents, which leads to the TOAs
measured with respect to different time references.

Before diving into the estimator, we first investigate the
observation equation. Consider one round of UWB broadcast-
ing from parent agents, i.e., one D-TDMA frame, the TOA
measurements at child agent c are then given by a sequence:

[τ(t1�c
tx ), τ(t2�c

tx ), · · · , τ(tP�c
tx )].

Consider the TOA measurement from parent agents j

τ(tj�c
tx ) = T j

c (tj�c
tx ) + τ jc (tj�c

tx ) + ncj .

We choose an arbitrary reference parent agent i. From (3), we
have:

T j
c (tj�c

tx ) = T i
c(tj�c

tx ) + T j
i (tj�c

tx )

∼= T i
c(ti�c

tx ) + ωi
c(t

i�c
tx ) ·∆t+ T j

i (tj�c
tx ),

where ∆t = Tj(t
j�i
tx ) − Tj(ti�j

tx ) ≈ (j − i) · ∆ts. From (7),
we have:

τ jc (tj�c
tx ) = τj + τc +

‖xj(t
j�c
tx )− xc(t

i�c
tx )‖

vc
.

The TOA measurement from parent agent j can then be
rewritten as:

τ(tj�c
tx ) = T i

c(ti�c
tx ) + ωi

c(t
i�c
tx ) ·∆t+ T j

i (tj�c
tx )

+ τj + τc +
‖xj(t

j�c
tx )− xc(t

i�c
tx )‖

vc
+ ncj . (13)

As we can see, the state of child agent can be observed.
We note ∆t corresponds to the aforementioned asynchronous
TOA problem, and T j

i (tj�c
tx ) corresponds to the virtual clock

synchronization problem. If these items are not carefully
considered, the estimation results will be incorrect.

We now try to recover the relative clock offset T j
i (tj�c

tx )
from the local clock parameters extracted from the consecutive
UWB packets. From (10), we arrive at:

T j
i (tj�c

tx ) =
T̃ j
i (tj�c

tx )− T̃ i
j (tj�c

tx )

2

∼=
(T̃ j

i (ti�j
tx ) + ωj

i (tj�i
tx ) ·∆t)− T̃ i

j (tj�i
tx )

2
,

where the pseudo-clock parameters in the second line equation
are embedded in UWB packets. In practice, T j

i (tj�c
tx ) can also

be derived from other pairs of relative clock parameters:

Tm,j
i,m (tj�c

tx ) = Tm
i (tj�c

tx ) + T j
m(tj�c

tx ),

where Tm
i (tj�c

tx ) and T j
m(tj�c

tx ) are computed from the corre-
sponding pseudo-relative clock parameters, m ∈ P \{i, j}. In
this way, the relative clock offset can be refined by averaging:

T j
i (tj�c

tx )←
T j
i (tj�c

tx ) +
∑

m∈P\{i,j}
Tm,j
i,m (tj�c

tx )

P − 1
. (14)

9
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To the end, we can obtain the pseudo-range observation
equation by multiplying light speed with (13):

hj(X
i
c) = vc · (T i

c(ti�c
tx ) + ωi

c(t
i�c
tx ) ·∆t+ T j

i (tj�c
tx )

+τj + τc) + ‖xj(t
j�c
tx )− xc(t

i�c
tx )‖+ vc · ncj .

Algorithm 3 JLAS for child agents
1: let c ∈ C be an arbitrary child agent.
2: while Received a D-TDMA UWB frame do
3: Get TOA measurements sequence {τ(tj�c

tx ) | j ∈ P}:

(8).

4: Recover pseudo-range measurements {ρj | j ∈ P}:

ρj = vc · τ(tj�c
tx ).

5: Extract the broadcast local clock parameters sequence
{Cj(t

j�c
tx ) | j ∈ P}.

6: Extract position of parent agents {xj | j ∈ P}.
7: Get relative clock offset sequence {T i

j (tj�c
tx ) | j ∈ P}:

(14).

8: Iteratively solve for X̄i
c:

arg min
Xi

c

S(Xi
c) :=

∑
j∈P
‖ρj − hj(Xi

c)‖2.

9: end while

Algorithm 3 outlines the JLAS of child agents. Without
loss of generality, we let reference parent agent i = 1. By
stacking all the pseudo-range measurements, we can form a
least squares problem and iteratively solve it to jointly estimate
the child agent’s state.

VII. SIMULATIONS

In this section, we demonstrate the performance of our pro-
posed JLAS algorithm for fully dynamic MASs in numerical
simulations. The simulation configuration is given first, the
results are then provided.

1) Simulation setup: The simulated scenario of a MAS
consisting of 5 parent agents and 3 child agents, labeled with
their identification indices as 1, · · · , 8, is illustrated in Fig. 5.
We preallocate 5 time slots with a slot interval ∆ts = 0.001 s.
The initial clock offset t0i,0 and initial clock skew ω0

i,0 of each
agent i are set as random variables, which have continuous
uniform distributions, t0i,0 ∼ U(−5× 10−7, 5× 10−7) s and
ω0
i,0 ∼ U(−5, 5) ppm. The dynamics of the clock of each

agent are then simulated using (2). To simplify the comparison
of simulation results with ground truth trajectories, parent
agent 1 is set to be static at (0, 0) m and parent agent 2 is set
to move along the x-axis, therefore the process of trajectory
alignment can be ignored. We note that this setup does not
have any implication on the simulations, since we focus on the
relative localization with respect to the reference coordinate
rigidly attached to parent agent 1. The eight agents are ini-
tially located at (0, 0), (40, 0), (40, 56.4), (13, 42.5), (50, 15),
(32.8, 25), (2, 30) and (40, 20) m. The temporal precision of
TOA measurements is associated with the noise nij in (8)

Fig. 5. Simulated trajectories of a MAS with five parent agents and three
child agents.

TABLE I
SIMULATION SETTINGS

Parameter Value Unit

P 5 -

C 3 -

∆ts 0.001 s

SnT 4.7× 10−20 s

Snω 7.5× 10−20 s−1

ξ 1.5× 10−10 s

t0i,0 U(−5× 10−7, 5× 10−7) s

ω0
i,0 U(−5, 5) ppm

with standard deviation ξ. We set ξ = 1.5× 10−10 s, which
is equivalent to a spatial precision of 0.045 m. The antenna
delays and the channel imperfections, such as non-line-of-
sight (NLOS) effects, are not considered here. The initial
estimation covariance matrices of the Kalman filters for clock
synchronization in parent agents are set as Pj

i,0 = diag[0.1, 1].
The simulation time length is set to be 60 s. The simulation
configurations are summarized in Table I.

2) Simulation results and discussion: We first demonstrate
the clock synchronization results and then the relative lo-
calization results. Without loss of generality, we set parent
agent 1 as a reference agent. Fig. 6 shows the estimation
error of pseudo-clock parameters C1

i calculated on parent
agent i, i = 2, · · · , 5. The statistical results of the clock
synchronization errors are presented in Table II. The root-
mean-square error (RMSE) and standard deviation values
of the synchronization errors prove the effectiveness and
good performance of our proposed algorithm. Note that the
synchronization results between other pairs of parent agents,
namely Cj

i for i ∈ P, j ∈ P, i 6= j, behave similarly
to C1

i . Fig. 7 illustrates the clock synchronization results in
child agents. The statistics of the results are summarized
in Table II. Consider that the actual clock offset can be up
to approximately 10−6 s for the worst case according to
the simulation configurations in Table I, the average clock
offset error of 0.21 ns thus provides an accuracy of one ten
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thousandth. We note that the synchronization results in child
agents are worse than those in parent agents. This comes
from the error propagated from the parent agents, since child
agents only passively receive the broadcast information with
uncertainty and have no means to observe it.

We then investigate the relative localization errors. The
relative localization errors of parent agents and child agents
are plotted in Fig. 8. The statistical results are provided in
Table II. It is easy to see that our proposed method can ef-
fectively estimate the relative positions of the dynamic agents
with estimation errors bounded by approximately 0.12 m.

Considering 5 time slots with slot interval of ∆ts = 1 ms
allocated in our simulations, the estimation frequency is then
200 Hz, which is sufficient for collaboration or data fusion of a
MAS in most scenarios. We also note that the agents move at a
typical average speed of 1 m/s and the number of child agents
can be theoretically unlimited. To summarize, our BLAS can
effectively solve the JLAS problem for a fully dynamic MAS
with high density.

Finally, we would like to discuss the convergence and
potential degradation of our BLAS algorithms in the presence
of antenna delays and NLOS signals. We first discuss the
effect of antenna delays. For parent agents, they will not
prevent the convergence of the clock synchronization algo-
rithms, since they are deterministic parameters. If they are
not considered and not calibrated, they will be treated as
additional pseudo-clock offsets between parent agents. This
will pose a significant bias in inter-agent range estimation,
thus the relative localization algorithm will diverge. For child
agents, they will not prevent the convergence of the JLAS.
As we have mentioned before, the delays serve as pseudo-
clock offsets, thus only leading to an estimation bias on
the relative clock offset of the child agent. In our practical
implementation, the antenna delays are pre-calibrated and
compensated. We then discuss the effects of NLOS. NLOS
will prevent the convergence of the JLAS both in parent and
child agents. NLOS can be considered as observation outlier
as it diverges from measurement model assumptions, which
introduces a positive bias in range that leads to divergence
of the algorithms. We note that in our dense MAS scenario,
NLOS between agents typically occurs due to the occlusions of
other agents. A MAS with controlled maneuverability has the
potential to avoid these NLOS situations. Additionally, since
we have a high estimation frequency, fusion with additional
sensors such as IMUs will give access to NLOS identification
and mitigation. NLOS avoidance, identification and mitigation
is another broad research topic which is out of the scope of
this paper and left as our future work.

VIII. EVALUATION

In this section, we perform two experiments to evaluate the
proposed BLAS system. In the first experiment, we evaluate
the performance of the proposed algorithm for dynamic parent
agents. After the spatiotemporal reference is determined by
parent agents, we then perform an experiment to illustrate
that our system supports theoretically unlimited child agents.
We also show that child agents are able to accurately localize
themselves in real-time and high-frequency.

(a)

(b)

Fig. 6. Synchronization results in parent agents. (a) Evolution of pseudo-
clock offset error estimated in parent agent i, i = 2, · · · , 5. (b) Evolution of
clock skew error estimated in parent agent i, i = 2, · · · , 5.

(a)

(b)

Fig. 7. Synchronization results in child agents. (a) Evolution of clock offset
error estimated in child agent i, i = 6, 7, 8. (b) Evolution of clock skew error
estimated in child agent i, i = 6, 7, 8.

11



Preprint of article submitted to IEEE Transactions on Aerospace and Electronic Systems

TABLE II
STATISTICS OF JLAS ERRORS

Agent (Pseudo-)clock
offset (ns)

Clock skew
(1× 10−3 ppm)

Relative position
(cm)

[RMSE, standard deviation]

2 [0.16, 0.11] [5.0, 3.2] [0.9, 0.6]

3 [0.18, 0.10] [5.8, 3.4] [2.7, 2.1]

4 [0.16, 0.09] [5.8, 3.6] [2.4, 1.6]

5 [0.17, 0.11] [5.1, 3.2] [2.1, 1.5]

6 [0.26, 0.09] [139.9, 87.9] [10.8, 5.7]

7 [0.29, 0.18] [144.2, 89.2] [11.4, 6.1]

6 [0.27, 0.17] [151.5, 94.4] [10.9, 5.8]

(a)

(b)

Fig. 8. Relative localization results. (a) Evolution of relative localization error
estimated in parent agent i, i = 2, · · · , 5. (b) Evolution of relative localization
error estimated in child agent i, i = 6, 7, 8.

A. Implementation

We implement our algorithms on the STM32F427 ARM
chip, which controls a DecaWave DW1000 UWB module.
Fig. 9 shows the hardware setup used in our experiments.
Though we categorize a MAS into parent and child agents,
they are equipped with the same hardware setup and operate
as a homogeneous team. In this way, a MAS can quickly
respond to the failure of a single agent by replacing it with
a homogeneous one. Further, our setup requires little payload
capability and onboard resources. The D-TDMA frame has a
length of 10 ms and contains 10 time slots allocated for ten
parent agents. This enables 100 Hz UWB packet broadcasting
and thus a 100 Hz estimation frequency.

Fig. 9. Self-developed UWB hardware setup which are mounted on parent
agents and child agents.

B. Parent agent experiments

As we have no ground truth for the clock parameters,
we choose to evaluate the quality of the ranging results due
to the coupling between clock synchronization and ranging.
We ignore the evaluation of relative localization results since
accurate ranging results yield accurate localization results in
our relative localization algorithm.

1) Setup: We equip three parent agents with our UWB
hardwares, as shown in Fig. 10a. One of the parent agents is an
unmanned ground vehicle (UGV) that is manually controlled
to randomly move in a rectangular area of 2.5 m × 4 m, with
a maximum velocity of 0.25 m/s. The rest of them are set as
static parent agents. For performance comparison, the UGV is
equipped with a LiDAR and a LiDAR map of the environment
is established in advance. The UGV’s position is then tracked
by finding the correspondences to the map with a frequency of
2 Hz. The standard deviation of the 2D ground truth position
error is approximately 0.05 m. Since the static agents are
represented as obstacles in the LiDAR map, their positions are
then directly obtained by querying the map. Fig. 10b illustrates
the topology of the parent agents and the output trajectory
of the UGV. In this way, by logging the output positions,
we can obtain the real-time distance between parent agents,
which is collected as ground truth. Further, the UGV is time
synchronized with the static agents by our hardware setup
sending one-pulse-per-second (1PPS) timing packets.

We then utilize a virtual parent agent, which only receives
the broadcast UWB packets but runs a distributed inter-agent
range estimator at 100 Hz. The distances between the three
parent agents are real-time logged to a PC for evaluation.
They are linearly fitted to the ground truth to calibrate the
bias caused by antenna delays in (12).

2) Results: Fig. 11 illustrates the inter-agent ranging results
for three parent agents. As we can see, the estimated range
is quite close to the ground truth. Note that the repetitive
large range noise in Fig. 11c is caused by the NLOS effects,
in which case the UGV moves through the line connecting
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(a)

(b)

Fig. 10. (a) Three parent agents equipped with our UWB hardwares. (b) The
topology of the parent agents and the trajectory of the UGV obtained using
a LiDAR sensor.

two static parent agents (see Fig. 10b). The ranging error is
demonstrated in Fig. 12. In terms of RMSE, the ranging results
of our method yields an average accuracy of 0.051 m and the
associated standard deviation is 0.050 m. The ranging accu-
racy corresponds to a clock synchronization accuracy of about
0.172 ns, which satisfies the synchronization requirements for
most MASs.

C. Child agent experiments

Previous experiments have shown good quality of the rang-
ing results. Consequently, good clock synchronization and
relative localization results are obtained, and a spatiotemporal
reference is then established. To demonstrate that the JLAS of
child agents is also applicable to dense, dynamic and real-time
child agents, we utilize four static parent agents to establish
a static spatiotemporal reference. For any number of child
agents, we then try to synchronize to and localize against
the spatiotemporal reference. Since the clock parameters have
no ground truth, we focus to evaluate the localization perfor-
mance.

1) Setup: Four static parent agents are set on flat ground
with the same heights. They form an approximate 5 m × 7 m
rectangular, and their relative positions are post-processed
using their inter-agent ranging results. Two child agents are
mounted on the two ends of a turntable within the rectangular

formed by parent agents, as illustrated in Fig. 13. The turntable
has a diameter of 1.733 m, and rotate at an average angular
velocity of 0.14 rad/s. The two child agents then move with
a linear velocity of 0.12 m/s and localize themselves by only
receiving the UWB packets. The localization results are real-
time logged to a host computer for evaluation. Since we have
no ground truth of child agent positions, we use the error of
distance between two child agents as main evaluation metric.
The distance is calculated using the estimated localization
results.

2) Results: Fig. 14 shows the relative localization results
for two child agents. In Fig. 14a the blue and green dot-
ted lines indicate the estimated positions which are circular.
Since the child agents are rigidly mounted on the two ends
of the turntable, the coincident of the trajectories provides
strong qualitative evidence of the algorithm’s performance
in accuracy and consistency. Fig. 14b and 14c illustrate the
estimated x y positions, which are sinusoidal forms and present
exact correspondence of the circular trajectories. The distance
between the two child agents are then calculated using the es-
timated localization results, and the distance error is illustrated
in Fig. 15. The RMSE and the associated standard deviation of
the calculated distance is 0.064 m and 0.048 m. The distance
error appears to be dependent on the positions of the child
agents. As we observe a relatively strong correlation between
the repeatability of a bias on the order of 0.1 m contained
in distance error and the circular pattern of movements for
child agents. The bias is a determined value, thus can be
calibrated in future works. The main cause of the bias can
be explained by the relative position and orientation between
UWB antennas.

D. Discussion

The experimental results for parent and child agents together
show that we can obtain accurate and real-time relative lo-
calization results for a MAS. A typical nanosecond accuracy
for clock synchronization can be achieved. For high-density
MASs containing a number of agents, we can choose a small
set of them as parent agents performing packet broadcasting,
as described in our broadcast architecture. Our APBR protocol
ensures the collision-free broadcasting, thus enabling efficient
information sharing in parent agents to establish a real-time
updated spatiotemporal reference, as shown in the parent agent
experimental results. The rest of the agents are then set as
child agents that only receive the broadcast packets. In this
way, the system can simultaneously support theoretically an
unlimited number of child agents. The child agent experiments
have shown that we can real-time and accurately localize the
child agents against the spatiotemporal reference using the
received packets. Though we only show the results for two
child agents, the extension to any number of child agents is
straightforward if the NLOS effects can be neglected. In our
experiments, the broadcasting frequency is set as 100 Hz. As
our protocol supports JLAS of child and parent agents using
the same broadcast packets and our estimation approaches
are distributely implemented, the estimation frequency for
both child and parent agents is then 100 Hz. Therefore, our
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(a) (b) (c)

Fig. 11. The inter-agent ranging results for each pair of parent agents. The red solid line indicates the estimation results while the blue solid line indicates
the ground truth. (a) The range between parent agent 0 and 1, d01. (b) The range between parent agent 0 and 2, d02. (c) The range between parent agent 1
and 2, d12.

(a) (b) (c)

Fig. 12. The error of inter-agent range for each pair of parent agents. (a) Parent agent 0 and 1. (b) Parent agent 0 and 2. (c) Parent agent 1 and 2. The
average ranging error is 0.051 m.

Fig. 13. The topology of the agents in our experiments. Four static parent
agents are set on ground (red) and two child agents are mounted on the two
ends of a turntable (blue and green).

system can also be applied to high-maneuverability MASs
which require real-time and high-frequency spatiotemporal
state estimation. Further, our system is developed into a
stand-alone measurement unit with low weight, small volume
and low power consumption, thus can be integrated into
SWaP constrained MASs. To this end, our proposed BLAS
system is proven feasible to be applied to high-density, high-
maneuverability and SWaP constrained MASs for accurate,
high-frequency and real-time relative localization and clock
synchronization.

Remark Comparisons between our BLAS with the state-of-
arts are not straightforward, since the previous relevant meth-
ods are not specially designed for a dynamic and dense MAS
in an infrastructure-free environment as we have discussed in
Section II. To the best of our knowledge, we are the first to
address the JLAS problem for such a MAS using a broadcast

UWB architecture.

IX. CONCLUSION

In this paper, we present a wireless broadcast relative
localization and clock synchronization system for MASs
with high-density, high-maneuverability and SWaP constraint
characteristics. A broadcast architecture and the supporting
approaches, such as an ABPR communication protocol and
distributed parent-child state estimators have been presented
and implemented in our system. Simulation and experimental
results verified that the proposed BLAS system is capable of
establishing accurate and high-frequency relative localization
and clock synchronization for dynamic dense MASs with
limited resources.

The proposed system can be applied to a number of scenar-
ios, e.g., establishing a UAV Ad-Hoc network, in which parent
agents can output real-time topology and clock parameters
of the dynamic network to aid network routing. Additionally,
although this study focuses on the localization results which
are relative, it can be extended to obtain absolute localization
for MASs. In that case, our BLAS system can be used as a
sensory system, which yields ranging measurements between
parent agents. By utilizing other proprioceptive sensors, such
as cameras, LiDARs or IMUs, we can utilize collaborative
localization algorithms to establish absolute spatiotemporal
references in parent agents. The parent agents can then serve
like pseudo-GPS satellites, which enables any number of users
(child agents) to retrieve their spatiotemporal information in
unknown environments.

As part of future work, we will extend the proposed BLAS
to 3D space and include more extensive evaluation of the
proposed methods.
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(a) (b) (c)

Fig. 14. Localization results for child agents. (a) Estimated trajectories of child agent 0 (blue) and child agent 1 (green). (b) Estimated x y positions of child
agent 0. (c) Estimated x y positions of child agent 1.

Fig. 15. The error of the calculated distance between child agent 0 and 1. The
distances are calculated using the estimated localization results. The average
inter-agent range error is 0.064 m.
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