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Unified Attitude Determination Problem from
Vector Observations and Hand-eye Measurements

Jin Wu , Member, IEEE

Abstract—The hand-eye measurements have recently been
proven to be very efficient for spacecraft attitude determination
relative to an ellipsoidal asteroid. However, recent method does
not guarantee full attitude observability for all conditions. This
paper refines this problem by taking the vector observations into
account so that the accuracy and robustness of the spacecraft
attitude estimation can be improved. The vector observations
come from many sources including visual perspective geometry,
optical navigation and point clouds that frequently occur in
aerospace electronic systems. Completely closed-form solutions
along with their uncertainty descriptions are presented for the
proposed problem. Experiments using our simulated dataset and
real-world spacecraft measurements from NASA dawn spacecraft
verify the effectiveness and superiority of the derived solution.

Index Terms—Attitude Determination, Vector Observations,
Hand-eye Measurements, Uncertainty Description, Optical Nav-
igation

I. INTRODUCTION

A. Background and Motivations

THE research around planetary systems especially our
solar system, has revealed many amazing secrets of the

outer space. There are eight major planets and some other
dwarf planets as well as asteroids in the solar system. In
1977, two Voyager spacecrafts were launched by National
Aeronautics and Space Administration (NASA) to discover
these celestial bodies [1]. Recently, some robots are sent to
collect geology data from some planets and their satellites e.g.
the Spirit launched in 2004 [2] and the Curiosity launched
in 2011 by NASA for discovery of the Mars [3], the YuTu
(Jade Rabbit) launched in 2013 by China National Space
Administration (CNSA) for inspection of the Moon [4]. A
kernel problem behind these space projects is the precise
navigation of various spacecrafts. The stability of nowdays
space navigation systems, mainly constituted by strapdown
installed measurement units, has been highly dependent on
the accuracy of the attitude determination sub-system.

Apart from the advances in inertial navigation technologies
[5]–[7], attitude determination from heterogeneous sensor
sources is a crucial problem in aerospace engineering since
any spacecraft requires high-precision attitude information
for motion control. The optimal attitude determination using
vector observations from star trackers, sun sensors and
magnetometers, namely the Wahba’s problem, has been
studied for over fifty years [8]. Many efficient algorithms
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including the QUaternion ESTimator (QUEST, [9]), The
Estimator of Optimal Quaternion (ESOQ, [10]), The Optimal
Linear Attitude Estimator (OLAE, [11]) and etc. [12] are
developed to achieve accurate and reliable estimation. When
the gyroscope measurements are taken into account, the
vector-observation attitude estimation can be significantly
enhanced via nonlinear observers on the special orthogonal
group SO(3) [13], [14]. The hand-eye measurements
formulate the attitude determination problem of the hand-eye
type AX = XB where A,B are known and X is the
unknown transformation to be figured out. The terminology
’hand-eye’ was first introduced into robotics in late 1980s for
calibration i.e. extrinsic transformation estimation between
the robotic gripper and attached camera so that visual motion
reconstruction can be precisely mapped to the gripper frame
for accurate grasping [15], [16]. The idea of using the
hand-eye measurements has recently been discovered by
Modenini, who proposed a new method using images of
ellipsoids. Modenini’s method has been verified to be efficient
with attitude accuracy of up to several arc seconds [17], [18].
Recently, an improved version with dimensionless matrices
has also been proposed [19]. Fig. 1 shows such principle of
imaging a space ellipsoidal object.

Fig. 1. The projection of an ellipsoid onto the imaging plane where the colors
on the ellipsoid indicate some non-opportunistic features.

Modenini’s new algorithm has given us a brand-new tool for
spacecraft attitude determination relative to an ellipsoid. The
problem studied in this paper is an extension of Modenini’s
contribution in which only one pair of symmetric hand-
eye measurements are employed for attitude determination.
According to the limitation of perspective geometry, any
single shot of the celestial body can not completely reflect
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Fig. 2. The shading conics of the simulated Ceres with multiple light projection positions.

the exact details of 3D reconstruction [20]. Therefore, the
observability of attitude angles in all directions can not be fully
guaranteed which requires further verification with historical
estimates from other sources [17], [18]. To solve the problem,
in this paper, instead, we incorporate the vector and hand-
eye measurements together aiming for precise relative attitude
determination between spacecraft and astroid. In Modenini’s
recent study, the hand-eye equation is established by means of
the perspective geometry when the camera captures the image
of an ellipsoid. A common knowledge exists in our mind is that
there may be some distinctive (non-opportunistic) features on
the surface of the ellipsoid, indicating that vector observations
can form a unified attitude determination system together with
hand-eye measurements. Another shortcoming of the existing
results in [17], [18] is that the solving process depends on the
spectrum decomposition which is nonlinear and an analytical
covariance analysis can hardly be performed. The covariance
information, however, guarantees the later fusion with other
sensors using a Kalman filter, which is a common practice for
reliability in aerospace engineering.

B. Sources of Vector Observations

There are many approaches that can provide vector obser-
vations. According to the principles of computer vision and
robotics, the vector observations can be obtained either using
point clouds from 3D laser [21], terrian reconstruction from
the synthetic aperture radar (SAR) or rotation matrix from
perspective-n-point (PnP, [22]). Here we introduce three major
ones.

1) Perspective Geometry: In aerospace engineering, practi-
tioners usually first estimate the camera poses with respect to
some celestial references. Then the camera poses can be trans-
formed into the spacecraft attitude through pre-calibrated base-
camera parameters. To achieve this, the perspective geometry
is often invoked which consists of two representative methods
i.e. the perspective-n-point (PnP) algorithm and epipolar ge-
ometry [23].

The PnP solves the pose estimation problem when we
have some interesting features in the 2D image and their
corresponding perspective coordinates in the 3D frame. To get
the accurate coordinates in the 3D frame, the precise 3D model
or measurement of the imaged object is needed. The 2D-
3D correspondences can be determined according to current
2D-3D registration techniques. The mathematical framework

of the PnP problem allows for multiple solvers with various
precisions including the direct linear transform (DLT, [24]),
efficient PnP (EPnP, [25]), bundle adjustment (BA, [26]) and
some recent analytical solutions [27].

2) Optical Navigation: The orbits of some celestial bodies
can be acquired using historical celestial observations. With
such data, the planets in the solar system and their relations
with the Sun will be beneficial for spacecraft attitude deter-
mination. For instance, using conic extraction from binarized
images of Moon, the Moon-Sun attitude sensor mechanism is
established [28]. For aerospace engineering, when the orbit
of the astroid is known and the luminance of the astroid is
satisfactory for binarization, the vector observations can also
come from such Asteriod-Sun relationship. Fig. 2 depicts the
conic variations of the modeled Ceres under different Sun
projections.

From another aspect, if the relative position between the
Sun and the planet is known according to existing orbitary
observations, then the Sun sensor, as a special kind of star
trackers, can also provide observed Sun vector observation
[29].

3) Point Clouds: There are some airborne instruments that
can give direct or indirect point-cloud measurements e.g. the
laser scanner and SAR. By comparing the point clouds with
existing 3D terrain, the spacecraft attitude is computed. When
there is completely no knowledge of 3D terrain, the relative
attitude can also be propagated sequentially using results from
the iterative closest points (ICP, [30], [31]).

C. Main Contributions and Arrangement of Contents

The main contributions of this paper is to study the fea-
sibility of such attitude determination scheme using vector
observations and hand-eye measurements simultaneously. We
are aimed to solve the following problems:

1) Derive the completely analytical solution to the proposed
unified attitude determination problem.

2) Give an intuitive closed-form covariance analysis on the
derived solution.

3) Study the characteristics of the proposed solution subject
to different types of input values.

4) Study the real-world performances of the proposed
scheme according to authentic spacecraft data.

The remainder of this paper is organized as follows: Sec-
tion II contains notation descriptions, problem formulation
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and proposed fully analytical solution. Covariance analysis
is also given in the Section II showing some probabilistic
characteristics of the proposed scheme. In Section III we
conduct several experiments to deduce the in-flight attitude
determination accuracy and robustness. Section IV consists of
concluding remarks and future works.

II. PROBLEM FORMULATION AND SOLUTION

A. Mathematical Preliminaries
We inherit the main usages of notations presented in [32].

The n-dimensional Euclidean vector space is described with
Rn. We use Rn×m to denote the real space containing all
matrices with row dimension of n and column dimension of m.
The identity matrix has the notation of I and owns its proper
size. X>,X−1 mean the transpose and inverse of a given
matrix X respectively in which the inverse exists when X is
squared and nonsingular. And the Moore-Penrose generalized
inverse of a given X with arbitrary structure is denoted as
X+ which has the property that

(
X>

)+
= (X+)

>. The
notations tr(X) and diag(· · · ) denote the trace of a squared
matrix X and a diagonal matrix formed by diagonal elements
of · · · , respectively. The n-dimensional special orthogonal
group SO(n) contains all n-dimensional rotation matrices and
is expressed with X ∈ SO(n) ⇒ X ∈ Rn×n,XX> =
X>X = I,det(X) = +1. The covariance of a given vector
x perturbed by noises is denoted as Σx. The vectorization of
a matrix X = (x1,x2, · · · ,xn) of column size n is defined
by vec(X) =

(
x>1 ,x

>
2 , · · · ,x>n

)>
while the inverse operator

mat[vec(X)] restores the vectorization into its original matrix
form of X . The Kronecker product of two arbitrary matrices
X and Y is denoted as X⊗Y and commonly (X ⊗ Y )

>
=

X>⊗Y >. The convenience of the Kronecker product is that,
given matrices A,B,C,X with proper sizes, one can write
the equality AXB = C into

(
B> ⊗A

)
vec(X) = vec(C).

Also, one may derive (A⊗B) (C ⊗X) = (AC ⊗BX).
For probabilistic descriptions, we use 〈· · · 〉 to represent the op-
eration of expectation and ΣX or ΣXX is the auto-covariance
of a random variable X . The covariance matrix between
two random variables X and Y are denoted as ΣX,Y . The
notation N (α,Σ) denotes the normal (Gaussian) distribution
with mean of α and covariance of Σ while MN represents
the normal distribution for matrix. The probabilistic density
function of a given squared matrix X ∼ MN (M ,Y ,W )
with dimension n is

p (X|M ,Y ,W )

=
exp

{
− 1

2 tr
[
W−1(X −M)>Y −1(X −M)

]}
(2π)

n2

2 [det(Y ) det(W )]
n
2

(1)

where M is the mean of X and Y ,W represent the second
moments of X satisfying〈

(X −M)(X −M)>
〉
= Y tr W〈

(X −M)>(X −M)
〉
=W tr Y

(2)

The vectorization of X will then be subjected to the normal
distribution such that

vec(X) ∼ N [vec(M),Y ⊗W ] (3)

Fig. 3. Formation-aided relative attitude determination between satellites.

B. The Unified Attitude Determination Problem

We consider that there are N pairs of n-dimensional vector
observations and M pairs of n-dimensional hand-eye measure-
ments available for attitude determination, all related by the
n-dimensional rotation matrix R ∈ SO(n):

Vector :


b1 = Rr1
b2 = Rr2

...
bN = RrN

,Hand− Eye :


A1R = RB1

A2R = RB2

...
AMR = RBM

(4)
where there is no constraint for bi =
(bi,1, bi,2, · · · , bi,n)T , ri = (ri,1, ri,2, · · · , ri,n)T , i =
1, 2, · · · , N and Ai,Bi, i = 1, 2, · · · ,M . That is to say
the vector observations do not have to maintain unit
norms as presented in the Wahba’s problem and hand-eye
measurements are also arbitrary and do not have to be
symmetric or orthonormal matrices as presented in [17] and
[15]. Fig. 3 shows a potential example that incorporates
the rigid case for Ai and Bi. There are four satellites
establishing a formation where the satellite α is conducting
attitude synchronization with satellite β. The aim is to
compute the relative attitude Rβ

α which have already been
given by the relative projective geometry using camera
with pre-built 3-D models of α and β. Meanwhile, two
passing-through satellites γ and ξ also observe the α and
β respectively. By using the projective geometry likewise,
the relative attitude matrices at time instants k − 1 and
k are estimated. Then using the differential rotation and
hand-eye relationship, with the control efforts that α and β
are attitude-synchronized, we are able to construct

Ai = R
α
γ,k

(
Rα
γ,k−1

)>
Bi =

(
Rβ
ξ,k

)>
Rβ
ξ,k−1

(5)

which denotes the rigid case and will give hand-eye measure-
ments to the original results.

Here, the vector observations and hand-eye measurements
are assumed to be synchronized that can be satisfied for
common data sampling and wireless transmission sub-blocks
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of the aerospace electronic central system. To derive a general
n-dimensional closed-form solution to this problem, unlike ex-
isting methods used in [17], [32] and [33], we use vectorization
of rotation matrix for mathematical representation, which has
been proven to be effective for hand-eye calibration [34], [35].
For equations of vector observations, we can write them into
the compact form

P = RQ (6)

where
P = (b1, b2, · · · , bN )

Q = (r1, r2, · · · , rN )
(7)

which can be further vectorized as

vec(P ) =
(
Q> ⊗ I

)
vec(R) (8)

An analytical solution to the hand-eye calibration problem [34]
solves the R in the hand-eye part of (4) by the following
homogeneous system of vec(R)

I −A1 ⊗B1

I −A2 ⊗B2

· · ·
I −AM ⊗BM

 vec(R) = 0 (9)

This result has been proven to be effective but in fact there is
a strong coupling of Ai,Bi for i = 1, 2, · · · ,M which sets
obstacle for a further covariance analysis. Therefore, we use
another intuitive solution such that

A1 ⊗ I − I ⊗B>1
A2 ⊗ I − I ⊗B>2

· · ·
AM ⊗ I − I ⊗B>M

 vec(R) = 0 (10)

The unified attitude determination result from vector observa-
tions and hand-eye measurements then can be given by the
following problem

argmin
x

L = x>Hx+[(
Q> ⊗ I

)
x− vec(P )

]> [(
Q> ⊗ I

)
x− vec(P )

]
(11)

in which x = vec(R) and

H =

M∑
i=1

(
Ai ⊗ I − I ⊗B>i

)> (
Ai ⊗ I − I ⊗B>i

)
(12)

It should be noted that if the weights of the measurements
are taken into account, we should use the following matrices
instead:

P = (
√
w1b1,

√
w2b2, · · · ,

√
wNbN )

Q = (
√
w1r1,

√
w2r2, · · · ,

√
wNrN )

H =

M∑
i=1

vi
(
Ai ⊗ I − I ⊗B>i

)> (
Ai ⊗ I − I ⊗B>i

)
(13)

with w1, w2, · · · , wN the positive weights of N vector mea-
surements and v1, v2, · · · , vM the positive weights of M

hand-eye measurements. The ratio % =

(
N∑
i=1

wi

)
/

(
M∑
i=1

vi

)

describes the relative accuracy between the vector and hand-
eye measurements. The objective function L can be evaluated
as

L = x>
[
H + (Q⊗ I)

(
Q> ⊗ I

)]
x−

x> (Q⊗ I)> vec(P )−
vec(P )>

(
Q> ⊗ I

)
x+ vec(P )>vec(P )

(14)

The optimal x occurs at

∂L
∂x

= 2x>
[
H + (Q⊗ I)

(
Q> ⊗ I

)]
−

2vec(P )>
(
Q> ⊗ I

)
= 0

(15)

which generates

x =
[
H + (Q⊗ I)

(
Q> ⊗ I

)]+
(Q⊗ I) vec(P ) (16)

The obtained result indicates that the general observ-
ability of attitude angles are governed by the rank of[
H + (Q⊗ I)

(
Q> ⊗ I

)]
. When there is no vector obser-

vation, (16) can not hold since (Q⊗ I) vec(P ) becomes null.
However, when there is no hand-eye measurement, (16) could
also make sense which depends on the number of vector
observations and the collinearity between vector pairs [36]–
[38]. That is so say, in this way the following equation is also
a Wahba’s solution

x =
[
(Q⊗ I)

(
Q> ⊗ I

)]+
(Q⊗ I) vec(P ) (17)

For instance, with only two vector observation pairs, we may
have already compute the attitude [39]. When there are one
vector observation pair and one set of hand-eye measurements,
there could be sufficient information for a full-attitude deter-
mination since the single system AR = RB has been proven
to own two ambiguous solutions [17] and the optimal can be
then selected by integrating an external vector pair.

When there are only hand-eye measurements, the optimiza-
tion (11) will be

argmin
x

L = x>Hx (18)

indicating that x is the eigenvector of H associated with its
minimum eigenvalue. As x and −x are all such eigenvectors,
it is able to verify the reconstructed R = mat(x) via loss
function L.

The obtained attitude reconstruction, since may be put into
a further Kalman filter for more accurate state estimation
and gyro bias cancellation, should provide its uncertainty
descriptions [40], [41]. The detailed derivations are presented
in the next sub-section.

C. Covariance Analysis

In this sub-section, the covariance analysis of the derived
solution (16) will be performed. Note that when there are only
hand-eye measurements, the problem degenerates to (18). In
such case, the uncertainty descriptions of x are available via
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[42]. From (15), one easily observes that the solution of x is
linear. Thus a perturbed model of x can be obtained by[
H + (Q⊗ I)

(
Q> ⊗ I

)]
δx+ δ

[
H + (Q⊗ I)

(
Q> ⊗ I

)]
x

= δ [(Q⊗ I) vec(P )]

⇒
[
H + (Q⊗ I)

(
Q> ⊗ I

)]
δx+ δH + (δQ⊗ I)
(
Q> ⊗ I

)
+

(Q⊗ I)
(
δQ> ⊗ I

)
x

= (δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )
(19)

where the second-order differential terms are ommited. The
covariance of x can be computed via

Σxx =
[
H + (Q⊗ I)

(
Q> ⊗ I

)]+
×

〈


[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]− δH + (δQ⊗ I)
(
Q> ⊗ I

)
+

(Q⊗ I)
(
δQ> ⊗ I

)
x


[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]− δH + (δQ⊗ I)

(
Q> ⊗ I

)
+

(Q⊗ I)
(
δQ> ⊗ I

)
x


>

〉

×
[
H + (Q⊗ I)

(
Q> ⊗ I

)]+

(20)

As the operation of the type (δQ⊗ I) vec(P ) is linear both in
elements of Q and P , one can write the matrix manipulations
into

(δQ⊗ I) vec(P ) = Z(P )vec(δQ>) (21)

where Z(P ) a linearly mapping. Note that

mat [(δQ⊗ I) vec(P )] = P δQ>

⇒ vec
(
P δQ>

)
= (I ⊗ P ) vec

(
δQ>

) (22)

then we have
Z (P ) = (I ⊗ P ) (23)

In this way, one has

(δQ⊗ I)
(
Q> ⊗ I

)
x

= Z
{
mat

[(
Q> ⊗ I

)
x
]}
]vec(δQ>)

= Z
(
R̃Q

)
vec(δQ>)

(24)

where R̃ = mat [vec(x)] is the reconstructed rotation matrix
and is not strictly on the SO(n). In the same manner, we can
also obtain

δHx

=

M∑
i=1

vi

[ (
δAi ⊗ I − I ⊗ δB>i

)> (
Ai ⊗ I − I ⊗B>i

)
+(

Ai ⊗ I − I ⊗B>i
)> (

δAi ⊗ I − I ⊗ δB>i
)
]
x

=

M∑
i=1

vi


F
[(
Ai ⊗ I − I ⊗B>i

)
x
] [ vec(δAi)

vec(δBi)

]
+

(
A>i ⊗ I − I ⊗Bi

)
F(x)

[
vec(δA>i )

vec(δB>i )

]


(25)

where the function F(x) is a linear mapping which can be
derived as follows(

δA⊗ I − I ⊗ δB>
)>

vec(C)

=
(
δA> ⊗ I − I ⊗ δB

)
vec(C)

=
(
δA> ⊗ I

)
vec (C)− (I ⊗ δB) vec(C)

= vec (CδA)− vec (δBC)

= (I ⊗C) vec(δA)−
(
C> ⊗ I

)
vec(δB)

=
(
I ⊗C,−C> ⊗ I

) [ vec(δA)

vec(δB)

]
⇒ F [vec(C)] =

(
I ⊗C,−C> ⊗ I

)

(26)

Thus, the simplified form of Σxx is presented by

Σxx =
[
H + (Q⊗ I)

(
Q> ⊗ I

)]+×(
S1 + S2 + S3 + S

>
3

) [
H + (Q⊗ I)

(
Q> ⊗ I

)]+
(27)

in which the detailed derivations along with S1,S2,S3 are
in the appendix. Here, we need to note that x = vec(R)
is the vectorization of R and to get a proper R in SO(n),
one should orthonormalize mat (x) from (16). Typically, such
normalization is achieved by

R = Udiag [1, 1, · · · ,det(UV )]V > (28)

where USV > = mat (x) is the singular value decomposition
(SVD) of mat (x). When R ∈ SO(3), the orthonormalization
can also be conducted by solutions to Wahba’s problem [43]
that involves an eigenvalue problem of 4×4 matrices. As SVD
is highly nonlinear, we introduce a recent linear method for
generalized n-dimensional registration [44] with uncertainty
descriptions so that the following system can be established

d1 = Re1
d2 = Re2

...
dn = Ren

(29)

where x = vec(R) =
(
d>1 ,d

>
2 , · · · ,d>n

)>
and e1 =

(1, 0, 0, · · · , 0)>, e2 = (0, 1, 0, · · · , 0)>, · · · , en =
(0, · · · , 0, 1)> are standard orthogonal unit bases of Euclidean
space Rn. In such model, the vectors e1, e2, · · · , en are noise-
free and the covariance of d1,d2, · · · ,dn are invoked directly
from Σxx, so that the covariance ΣR is obtained. (29) frames
a standard form of point-cloud registration, and R is its
optimal solution on SO(n). First, we need to reconstruct the
matrix

G =

n∑
i=1

1

n
P>(τi)P(τi) (30)

where τi = di + ei. Then reconstruct the vector

v =

n∑
i=1

1

n
P>(τi)%i (31)

where % = ei−di. R satisfies the following Caylay transform

R = (I + g�)
−1

(I − g�) (32)
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where g� gives a skew-symmetric matrix by a linear mapping

from g =
[
g1, g2, · · · , gn(n−1)

2

]>
, such that

g� =

0 g1 g2 · · · gn−1
−g1 0 gn · · · g2n−3

−g2 gn
. . . · · ·

...
...

...
... 0 gn(n−1)

2

−gn−1 −g2n−3 · · · −gn(n−1)
2

0


(33)

The matrix P meets the following transform

g�τi = P(τi)g (34)

and can be evaluated via various symbolic engines like MAT-
LAB and Mathematica. Then the covariance of g i.e. Σg can
be given by (43) in [44]. After that, the rotation uncertainty
can be characterized by means of

ΣR = (I + g�)
−1

[
n∑
i=1

P (ζi)ΣgP> (ζi)

] [
(I + g�)

−1
]>

(35)
in which

R+ I = (ζ1, ζ2, · · · , ζn) (36)

Fig. 4. Case 1: The estimated results using symmetric Ai,Bi and their 3σ bounds when εvector = 1 × 10−1, εhand−eye = 1 × 10−5, N = 30 and
M = 1.

Fig. 5. Case 1: The estimated results using symmetric Ai,Bi and their 3σ bounds when εvector = 1 × 10−1, εhand−eye = 1 × 10−5, N = 150 and
M = 1.
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Fig. 6. Case 2: The estimated results using rigid Ai,Bi and their 3σ bounds when εvector = 1× 10−1, εhand−eye = 1× 10−5, N = 30 and M = 1.

Fig. 7. Case 2: The estimated results using rigid Ai,Bi and their 3σ bounds when εvector = 1× 10−1, εhand−eye = 1× 10−5, N = 150 and M = 1.

III. EXPERIMENTAL RESULTS

A. Simulation Results

In this sub-section, we simulate several cases to demonstrate
the performances of the proposed algorithm. The rotation error
is defined as

η = arc cos
tr(RR>true)− 1

2
(37)

with Rtrue the reference (true) rotation matrix and
εvector, εhand−eye denoting the noise densities of the vector
observations and hand-eye measurements respectively. The

vector observations and hand-eye measurements are simulated
using additive noises such that

bi = Rtrueri + εi

AiRtrue −RtrueBi = Ξi

(38)

with εi and Ξi the noises subject to Gaussian distribution such
that

εi ∼ N (0, εvectorI)

Ξi ∼MN (0, εhand−eyeI, εhand−eyeI)
(39)
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The sequence of the true rotation matices is generated using
a modified quaternion model in [45]:

q =


sin
(
−0.8334× 2× 10−3k + 1.3679

)
sin
(
−1.5833× 2× 10−3k − 0.1479

)
sin
(
3.0038× 2× 10−3k + 2.0061

)
sin
(
−1.1200× 2× 10−3k − 0.0179

)
 , q =

q√
q>q

(40)
where k = 1, 2, · · · , 10000 denote the indices. We validate our
algorithm by converting the quaternions into rotation matrices.
The vector observations are assumed to have been obtained by
rotation matching from feature extraction algorithms. Since
the feature extraction may be opportunistic, the single-point
covariance parameter of the vector observations is set to
εvector = 1 × 10−1. While in [18], it is reported that the
hand-eye measurements can reach the attitude determination
accuracy up to several arc seconds, εhand−eye is set to 1×10−5
i.e. this hand-eye source is regarded much more accurate than
the feature-matching based approach. It is assumed that here
only one asteroid is in the field-of-view (FOV) of the camera
so M = 1. For the first set of cases, we simulate the symmetric
Ai,Bi as appeared in [17], [18]. Two cases with different
vector observation numbers N = 30 and N = 150 are
simulated. The results along with the 3σ bounds calculated
from the covariance matrices are shown in Fig. 4 and 5. For
another set of cases, Ai,Bi are rigid ones like those in the
hand-eye calibration while the results are presented in Fig. 6
and 7.

From the two sets of cases, one can observe that with fewer
vector observations, the attitude estimator has worse accuracy
and the uncertainty of the 3σ bounds will be larger. These
3σ bounds are taken from the square roots of the diagonal
elements of the covariance matrix. Comparing the first and
second sets of cases, we can also see that the system with
symmetric Ai,Bi owns worse accuracy than those with rigid
hand-eye measurements. To study the relationship between the
rotation error and numbers of vector observations and hand-
eye measurements, we choose N and M from 1 to 5 for
simulation. In each step, the vector observations and hand-
eye measurements are randomly sampled for 5000 times and
the results are averaged so the statistical trends can be well
reflected. The noises are chosen to be subjected to

εi ∼ N
(
0, 5× 10−1I

)
Ξi ∼MN

(
0, 5× 10−1I, 5× 10−1I

) (41)

i.e. both types of measurements are very noisy so the error
scales can be magnified. We also study two cases where
Ai,Bi are rigid or symmetric and the relationships are then
shown in Fig. 8 and 9.

With growing N and M , the rotation errors rapidly decrease
while the decreasing ratio for the hand-eye measurements
is lower than that of vector observations. This shows that
the vector observations are effective in aiding the attitude
determination with only hand-eye measurements. Also, one
can obviously see that using symmetric Ai and Bi, the
accuracy is much lower than that in rigid ones. As in [17],
[18] Ai,Bi are symmetric, that is to say the method in
Modenini’s work can only achieve limited accuracy, regardless

Fig. 8. The rotation errors subject to different values of N and M with
Ai,Bi ∈ SO(n), n = 3 (rigid case).

Fig. 9. The rotation errors subject to different values of N and M with
Ai,Bi being 3× 3 symmetric matrices.

of its inevitable drawback in the angle observability. When
combined with vector observations, the accuracy, robustness
and observability can be dramatically improved. In the next
sub-section, we are going to conduct real-world experiments
using data from the Dawn spacecraft.

B. Dawn Spacecraft Validation

The Dawn spacecraft was launch by NASA on 27 Sept 2007
and has been aimed to discover the two dwarf planets i.e. Vesta
and Ceres in the Kuiper belt. The Dawn mission ends on 1st
Nov 2018 with the spacecraft consumed all the fuel for attitude
control of its solar panel. The memorable Dawn mission
had fullfiled the dreams of the scientists and enthusiasts for
inspection of distant dwarf planets in the solar system. On the
Dawn spacecraft, there were two framing cameras imaging the
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Fig. 10. The matched features in successive images of Ceres from the Dawn spacecraft using BRISK.

Fig. 11. The matched features in successive images of Ceres from the Dawn spacecraft using SURF.

Fig. 12. The matched features in successive images of Ceres from the Dawn spacecraft using ORB.
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targets. Ceres has better geometric shape than Vesta since it
is highly ellipsoidal and owns the semi-major axis of 482 km
and semi-minor axis of 446 km. Therefore, in the study of
Modenini [17], [18], it has been successfully proven that such
ellipsoid imaged in the camera frame can be used for accurate
spacecraft attitude determination.

As described before, the visual measurements can also
provide attitude information from another aspect. Therefore,
we verify the two sources of them i.e. the PnP and epipolar
geometry in this sub-section. There are many representative
point feature extraction methods proposed previously and each
algorithm has its pros and cons. For the motion estimation
using Ceres images, we choose the speed up robust fea-
tures (SURF, [46]), binary robust invariant scalable keypoints
(BRISK, [47]), oriented FAST and rotated BRIEF (ORB, [48])
for comparisons. The conic detection and the elliptic fittings
are conducted according to [49]–[51].

Using the epipolar geometry, the camera poses can be
restored by integrating all sequential relative rotation ma-
trices between successive images. Fig. 10, 11, 12 present
the feature matching using BRISK, SURF and ORB respec-
tively, for the images FC21B0088753_17042144605F2C
and FC21B0088785_17042150857F2C. Here, the ran-
dom sample consensus (RANSAC, [52], [53]) is invoked
for figuring out the correspondences between 2D-2D image
feature points. All the algorithms in this sub-section are
implemented using the MATLAB computer vision toolbox.
The feature numbers, the RANSAC successfull ratio and the
execution time of various algorithms are summarized in Table
I.

From the statistics, we can see that ORB extracts too few
features but the RANSAC matching is the most successful.
While the SURF consumes the most computation time and
least RANSAC successful ratio (see the red markers in Fig.

TABLE I
STATS OF VARIOUS FEATURE EXTRACTION ALGORITHMS

Algorithms Feature Numbers RANSAC Successful Ratio Time (s)

BRISK 84 97.62% 0.885
SURF 237 84.38% 1.277
ORB 24 100% 1.092

11), the BRISK maintains a balance among the three ones.
Therefore the BRISK feature descriptor is ultilized for the
attitude determination validation. With the PnP method, a
nonlinear semidefinite programming is employed to solve
the 2D-3D registration problem between 2D image and the
3D terrain map [54]. Here the 3D terrain map is gener-
ated using the images of the Dawn spacecraft during the
Survey mission of the Ceres, which can be found out at
https://sbib.psi.edu. Fig. 13 shows the exact details
of such 3D terrain map.

The reference attitude information from the Dawn spacecraft
attitude estimator can be acquired from LBL files in the
data folder. The real-world images from the Dawn spacecraft
during the GRaND mission are grabbed for the verification
of the proposed algorithm since in that image sequence the
illuminance and the shape of the imaged Ceres are more
appropriate than that in other datasets. The relative weighting
of the vector observations and hand-eye measurements is tuned
to % = 0.5 indicating that the hand-eye measurements own
twice accuracy than a single pair of feature correspondence.
The PnP and epipolar geometry do not give 3D vector obser-
vation pairs directly. Instead, they are nonlinear and only the
rotation matrices can be estimated. Suppose we have estimated
the attitude matrices from PnP and epipolar geometry i.e.
RPnP,Repipolar, with the similar approach in (29), we can

Fig. 13. The reconstructed terrain and altitude data using historical observations from the Dawn spacecraft. The darker color indicates lower altitude and vice
versa.
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reconstruct the vector observations by dPnP,1 = RPnPe1
dPnP,2 = RPnPe2
dPnP,3 = RPnPe3

,

 depipolar,1 = Repipolare1
depipolar,2 = Repipolare2
depipolar,3 = Repipolare3

(42)

The reason for such reconstruction is two-fold: 1) If we
directly solve hand-eye, PnP and epipolar geometry problems
together, there will be too many local minima involved in
the global searching for the highly non-convex combined new
problem; 2) Due the local minima, estimating a controllable
and accurate covariance description may be very tough and
trivial. Such reconstruction of vectors will not loose accuracy
of the obtained rotation since the rotation is exactly the optimal
one on SO(n)corresponding to the above vector-matching
problem [9], [43]. For the epipolar geometry, the rotation
matrices are propagated sequentially based on the estimates
in the latest time instant. Then the attitude determination
results are processed with the proposed method and previous
representatives. Table II consists of the root mean squared
(RMS) statistics of the attitude errors in Euler angles. It is

TABLE II
RMS ACCURACY PERFORMANCES OF VARIOUS ALGORITHMS

Algorithms Roll (deg) Pitch (deg) Yaw (deg)

Proposed-PnP 5.33× 10−03 3.21× 10−03 5.81× 10−02

Proposed-Epipolar 8.54× 10−03 7.46× 10−03 3.11× 10−02

PnP-Only 1.22× 10−03 3.01× 10−03 3.78× 10−02

Modenini [17] 8.21× 10−03 6.04× 10−03 1.99× 10+00

clearly presented that the original algorithm by Modenini can
give very accurate estimates of roll and pitch but does not
have good performance in estimating the yaw angles. The
reason has been shown in [17], [18] that for some perspective
views the imaged ellipsoids are very close to spheroids which
limits the observability on the yaw direction. The reason is
not algorithmical but very physical since in many cases the
flattenings of the imaged ellipsoid are small. When introducing
the PnP and the epipolar geometry, the accuracy for yaw
angles is significantly improved. In fact, the proposed method
solves the attitude determination problem between various
weighted measurements. The reason that PnP achieves better
yaw estimation performance is that the imaging direction well
corresponds to the yaw (see Fig. 10). So the point feature
correspondences significantly improve the the yaw accuracy. It
also deserves a notification that the epipolar geometry does not
achieve better roll and pitch precisions since the attitude from
such source is sequentially integrated and thus it may suffer
from low sampling frequency. However, epipolar geometry
does not need to have preliminaries on the 3D model of
the imaged ellipsoid. Therefore, from this aspect, epipolar
geometry is more flexible than PnP. If the 3D terrain of
the imaged ellipsoid is already known e.g. the Moon, then
PnP should definitely replace the epipolar geometry for better
accuracy and robustness.

C. Integrating with Angular Rate
In this sub-section, we simulate a case in the presence

of angular rate measurements. Angular rate measurements

Fig. 14. The captured Lunar images during the simulated flight.

mainly come from the onboard gyroscope or the estimation
from star trackers, which are accurate and reliable devices.
These measurements will provide two advances for the attitude
determination scheme proposed in this paper:

1) They will largely improve the attitude update frequency.
2) They will significantly improve the attitude estimation

accuracy.

A spacecraft carrying high definition camera and gyroscope is
modeled, whose inertia matrix is I = 4500 kg ·m2I . The gy-
roscope contains unknown constant bias term to be estimated
in further filter loops. We use the Moon as the central body and
the orbit propagation is conducted via the high-precision orbit
propagator (HPOP) from Jet Propulsion Laboratory (JPL). The
captured Moon in different perspectives will be shown in Fig.
14. The Lunar flattening is quite small, making it almost
a perfect sphere with semi-major axis of 3,476.2 km and
semi-minor axis of 3,472.0 km. Therefore, the observability
of yaw is completely lost according to Modenini’s theory
[17]. Still, the vector observations are reconstructed from the
rotation estimation using the epipolar geometry as described
in the last sub-section. We use the Kalman filters for the state
estimation. The preset attitude profile has been generated using
the following unit quaternion model

qi = sin(iTφ+ψ), i = 1, 2, · · · , 20000
qi = qi/ ‖qi‖

(43)
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with T = 1/(1000 Hz) being the sampling period and

φ = (−0.12352,−0.31294, 0.62993,−0.27127)>

ψ = (−0.74532,−0.24811, 0.66610,−0.54501)>
(44)

The state vector is x̃ =
(
x>,ω>

)>
where ω is the angular

rate vector that owns the model of

ω = ω̂ + ωbias + ωnoise (45)

in which ωbias = (ωx,bias, ωy,bias, ωz,bias)
> is the bias

term and ωnoise denotes the noise term such that ωnoise ∼
N (0, σ2

ωI) with isotropic standard deviation of σω . The
process model of the Kalman filter is simply{

mat(ẋ) = −ω×mat(x)

ω̇bias = 0
(46)

where ω× is the skew-symmetric matrix of ω. The measure-
ment model is

y =Kx̃ (47)

where y =
(
x>meas,0

)> ∈ R12 is the measurement vector and
the measurement matrix K ∈ R12×12 is

K =

(
I 0

0 0

)
(48)

Here xmeas denotes the computed measurement rotation ma-
trix using proposed method from (16). Since here the state x
is constrained on SO(n), a recent filter with such constraint
has been invoked [55]. The extended Kalman filter (EKF) and
unscented Kalman filter (UKF) mechanisms are employed to
[55] for state estimation. The related parameters are

1) Initial state: α0 = [vec(I),0]
>.

2) Initial state covariance: Σx̃0
= 1× 10−1I .

3) Gyroscope standard deviation: σω = 1× 10−2 rad/s.
4) Bias standard deviation: σωbias

= 1× 10−3 rad/s.

5) Measurement covariance: Σy =

(
Σxx 0

0 0

)
.

The state estimation and proposed algorithms are implemented
on an embedded STM32F407VG chip with clock speed of
168MHz. The feature extraction has been conducted using the
BRISK descriptor on a field programmable gate array (FPGA)
guaranteeing a stable processing image processing speed of
120fps. The predicting loop is performed at 1000Hz and the
measurement correction is deployed at 120Hz in accordance
with the feature extraction. The codes are programmed using
the C++11 standard. The attitude estimation results in the
form of quaternion from various algorithms are shown in Fig.
15. The proposed analytical results can follow the reference
but the noise scale is quite large. When the Kalman filter is
introduced for fusion with gyroscope, the estimation errors
significantly decrease, leading to accurate estimation of the
gyroscope biases presented in Fig. 16. Both EKF and UKF can
converge to the correct reference values and EKF converges a
little bit slower than UKF. This verifies that when combined
with inertial measurements, the proposed method along with
its covariance information are accurate and reliable. The load
of the central processing unit (CPU) has been summarized via

the internal scheduling unit of the embedded operating system.
Table III. From the presented stats, we are able to see that
the proposed method together with its Kalman filter version
with inertial measurements are computationally efficient for
execution on the embedded platform.

TABLE III
COMPUTATIONAL CPU LOAD (AVERAGED)

Algorithms CPU Load)

Proposed - No Covariance 3.986%
Proposed - With Covariance 6.710%

Proposed - EKF 27.043%
Proposed - UKF 34.925%

Fig. 15. Attitude estimation results using the angular rate, epipolar geometry
and hand-eye measurements.

Fig. 16. Estimated gyroscope biases.
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IV. CONCLUSION

The original attitude determination using hand-eye mea-
surements derived from images of ellipsoid has limited ac-
curacy, robustness and observability. Vector observations can
well aid the spacecraft attitude determination with hand-eye
measurements and thus enhance the overall performances. It
is noted that the vector observations can come from various
sources so the proposed scheme is quite universal. These
aspects contribute to a widened approach for visual attitude
determination for spacecraft in deep spaces. The experimental
studies have verified the effectiveness of the proposed scheme
for in-flight attitude determination. The shown results indicates
that the proposed combined approach is accurate for Dawn
spacecraft. A further synthetic study on the fusion with inertial
measurements has also been conducted showing the flexibility
and superiority of multiple-source integration.

The presented approach also has its drawback i.e. the
estimated x is not strictly under the constraint of SO(n)
and requires a further orthonormalization operation. The next
task for us is to find a fully SO(n)-constrained solution on
Lie groups. Besides, the weighting strategy in this paper is
currently empirical. And how to optimally determine a best
set of weights in real-time will also be a challenging task.

For low-cost purposes, the ellipsoidal markers can be in-
stalled onto spacecrafts for relative attitude determination
using visual correspondences and hand-eye measurements.
Also, in the total design of the Dawn spacecraft, there are
two framing cameras mounted targeting to the same direction.
This will motivate us to invoke the stereo imaging principles to
give more accurate attitude determination results in the future.

APPENDIX A
MATRIX DERIVATIONS

The items inside the internal expectation of Σxx can be
derived as follows

[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]

[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]
>

= [(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )][
vec(P )>

(
δQ> ⊗ I

)
+ vec(δP )>

(
Q> ⊗ I

)]
= (δQ⊗ I) vec(P )vec(P )>

(
δQ> ⊗ I

)
+

(δQ⊗ I) vec(P )vec(δP )>
(
Q> ⊗ I

)
+

(Q⊗ I) vec(δP )vec(P )>
(
δQ> ⊗ I

)
+

(Q⊗ I) vec(δP )vec(δP )>
(
Q> ⊗ I

)
⇒ S1 =

〈
[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]

[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]
>

〉

=

〈Z(P )vec(δQ>)vec(δQ>)>Z>(P )+

Z(P )vec(δQ>)vec(δP )>
(
Q> ⊗ I

)
+

(Q⊗ I) vec(δP )vec(δQ>)>Z>(P )+

(Q⊗ I) vec(δP )vec(δP )>
(
Q> ⊗ I

)
〉

= Z(P )Σvec(Q>)Z>(P )

+Z(P )Σvec(Q>),vec(P )

(
Q> ⊗ I

)
+(Q⊗ I)Σvec(P ),vec(Q>)Z>(P )

+ (Q⊗ I)Σvec(P )

(
Q> ⊗ I

)

(51)

S2 =〈 [
δH + (δQ⊗ I)

(
Q> ⊗ I

)
+ (Q⊗ I)

(
δQ> ⊗ I

)]
xx>

[
δH + (δQ⊗ I)

(
Q> ⊗ I

)
+ (Q⊗ I)

(
δQ> ⊗ I

)]>〉
≈
〈
δHxx>δH +

[
(δQ⊗ I)

(
Q> ⊗ I

)
+ (Q⊗ I)

(
δQ> ⊗ I

)]
xx>

[
(δQ⊗ I)

(
Q> ⊗ I

)
+ (Q⊗ I)

(
δQ> ⊗ I

)]>〉

=

(
M∑
i=1

viF
[(

Ai ⊗ I − I ⊗B>i

)
x
])

︸ ︷︷ ︸
n2×2n2

Σmi

(
M∑
i=1

viF
[(

Ai ⊗ I − I ⊗B>i

)
x
])>

︸ ︷︷ ︸
2n2×n2

+

 M∑
i=1

vi
(
A>i ⊗ I − I ⊗Bi

)
︸ ︷︷ ︸

n2×n2

F(x)︸ ︷︷ ︸
n2×2n2

Σni

[
M∑
i=1

vi
(
A>i ⊗ I − I ⊗Bi

)
F(x)

]>

+Z (RQ)Σvec(Q>)Z
> (RQ) + (Q⊗R)Σvec(Q)

(
Q> ⊗R>

)
+Z (RQ)Σvec(Q>),vec(Q)

(
Q> ⊗R>

)
+ (Q⊗R)Σvec(Q),vec(Q>)Z

> (RQ)

(49)

S3 =

−
〈
[(δQ⊗ I) vec(P ) + (Q⊗ I) vec(δP )]x>

[
δH + (δQ⊗ I)

(
Q> ⊗ I

)
+ (Q⊗ I)

(
δQ> ⊗ I

)]>〉
≈ −

〈[
Z(P )vec(δQ>) + (Q⊗ I) vec(δP )

] [
Z (RQ) vec

(
δQ>

)
+ (Q⊗R) vec(δQ)

]>〉
= −Z (P )Σvec(Q>)Z> (RQ)− (Q⊗ I)Σvec(P ),vec(Q)

(
Q> ⊗R>

)
−Z (P )Σvec(Q>),vec(Q)

(
Q> ⊗R>

)
− (Q⊗ I)Σvec(P ),vec(Q>)Z> (RQ)

(50)
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Denoting

Σmi =

[
Σvec(Ai) Σvec(Ai),vec(Bi)

Σvec(Bi),vec(Ai) Σvec(Bi)

]
︸ ︷︷ ︸

2n2×2n2

Σni =

[
Σvec(A>i ) Σvec(A>i ),vec(B>i )

Σvec(B>i ),vec(A>i ) Σvec(B>i )

]
︸ ︷︷ ︸

2n2×2n2

(52)

and invoking

(Q⊗ I)
(
δQ> ⊗ I

)
x = (Q⊗ I) vec (RδQ)

= (Q⊗ I) (I ⊗R) vec(δQ)

= (Q⊗R) vec(δQ)

(53)

we obtain S2,S3 in (49) and (50). Note that in these
derivations, the cross correlation between vector observations
and hand-eye measurements is ignored as they come from
completely different sources so a cross-correlation evaluation
may be trivial. Since we have

P> =


√
w1b

>
1√

w2b
>
2

...
√
wNb

>
N

 ,Q> =


√
w1r

>
1√

w2r
>
2

...
√
wNr

>
N

 (54)

let

pi =


√
w1b1,i√
w2b2,i

...
√
wNbN,i

 , qi =


√
w1r1,i√
w2r2,i

...
√
wNrN,i

 , i = 1, 2, · · · , n

(55)
we have

P> = (p1,p2, · · · ,pn)
Q> = (q1, q2, · · · , qn)

(56)

Σvec(P>),vec(Q) =
〈
vec
(
δP>

)
vec(δQ)>

〉

=

〈
δp1

δp2
...

δpn

(√w1δr
>
1 ,
√
w2δr

>
2 , · · · ,

√
wNδr

>
N

)〉

=

〈
√
w1δp1δr

>
1 ,
√
w2δp1δr

>
2 , · · · ,

√
wNδp1δr

>
N√

w1δp2δr
>
1 ,
√
w2δp2δr

>
2 , · · · ,

√
wNδp2δr

>
N

...
...

. . .
...

√
w1δpnδr

>
1 ,
√
w2δpnδr

>
2 , · · · ,

√
wNδpnδr

>
N


〉

=


√
w1Σp1,r1

,
√
w2Σp1,r2

, · · · ,
√
wNΣp1,rN√

w1Σp2,r1
,
√
w2Σp2,r2

, · · · ,
√
wNΣp2,rN

...
...

. . .
...

√
w1Σpn,r1

,
√
w2Σpn,r2

, · · · ,
√
wNΣpn,rN


︸ ︷︷ ︸

nN×nN

(57)

Then Σvec(Q>),vec(Q),Σvec(Q>),vec(P ),Σvec(P ),vec(Q>), can
be computed in the same manner. Note that if there is no
auto-correlation between b1, b2, · · · , bN , no auto-correlation
between r1, r2, · · · , rN and no cross-correlation between
bi, i = 1, 2, · · · , N and rj , j = 1, 2, · · · , N , one arrives at

Σpi,rj = 0

Σqi,bj = 0

Σpi,bj =


. . . 0

σ2
bj,i

0
. . .


︸ ︷︷ ︸

N×n

,Σqi,rj =


. . . 0

σ2
rj,i

0
. . .


︸ ︷︷ ︸

N×n

(58)

where i = 1, 2, · · · , n, j = 1, 2, · · · , N . The auto-covariance
of vec

(
P>
)

is given by

Σvec(P>) =
〈
vec
(
δP>

)
vec
(
δP>

)>〉

=

〈
δp1

δp2
...

δpn

(δp>1 , δp>2 , · · · , δp>n )
〉

=


Σp1,p1

,Σp1,p2
, · · · ,Σp1,pn

Σp2,p1
,Σp2,p2

, · · · ,Σp2,pn

...
...

. . .
...

Σpn,p1
,Σpn,p2

, · · · ,Σpn,pn


(59)

and likewise Σvec(Q>) can be obtained. If there is no auto-
correlation between b1, b2, · · · , bN and no auto-correlation
between r1, r2, · · · , rN , we have

Σpi,pj
= diag

(
σ2
b1,i,b1,j , σ

2
b2,i,b2,j , · · · , σ

2
bn,i,bn,j

)
︸ ︷︷ ︸

N×N

Σqi,qj
= diag

(
σ2
r1,i,r1,j , σ

2
r2,i,r2,j , · · · , σ

2
rn,i,rn,j

)
︸ ︷︷ ︸

N×N

(60)
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