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Adaptive Mixed-Scale Feature Fusion Network for
Blind AI-Generated Image Quality Assessment
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Yuan-Gen Wang, Senior Member, IEEE, and Guanghui Yue, Member, IEEE

Abstract—With the increasing maturity of the text-to-image
and image-to-image generative models, AI-generated images
(AGIs) have shown great application potential in advertisement,
entertainment, education, social media, etc. Although remarkable
advancements have been achieved in generative models, very
few efforts have been paid to design relevant quality assessment
models. In this paper, we propose a novel blind image quality
assessment (IQA) network, named AMFF-Net, for AGIs. AMFF-
Net evaluates AGI quality from three dimensions, i.e., “visual
quality”, “authenticity”, and “consistency”. Specifically, inspired
by the characteristics of the human visual system and motivated
by the observation that “visual quality” and “authenticity” are
characterized by both local and global aspects, AMFF-Net scales
the image up and down and takes the scaled images and original-
sized image as the inputs to obtain multi-scale features. After that,
an Adaptive Feature Fusion (AFF) block is used to adaptively
fuse the multi-scale features with learnable weights. In addition,
considering the correlation between the image and prompt, AMFF-
Net compares the semantic features from text encoder and image
encoder to evaluate the text-to-image alignment. We carry out
extensive experiments on three AGI quality assessment databases,
and the experimental results show that our AMFF-Net obtains
better performance than nine state-of-the-art blind IQA methods.
The results of ablation experiments further demonstrate the
effectiveness of the proposed multi-scale input strategy and AFF
block.

Index Terms—AI-generated images, blind image quality assess-
ment, adaptive feature fusion, multi-scale feature.

I. INTRODUCTION

W ITH the advent of the Web3.0 era [1], artificial
intelligence-generated Content (AIGC) is quietly lead-

ing a profound change, reshaping and even subverting the
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production and consumption mode of digital content. As a
major branch of AIGC, AI-Generated Images (AGIs) have
shown great application potential in various aspects of human
life. The creation of AGIs involves inputting text prompts into
the text-to-image generative model or inputting an image into
the image-to-image generative model to facilitate the generation
process [2]. However, due to technical limitations, large
quality variance exists among different AGIs, requiring manual
selection before use, which greatly limits the development
of generative techniques. Therefore, to improve production
efficiency, it is of great significance to design an automatic
AGI image quality assessment (IQA) method [3], [4].

Recently, deep neural networks (DNNs), especially Con-
volutional Neural Networks (CNNs) and Transformers, have
been widely employed in IQA tasks due to their outstanding
capabilities in feature extraction and fitting [5]–[10]. Current
works mainly focus on natural scene images (NSIs) that
include synthesized distortions or authentic distortions. Most
existing DNN-based IQA methods started with automatically
mining quality-aware features through newly designed shallow
network architectures [11] or classical network architectures
used in image classification tasks [12]. To strengthen the
representative capabilities of DNN features, designers also
focused on the development of more comprehensive feature
extraction or fusion approaches [13]–[16]. Later, for more
accurate assessment results, some strategies are used in view
of the distortion knowledge during the network design, such as
setting auxiliary tasks for naturalness evaluation [17], combing
local and global features [18], generating pseudo reference
[19], integrating multi-level features [5], etc. In addition,
some works also considered the characteristics of the human
visual system (HVS) in the process of network design, e.g.,
establishing perception rule [20], including visual saliency
prediction as the auxiliary task [21], modeling the attention
and contrast sensitivity mechanisms [22]. Recently, some works
also proposed to utilize rank learning [23], semi-supervised
learning [24], and contrastive learning [25] for robust feature
representation, striving for more accurate assessment results.

However, unlike camera-captured NSIs, AGIs are directly
generated by AI generative models. Fig. 1 shows a simple
comparison between NSIs and AGIs. Generally, NSIs usually
suffer from distortions (e.g., compression, blurriness, noise,
etc.), and the perceptual quality is rated from what is the level
of visual experience. By contrast, the quality definition and
representation of AGIs are different and usually rated in a
multi-dimensional perspective, typically in the form of visual
quality, authenticity, and consistency [2]. For an AGI, visual



IEEE TRANSACTIONS ON BROADCASTING 2

quality is similar to the perceptual quality of NSIs that is rated
by analyzing the visual experience influenced by distortions,
such as compression and color artifacts. Authenticity measures
the realness degree to reality. Consistency is gauged by the
alignment between image content and textual labels. Generally,
the rated scores of these three dimensions are usually different.
For instance, in the last subfigure of Fig. 1, the generated
bald eagle is clear, without obvious distortions, and the image
content conforms to the text description. But the image doesn’t
give enough details about the bald eagle with stiff hair and
coarse structures, making it easy to identify as fake. Therefore,
the rating scores of visual quality and consistency of this
image are high, while the rating score of authenticity is low. In
practical applications, apart from the visual quality affected by
the distortion and authenticity affected by the artistic expression,
users also concern about how well the generated AGI matches
the task, i.e., content consistency. Since traditional NSI oriented
IQA methods can only evaluate the image quality in the
dimension of visual experience, they are not suitable for the
quality assessment task of AGIs. Therefore, it is necessary
to design a comprehensive quality evaluation method to form
more detailed understanding of AGIs.

bald eagle, flying over a forest 
with a city in the background

there is a crayfish that is sitting 
on a rock in the water

Visual quality: 
Authenticity:
Consistency:

Visual quality: 
Authenticity:
Consistency:

Fig. 1. Comparisons between NSIs (the first row, selected from KADID-10k
[26] and KonIQ-10k [27]) and AGIs (the second row, selected from PKU-
I2IQA [28]). The quality score of NSIs is mainly rated in the dimension of
visual experience affected by distortions, while the quality scores of AGIs are
rated in the dimensions of visual quality affected by distortions, authenticity
affected by realness degree to reality, and consistency affected by the alignment
between image content and textual labels.

As a new topic, the research on AGI quality assessment
is still in infancy, with very limited progress. A widely used
strategy for evaluating the quality of AGIs is calculating the
distance between the NSIs groups and the AGIs groups [29],
[30]. However, such a strategy must evaluate a group of
images, which is unsuitable for the case of only one image.
Therefore, more advanced methods should be specifically
proposed. Following the general steps of IQA tasks, the quality
assessment databases were first reported based on subjective

experiments to promote the development of objective IQA
methods [3], [28], [31]. These reported databases contain text
prompts and multi-dimensional quality labels. Alongside these
databases, some mainstream NSI oriented IQA methods were
tested by respectively retraining them multiple times, each with
a specific dimension of quality labels as the ground truth. As a
result, most existing methods perform poorly, especially on the
task of evaluating content consistency, as they only take the
image as the input and cannot measure the mismatch degree
between the text prompt and generated image. Recently, some
works proposed to process the text prompt and image separately
with different encoders and concatenate the extracted features
from two encoders to generate the quality score [32]. However,
directly concatenating features cannot effectively measure the
semantic difference between the text prompt and image. For
detailed alignment measurement between the text prompt and
image, some researches tried to segment the text prompt into
multiple morphemes, cut the image into multiple patches, and
compute the alignment scores between morphemes and sub-
images one by one [3]. However, image cutting is highly
depended on the designer’s experience and how to build the
correspondence between morphemes and sub-images is unclear.
To sum up, current studies mainly stay at benchmarking these
databases with some mainstream IQA methods, lacking in-
depth research on designing AGI quality assessment methods.

To move this field forward, this paper proposes a novel
Adaptive Mixed-Scale Feature Fusion Network (AMFF-Net) for
blind AGI quality assessment. Specifically, AMFF-Net adopts
a multi-task framework and evaluates the quality of AGIs
from three dimensions: distortion, authenticity, and content
consistency. Considering that the subjective evaluation result of
an image varies when the distance of the image plane from the
observer changing, AMFF-Net scales the AGI up and down and
feeds the scaled images and the original-sized image into the
image encoder of the pre-trained Contrastive Language-Image
Pre-Training (CLIP) model [33]. After that, the extracted multi-
scale features are adaptively fused by an Adaptive Feature
Fusion (AFF) block. The fused features contain information
at different scales of the image, thereby being more effective
for characterizing the distortion and authenticity of AGIs. For
content consistency prediction, AMFF-Net uses the text encoder
in the pre-trained CLIP to encode the text prompt and computes
the similarity between the obtained textual features and the
fused multi-scale features. The main contributions of this paper
can be summarized as follows:

• A novel blind IQA method is proposed to comprehensively
evaluate the quality of AGIs. Different from existing works
that only measure the “visual quality” of an image, our
method evaluates an AGI from the perspectives of “visual
quality”, “authenticity”, and “consistency”.

• Given that both local and global information should be
considered during subjective rating of visual quality and
authenticity, we propose to utilize a multi-scale input
strategy to help the network capture image details at
different levels of granularity.

• An AFF block is proposed to fuse multi-scale features.
Different from current works that directly concatenate or
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add multi-scale features, the proposed block adaptively
calculates the weights for different features, reducing the
risk of information masking caused by concatenation and
addition.

• Extensive experiments on three AGI quality assessment
databases show that AMFF-Net achieves superior results
compared to nine state-of-the-art blind IQA methods.
Ablation experiments further demonstrate the effectiveness
of the multi-scale input strategy and the AFF block.

II. RELATED WORK

A. DNN-based Blind IQA Methods for NSIs

In the past decades, DNN-based blind IQA methods have
attracted increasing attention from scholars, obtaining superior
performance over traditional handcrafted feature-based methods
on multiple tasks [16], [34]. In earlier studies, shallow CNNs
were constructed to build the mapping between image patches
and quality scores [11]. For instance, Bosse et al. [13] proposed
a CNN-based blind IQA network, which consists of only
ten convolutional layers and five pooling layers for feature
extraction and two fully connected layers for quality regression.
Since the constructed shallow networks are usually with small
input size, they have limited ability to characterize global
distortions [35]. For more accurate predictions, latter works
mainly utilized the pre-trained CNNs, Transformers, or the
hybrid for the image classification tasks as the backbone of the
IQA network. These networks usually have a relatively large
input size, which is conducive to extract global information.
Su et al. [20] utilized the pre-trained ResNet [36] as the
backbone to extract local and global features and fused these
features with a hyper network. Golestaneh et al. [18] extracted
local information of the image via a pre-trained CNN and
modeled them as a sequential input to a Transformer block
for the non-local representation. Ke et al. [37] proposed a
Transformer-based blind IQA network, in which the native
resolution images with varying sizes are processed for a multi-
scale image representation.

Generally, the aforementioned methods are purely data-
driven and do not fully consider the characteristics of distortions
or HVS, leaving much room for performance improvement.
Recently, some researches proposed to build multi-task IQA
frameworks for better performance, in which the auxiliary
task is related to distortion understanding or HVS-inspired
predictions. For instance, given that different distortions have
diverse impacts on the perceptual quality, Wu et al. [38]
designed a multi-task IQA network that takes image distortion
type recognition as the auxiliary task. Yang et al. [21] set
the visual saliency prediction as the auxiliary task in view of
that different regions in an image receive non-uniform visual
attention as they exhibit different qualities. Considering that
synthesized distortions can be characterized and quantified
by natural scene statistics (NSS), Yan et al. [39] set the NSS
feature prediction as the auxiliary task to help the main task, i.e.,
quality prediction, learn a better mapping between the image
and its quality score. Song et al. [17] proposed a knowledge-
guided blind IQA framework by integrating domain knowledge
from NSS and HVS. However, simply utilizing multi-task

learning may have limited feature representations when dealing
with images with complex distortions. Sun et al. [40] proposed
a staircase structure to hierarchically fuse low-level and high-
level features for better feature representation.

B. DNN-based Blind IQA Methods for AGIs

Compared to NSIs, the quality research of AGIs is still in
its infancy, with only a few explorations. For a long time,
researchers mainly utilized the Inception Score proposed by
Salimans et al. [41] for AGI quality evaluation. Considering
the difference between NSIs and AGIs, the Frechet Inception
Distance [29] and Kernel Inception Distance [30] were later
designed to measure the quality of AGIs by calculating the
distance between the AGI groups and the NSI groups. Since
these metrics only evaluate the quality of AGIs in a single
dimension and are not suitable for evaluating a single AGI,
more advanced metrics are highly required. Zhang et al. [42]
made one of the pioneering discussions on evaluating AGI
quality in a multi-dimensional manner and suggested that the
quality of AGIs should be measured in the aspects of technical
issues, artificial intelligence, unnaturalness, degree of difference,
and aesthetics. Unfortunately, this work does not propose an
AGI quality evaluation algorithm, and the strategy of how to
incorporate AGI distortion representation into the evaluation
algorithm is not clear. More recently, some efforts have been
paid to propose specific IQA methods for AGIs by drawing
inspirations from NSI-oriented IQA methods. For instance,
Yuan et al. [43] took the AGI as the input of the IQA network
and compared the differences among various images for a
better feature representation using a contrastive regression
framework. Later, they [32] also introduced a text-image
encoder-based regression framework that respectively processes
the text prompts and generated images with a text encoder and
an image encoder, and concatenates the extracted features for
quality prediction. To evaluate the consistency between the text
prompt and generated image, some current works leverage the
strong reasoning abilities of large Language models (LLMs) for
evaluation [44]–[46]. For example, LLMScore [45] generates
quality scores with multi-granularity compositionality, which
transforms the image into image-level and object-level visual
descriptions, leveraging LLMs to evaluate text-to-image models.
However, these LLMs based methods have a large number of
parameters and require abundant labeled AGIs databases for
training. This motivates to design simpler methods. Li et al.
[3] proposed a simply StairReward alignment model, which
segments the prompt into morphemes and divides the image
into stairs to predict the final score through their one-to-one
alignment.

Although these AGI quality assessment methods perform
relatively superior performance over traditional NSI-oriented
IQA methods, they are still not fully qualified for practical
applications due to the following limitations. First, most
methods only predict the visual experience of an image. In
practice, before use, users not only comprehensively check
the AGI from the visual experience and authenticity, but also
concern about how well the generated image matches the
task, i.e., content consistency. Second, most methods only
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take the AGI as the input, which is insufficient to measure
the text-to-image consistency. Although the measurement of
alignment degree between text morphemes and image stairs can
reflect the consistency to some extent, the prompt segmentation
and image cutting are highly dependent on the designer’s
experience, limiting the generalization ability of such methods.
Third, current methods ignore the correlation and interaction
between features from different modalities, usually resulting
in unsatisfactory performance.

C. CLIP-based IQA Methods

In 2021, Radford et al. [33] trained and released the CLIP
model based on 400 million picture-text pairs to enable zero-
shot prediction. Since then, many researchers have proposed
CLIP-based models for many visual tasks, including image
classification [47], object detection [48], and image retrieval
[49]. Thanks to the robust capabilities of semantic extraction,
CLIP has recently been applied to the IQA tasks. Wang et al.
[50] explored the rich prior knowledge and visual-perception
in CLIP, and evaluated the image quality through prompt
engineering. Pan et al. [51] introduced a two-stage IQA model,
in which a CLIP-based text encoder is used for quality-aware
feature extraction. Miyata [52] introduced a CLIP-based IQA
model that can identify both the perceived quality rating of the
image and the reason on which the rating is based. Zhang et al.
[53] utilized the CLIP model to measure semantic affinity in
the digital human quality assessment task. Although increasing
attempts made in designing CLIP-based IQA methods for NSIs,
very few works have been reported for AGIs.

III. PROPOSED METHOD

A. Motivation

In this paper, we propose a simple yet effective multi-task
blind IQA network, named AMFF-Net, for AGIs. The design
motivation behind our AMFF-Net are as follows: 1) Inspired
by the fact that the perceivability of image details is highly
related to the distance of the image plane from the observer,
AMFF-Net scales the AGI up and down, and encodes the
scaled images and original-size image to capture image details
at different levels of granularity, closer to the subtle and holistic
nature of human visual perception. 2) With the multi-scale
image representations, an adaptive feature fusion block is used
to adaptively incorporate image details at different resolutions,
contributing to accurate quality and authenticity predictions.
3) AMFF-Net evaluates the AGI from multi-dimensional
perspectives, i.e., the visual quality, authenticity, and content
consistency, targeting at helping the users understand the quality
of AGIs more comprehensively than current methods that
only provide one-dimensional prediction. Also, computing
the similarity between textual features and image features
requiring no designer’s experience is a good choice to evaluate
the consistency between the prompt and generated image.

B. Overall Architecture

Fig. 2 illustrates the overall architecture of the proposed
AMFF-Net. AMFF-Net takes the text prompt and multi-scale

AGIs as the inputs and outputs multi-attribute quality scores,
including content consistency SC , visual quality SV , and
authenticity SA:

(SC , SV , SA) = Fθ(T, I
1.5×, I1.0×, I0.5×), (1)

where Fθ(·, ·, ·, ·) denotes the mapping between inputs and
outputs, and T is the text prompt. I1.5×, I1.0×, and I0.5× are
the scaled AGIs with 1.5×, 1.0×, and 0.5× resolutions of the
original image.

Specifically, considering that both local and global details
affect the subjective ratings of visual quality and authenticity,
AMFF-Net inputs the scaled AGIs, i.e., I1.5×, I1.0×, and I0.5×,
into an image encoder of the pre-trained CLIP model [33] to
obtain multi-scale semantic representations, denoted as F 1.5s

I ∈
R1×1024, F 1.0s

I ∈ R1×1024, and F 0.5s
I ∈ R1×1024. In this study,

we select ResNet50 [36] as the image encoder as it has been
widely validated to be effective for IQA tasks. In the default
settings of CLIP, the image encoder can only accept inputs
with the size of 224× 224 due to the presence of positional
embedding. In this study, we add some operations on the last
layer of ResNet50 to make it adaptive to inputs with different
sizes. Specifically, for the input with larger size than 224×224,
we down-sample the feature of the ResNet50’s last layer using
adaptive maximum pooling. For the input with smaller size
than 224×224, we up-sample the feature of the ResNet50’s last
layer using the bilinear interpolation. Both the down-sampling
and up-sampling operations aim to make the feature size of the
ResNet50’s last layer be (2048, 7, 7) to match the positional
embedding. The obtained semantic features of different scaled
images are then fused by an AFF block to form the merged
feature FI ∈ R1×1024. Subsequently, FI is fed into two parallel
Multi-layer Perceptions (MLPs), which consists of two fully
connected layers, to separately predict the scores of visual
quality and authenticity:{

SV = Mϑ1(FI),

SA = Mϑ2(FI),
(2)

where Mϑ1(·) and Mϑ2(·) are the MLP operations for visual
quality score prediction and authenticity score prediction,
respectively. The number of neural nodes in the MLP is
{1024, 256, 1}. For content consistency score prediction, we
first utilize the Transformer-based text encoder [54] of the pre-
trained CLIP model to encode the text prompt, and subsequently
compute the cosine similarity between the extracted textural
feature FT ∈ R1×1024 with the merged image feature FI to
predict the content consistency score:

SC =
FI ⊙ (FT )

T

∥FI∥2 ∥FT ∥2
, (3)

where ⊙ denotes the matrix-multiplication, and (·)T stands for
the matrix transpose operation.

Overall, AMFF-Net can extract multi-scale representations
and adaptively aggregate them, providing rich semantic infor-
mation for accurate visual quality and authenticity predictions.
In addition, AMFF-Net considers the interaction between the
prompt and image, which is conducive to accurate content
consistency prediction.
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portrait of beautiful 
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0.5s FI

ScText
Encoder
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Encoder
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Cosine 
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AFF

Sv

SA

MLP
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Fig. 2. Overview of the proposed AMFF-Net. It takes both the text prompt
and three scaled AGIs as the inputs and outputs the consistency score SC ,
visual quality score SV , and authenticity score SA. Here, the image and text
encoders are selected from the pre-trained CLIP model. AFF and MLP denote
the adaptive feature fusion block and multi-layer perception, respectively.

C. Adaptive Feature Fusion Block

By feeding three scaled AGIs into the image encoder, we
can obtain multi-scale semantic representations, i.e., F 1.5s

I ,
F 1.0s
I , and F 0.5s

I . How to fuse these features is our next
focus. In previous works, one widely used method is directly
concatenating or adding these features. However, such a method
is easy to cause information masking at different scales, which
is unsuitable for the IQA task. In this study, we propose a
novel feature fusion block, named AFF, to adaptively fuse
these features.

Fig. 3 presents the architecture of the proposed AFF block.
First, these multi-scale features are stacked together, resulting
in VI ∈ R3×1024. Then, VI is processed by two linear layers
and a Softmax function. Between two linear layers, a ReLU
activation function is embedded. Next, the resultant feature
is processed by a chunk operation, resulting in three distinct
features, namely A1.5s

I ∈ R1×1024, A1.0s
I ∈ R1×1024, and A0.5s

I

∈ R1×1024:

Vm = Ψ(U(F 0.5s
I , F 1.0s

I , F 1.5s
I )), (4)

where Ψ(·) indicates the weights generation process, including
the stack operation U , linear layers, and a Softmax function.
A1.5

I , A1.0
I , and A0.5

I represent the weights associated with
the three image scales. With multi-scale semantic features and
their scale-specific weights, we can obtain the fused feature
FI ∈ R1×1024 through the element-multiplication and element-
addition operations:

FI = A1.5s
I · F 1.5s

I +A1.0s
I · F 1.0s

I +A0.5s
I · F 0.5s

I . (5)

This above process ensures an adaptive integration of multi-
scale semantic features, boosting the feature representation.

D. Loss Function

As shown in Fig. 1, our AMFF-Net evaluates the quality
in three dimensions. The overall loss function L for training
AMFF-Net is a linear combination of three components:

L = LC + LV + LA (6)

FI
1.5s FI

1.0s FI
0.5s AI

1.5s AI
1.0s AI

0.5s

FI

VI

Fig. 3. Architecture presentation of the proposed AFF block.

where LC , LV , and LA are the loss functions respectively
used for three tasks, i.e., content consistency score prediction,
visual quality score prediction, and authenticity score prediction,
during network training. For the task of consistency score
prediction, we utilize the fidelity loss function [55]:

LC =
1

N2

∑
i,j∈N

(
1−

√
Pi,jP̂i,j −

√
(1− Pi,j)(1− P̂i,j)

)
,

(7)
where N is the image number in a mini-batch, and Pi,j

is a binary function that compares the quality of the i-
the and j-th images. If Qi

V ≥ Qj
V , Pi,j = 1; otherwise,

Pi,j = 0. Here, QV denotes the ground truth value of content
consistency. P̂i,j computes the probability of the j-th image
predicted better than the j-th image using the Thurstone’s
model [56]. The reason why we choose the fidelity loss is that
it can preserve information granularity of the cosine similarity
between image and text features, making it suitable for our
image-text consistency score prediction task. For the tasks
of visual quality and authenticity score prediction, the mean
square error is used as the loss function to train the network:

LV =
1

N

N∑
i=1

(Qn
V − Sn

V )
2, (8)

LA =
1

N

N∑
i=1

(Qn
A − Sn

A)
2. (9)

In Eq. (10) and Eq. (9), for a mini-batch with N images, Qn
V

and Qn
A are the ground truth values of the n-th image’s visual

quality and authenticity, respectively.

IV. EXPERIMENTS

A. Experiments Setup

1) Databases: In this study, we selected three public
AGI quality assessment databases, including AGIQA-3K [3],
AIGCIQA2023 [31], and PKU-I2IQA [28], for evaluating and
comparing different blind IQA methods. Brief descriptions of
these databases are given below.

• AGIQA-3K: It has 2,982 AGIs generated by 6 Text-to-
Image generative models, including GLIDE [57], Stable
Diffusion V1.5 [58], Stable Diffusion XL2.2 [58], At-
tnGAN [59], Midjourney [60], and DALLE2 [61]. It also
provides 300 text prompts of different scenes and styles,
and contains score labels of visual quality and consistency.
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(a) (b) (c)

Fig. 4. Images from three AGI quality assessment databases: (a) AGIQA-3K [3], (b) AIGCIQA2023 [31], and (c) PKU-I2IQA [28].

• AIGCIQA2023: It comprises 2,400 AGIs generated by
six cutting-edge Text-to-Image generative models with
100 text prompts, including GLIDE [57], Lafite [62],
Stable Diffusion [58], DALLE [61], Unidiffusion [63],
and Controlnet [64]. For each image, it provides score
labels of visual quality, authenticity, and consistency.

• PKU-I2IQA: It consists of 1,600 AGIs generated by
two Image-to-Image models (Midjourney [60] and Stable
Diffusion V1.5 [58]). It contains score labels of visual
quality, authenticity, and consistency, and also provides
200 text prompts of different scenes and styles.

Fig. 4 shows some examples from the three AGI quality
assessment databases. Following previous works, we randomly
divide the AGIQA-3K into training set and test set in a ratio
of 8:2. For AIGCIQA2023 and PKU-I2IQA, we conduct a
3:1 train-test split on the images generated by each generative
model. The resolution of images in three databases is 512×512,
and we resize each image into the size of 224 × 224 due to
the limited computational source.

2) Evaluation Metrics: This study selects three widely used
evaluation metrics in the IQA field to present quantitative
results, including Spearman rank-order correlation coefficient
(SRCC), Pearson linear correlation coefficient (PLCC), and
Kendall rank correlation coefficient (KRCC). In general, higher
values (the maximum value is 1) of these metrics indicates
better prediction performance. As suggested by VQEG [65],
a four-parameter logistic function is used before computing
PLCC:

s̃ =
κ1 − κ2

1 + exp(κ4(s− κ3))
+ κ2, (10)

where s̃ is the mapped value of a predicted score s. In Eq.
(10), κi (i ∈ {1, 2, 3, 4}) can be obtained by comparing the
predicted scores and their ground truths using the least square
method.

3) Implementation Details: Our proposed AMFF-Net was
implemented under the open source Pytorch repository. The
server used in the experiments was powered by one NVIDIA
Geforce GTX3090 GPU and two Intel XEON 6226R CPUs.
During network training, the AdamW optimizer was used, and
the batch size was set to 32. The model was trained end-to-
end for 120 epochs in a two-stage manner. In the first stage,
we froze the parameters of the text and image encoders in
the CLIP and trained the remaining part of AMFF-Net in the

first 20 epochs. The learning rates for AIGCIQA2023 and the
other two databases were set to 1 × 10−3 and 5 × 10−4. In
the second stage, we unfroze the text and image encoders and
fine-tuned the whole network with a learning rate of 5× 10−6.
At the 80-th epoch, the learning rate was adjusted to 5× 10−7.
In addition, we set an early stop strategy, and the training
process was stopped if the performance did not improve after
20 epochs.

B. Performance Comparison

1) Prediction Ability Comparison: In this study, we compare
our proposed AMFF-Net with nine state-of-the-art blind IQA
methods, including ResNet50 [36], ViT-B/32 [66], MUSIQ
[37], DB-CNN [67], HyperIQA [20], TReS [18], Re-IQA [68],
StairIQA [40], and PSCR [43]. Among these methods, the first
eight methods are designed for NSIs, while the last one is
a method specifically designed for AGIs. All these methods,
except PSCR, are re-trained on the three AGI quality assessment
databases using their default settings. Since PSCR does not
release the source code, we directly extract results from its
original paper, in which only partial results on AGIQA-3K
and AIGCIQA2023 are reported. Table I, Table II, and Table
III tabulate the quantitative results of our proposed AMFF-
Net and other methods on three databases. The results are the
median values of 10 trials, in which a random train-test split
is conducted according to the settings in Section IV-A1. For
the convenience of comparison, the best results are marked in
bold.

From the tables, we have the following observations. First,
AMFF-Net outperforms these competing methods on AGIQA-
3K and PKU-I2IQA databases. For example, AMFF-Net is
ahead of the second best method (i.e., TReS) by approximately
2.367% and 18.018% in terms of SRCC when evaluating the
visual quality and consistency on AGIQA-3K, respectively. It
also achieves a performance gain by approximately 3.154%,
7.694%, and 3.639% than the second best method (i.e.,
HyperIQA) in terms of SRCC when evaluating visual quality,
consistency, and authenticity on PKU-I2IQA. Second, our
AMFF-Net ranks the second when evaluating visual quality
and authenticity on AIGCIQA2023 and is slightly inferior to
the best method (i.e., HyperIQA) by approximately 0.872%
and 0.628%. A possible reason for this is that, the images
(e.g., generated by the Lafite model [69]) in the AIGCIQA2023
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TABLE I
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT BLIND IQA METHODS ON AGIQA-3K. FOR CONVENIENT VIEWING, WE ALSO PRESENT THE

AVERAGE VALUE OF EACH EVALUATION METRIC ON TWO TASKS IN THE EIGHTH TO TENTH COLUMNS OF THE TABLE.

Method
AGIQA-3K [3]

FLOPs #ParamsQuality Consistency Avg.
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

ResNet50 [36] 0.8252 0.8863 0.6396 0.6396 0.7878 0.4645 0.7324 0.8370 0.5521 8.27G 24.56M
ViT-B/32 [66] 0.8063 0.8687 0.6195 0.6171 0.7652 0.4438 0.7117 0.8170 0.5316 8.73G 87.61M
MUSIQ [37] 0.8349 0.8862 0.6496 0.6292 0.7839 0.4557 0.7321 0.8350 0.5526 124.77G 78.55M

DB-CNN [67] 0.8154 0.8747 0.6278 0.6329 0.7823 0.4567 0.7242 0.8285 0.5423 33.00G 15.31M
HyperIQA [20] 0.8400 0.8958 0.6565 0.6276 0.8087 0.4543 0.7338 0.8522 0.5554 8.67G 27.38M

TReS [18] 0.8367 0.8973 0.6531 0.6366 0.8134 0.4620 0.7366 0.8553 0.5575 16.77G 34.46M
Re-IQA [68] 0.8187 0.8799 0.6312 0.6373 0.7880 0.4606 0.7280 0.8339 0.5459 33.09G 40.29M
StairIQA [40] 0.8235 0.8864 0.6381 0.6348 0.8006 0.4600 0.7291 0.8435 0.5490 10.22G 33.01M

PSCR [43] 0.8498 0.9059 - - - - - - - - -
AMFF-Net(ours) 0.8565 0.9050 0.6759 0.7513 0.8476 0.5663 0.8039 0.8763 0.6211 41.48G 50.30M

TABLE II
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT BLIND IQA METHODS ON AIGCIQA2023. FOR CONVENIENT VIEWING, WE ALSO PRESENT

THE AVERAGE VALUE OF EACH EVALUATION METRIC ON THREE TASKS IN THE LAST THREE COLUMNS OF THE TABLE.

Method
AIGCIQA2023 [31]

Quality Consistency Authenticity Avg.
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

ResNet50 [36] 0.8208 0.8408 0.6083 0.6997 0.6962 0.5038 0.7087 0.6964 0.5073 0.7431 0.7445 0.5398
ViT-B/32 [66] 0.7881 0.8140 0.5737 0.6404 0.6413 0.4557 0.6975 0.6920 0.4991 0.7087 0.7158 0.5095
MUSIQ [37] 0.8423 0.8596 0.6327 0.7620 0.7527 0.5591 0.7615 0.7509 0.5585 0.7886 0.7878 0.5835

DB-CNN [67] 0.8339 0.8577 0.6240 0.6837 0.6787 0.4915 0.7485 0.7436 0.5449 0.7554 0.7600 0.5535
HyperIQA [20] 0.8483 0.8689 0.6389 0.7541 0.7439 0.5517 0.7798 0.7718 0.5766 0.7940 0.7949 0.5890

TReS [18] 0.8436 0.8666 0.6357 0.7292 0.7266 0.5331 0.7661 0.7602 0.5655 0.7796 0.7845 0.5781
Re-IQA [68] 0.8144 0.8317 0.5980 0.6430 0.6355 0.4564 0.7224 0.7110 0.5214 0.7266 0.7261 0.5253
StairIQA [40] 0.8186 0.8450 0.6063 0.6641 0.6625 0.4748 0.7155 0.7131 0.5151 0.7328 0.7402 0.5321

PSCR [43] 0.8371 0.8588 - 0.7465 0.7379 - 0.7828 0.7750 - 0.7888 0.7906 -
AMFF-Net(ours) 0.8409 0.8537 0.6310 0.7782 0.7638 0.5747 0.7749 0.7643 0.5684 0.7980 0.7939 0.5914

TABLE III
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT BLIND IQA METHODS ON PKU-I2IQA. FOR CONVENIENT VIEWING, WE ALSO PRESENT THE

AVERAGE VALUE OF EACH EVALUATION METRIC ON THREE TASKS IN THE LAST THREE COLUMNS OF THE TABLE.

Method
PKUI2IQA [28]

Quality Consistency Authenticity Avg.
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

ResNet50 [36] 0.6219 0.6328 0.4440 0.6601 0.6511 0.4792 0.4932 0.5211 0.3437 0.5917 0.6017 0.4223
ViT-B/32 [66] 0.5151 0.5197 0.3598 0.5507 0.5389 0.3862 0.4226 0.4485 0.2937 0.4962 0.5024 0.3465
MUSIQ [37] 0.6408 0.6410 0.4596 0.6379 0.6531 0.4599 0.6354 0.6505 0.4571 0.6380 0.6482 0.4589

DB-CNN [67] 0.5975 0.5970 0.4247 0.6083 0.5925 0.4345 0.5667 0.5820 0.4024 0.5908 0.5905 0.4205
HyperIQA [20] 0.6849 0.6955 0.4988 0.7239 0.7062 0.5378 0.6596 0.6902 0.4794 0.6894 0.6973 0.5053

TReS [18] 0.6374 0.6427 0.4572 0.6480 0.6456 0.4690 0.6003 0.6393 0.4311 0.6286 0.6425 0.4524
Re-IQA [68] 0.5996 0.6106 0.4248 0.5705 0.5690 0.4029 0.5509 0.5787 0.3884 0.5737 0.5861 0.4054
StairIQA [40] 0.5855 0.6038 0.4151 0.5739 0.5720 0.4048 0.5535 0.5879 0.3927 0.5709 0.5879 0.4042

AMFF-Net(ours) 0.7065 0.7174 0.5169 0.7796 0.7708 0.5921 0.6836 0.7206 0.5002 0.7232 0.7363 0.5364

possess too similar characteristics, while our method has limited
capability to discriminate fine-grained differences between
images. Despite this, it still exhibits superior performance
than other methods in evaluating consistency and achieves the
best average result of three dimensions, with 3.196% SRCC
advantages over HyperIQA. Third, among all selected NSI
oriented methods, HyperIQA performance best. A possible
reason for this is that, HyperIQA evaluates the image quality
in a content-aware manner using a hyper network, contributing
to understand the semantic distortions, which get more attention
during subjective rating of AGIs. Fourth, the specifically
designed method (PSCR) for AGIs generally performs better
than most traditional NSI-oriented IQA methods. This may be
attributed to the fact that it compares two AGIs generated by
the same text prompts during the network design. Nevertheless,

it is inferior to our proposed AMFF-Net in most cases. To
compare these methods more intuitively, Fig. 5 presents the
scatter plots of different IQA methods on AGIQA-3K database.
As seen, our AMFF-Net produces more consistent predictions
with subjective ratings than competing methods.

We also compare our AMFF-Net with competing methods
in terms of the floating-point operations (FLOPs) and the
number of parameters (#Params). As shown in the last two
columns of Table I, AMFF-Net has 41.48G of FLOPs and
50.30M of #Params, ranking eighth and seventh among ten
competing methods, respectively. This indicates that, compared
to its competitors, our AMFF-Net does not exhibit competitive
advantage in these two aspects. One possible reason for this
could be that AMFF-Net requires multi-scale images as input
and needs to process features from three different scales in
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Fig. 5. Scatter plots of different IQA methods tested on the AGIQA-3K database. Due to the space limitation, we only show the predictions of visual quality.

TABLE IV
CROSS-VALIDATION RESULTS OF DIFFERENT BLIND IQA METHODS.

Method
AIGCIQA2023(Train) → AGIQA-3K(Test) AGIQA-3K(Train) → AIGCIQA2023(Test)

Quality Consistency Quality Consistency
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

RestNet50 [36] 0.576 0.612 0.397 0.473 0.523 0.326 0.599 0.609 0.413 0.432 0.435 0.305
ViT-B/32 [66] 0.509 0.571 0.350 0.434 0.496 0.302 0.517 0.529 0.357 0.381 0.390 0.259
MUSIQ [37] 0.635 0.673 0.445 0.394 0.437 0.265 0.650 0.643 0.444 0.525 0.515 0.359

DB-CNN [67] 0.627 0.688 0.442 0.390 0.435 0.263 0.654 0.664 0.455 0.470 0.460 0.317
HyperIQA [20] 0.657 0.692 0.443 0.418 0.465 0.280 0.669 0.672 0.472 0.464 0.431 0.314

TReS [18] 0.646 0.702 0.451 0.445 0.488 0.303 0.650 0.654 0.440 0.505 0.483 0.346
Re-IQA [68] 0.473 0.352 0.325 0.243 0.154 0.165 0.654 0.654 0.441 0.479 0.484 0.323

AMFF-Net(ours) 0.654 0.695 0.459 0.554 0.624 0.385 0.678 0.669 0.474 0.546 0.549 0.381

TABLE V
RESULTS OF ABLATION EXPERIMENTS ON THREE DATABASES. DUE TO THE SPACE LIMITATION, ONLY THE SRCC VALUES ARE PRESENTED HERE.

Method AGIQA-3K [3] AIGCIQA2023 [31] PKU-I2IQA [28]
Quality Consistency Quality Consistency Authenticity Quality Consistency Authenticity

w/o MSI 0.855 0.748 0.827 0.774 0.766 0.670 0.781 0.648
w/o AFF 0.852 0.739 0.835 0.768 0.774 0.694 0.781 0.680

AMFF-Net 0.856 0.751 0.841 0.778 0.775 0.706 0.780 0.684

the inference stage. Despite this, our proposed AMFF-Net is
more competent for the quality assessment tasks in terms of
prediction accuracy.

2) Generalization Ability Comparison: Apart from predic-
tion ability, generalization ability is another crucial factor for
a blind IQA method. In this section, we further compare
these selected methods in terms of generalization ability by
conducting cross-validation experiments. Since the images in
AGIQA-3K and AIGCIQA2023 are generated by Text-to-Image
generative models, while those in PKU-I2IQA are generated by
Image-to-Image generative models, we select AGIQA-3K and
AIGCIQA2023 for the experiments. Specifically, each method
is trained on one database and tested on the other database
when evaluating a specific quality of AGIs, i.e., visual quality
and content consistency. Table IV presents the experimental
results in the form of three evaluation metrics. Here, we do not

consider StairIQA as it utilizes mixed databases for training,
which is unfair for the cross-validation comparison. From the
table, we can observe that our proposed AMFF-Net outperforms
the competing blind IQA methods by a large margin, with
higher SRCC, PLCC, and SRCC values in most cases. This
indicates its higher generalization ability.

C. Ablation Experiments

1) Effectiveness of Each Component: In this study, the
proposed AMFF-Net utilizes the multi-scale input strategy
(MSI) and adaptive feature fusion (AFF) block for accurate
quality prediction. Here, we conduct some ablation studies to
investigate the effectiveness of the MSI strategy and the AFF
block. The experimental settings are the same as the main
experiment, and the median results of 10 trials are reported.
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Due to the space limitation, only the SRCC scores are given,
as shown in Table V. The “w/o MSI” denotes the learned IQA
model when using three original-sized images as the inputs.
The “w/o AFF” is the learned IQA model when directly adding
the multi-scale representations, instead of using the AFF block
for adaptive fusion. From the table, it is clear that the absence
of either the MSI strategy or the AFF block will degrade the
prediction performance. For example, the removal of the MSI
strategy and the AFF block leads to a SRCC drop of 0.713%
and 1.665% respectively when evaluating visual quality on
AIGCIQA2023. Similarly, AMFF-Net has a SRCC drop of
0.585% and 5.263% if we do not use the MSI strategy and
the AFF block separately when evaluating the authenticity on
PKU-I2IQA. These results show that both the MSI strategy
and the AFF block play a positive role in evaluating AGIs,
contributing to achieving accurate predictions for AMFF-Net.

2) Effectiveness of the Similarity Metric: In Eq. (3), we
choose cosine function to measure the similarity between text
and image features. Here, we investigate its effectiveness on
the AGI quality task by comparing it with two other similarity
metrics: Euclidean distance and Manhattan distance. Fig. 6
shows the the SRCC results on three databases. It can be
observed that cosine function achieves better results than
Euclidean distance and Manhattan distance.
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Fig. 6. SRCC results of three similarity metrics for consistency prediction
on three databases.

D. Limitations and Future Works
Although our proposed AMFF-Net has demonstrated superi-

ority over competing methods in quality assessment of AGIs, it
still faces certain limitations. On the one hand, the prediction
accuracy of AMFF-Net can be further improved. On the other
hand, the computational complexity of AMFF-Net needs to
be reduced. To update the proposed AMFF-Net, future works
can be carried out from the following directions. Firstly, to
improve the prediction accuracy, we will further strengthen the
interaction between text features and image features, so that the
model can get more discriminative features. Secondly, to reduce
the computational complexity and accelerate inference speed,
we will optimize the model structure by lightweight modules
and design parallel computation schemes to simultaneously
process different scaled inputs.

V. CONCLUSION

AGI quality assessment has recently emerged as a new
and important topic, requiring comprehensive evaluation from

multiple dimensions. In this paper, we propose a simple yet
effective blind IQA network, termed AMFF-Net, for AGIs.
Different from existing methods that only evaluate the images
from the perspective of “visual quality”, AMFF-Net utilizes a
multi-task framework and aims to evaluate AGI quality from
three dimensions, i.e., “visual quality”, “authenticity”, and
“consistency”. Specifically, considering that “visual quality” and
“authenticity” are characterized by both local and global aspects,
AMFF-Net utilizes a multi-scale input (MSI) strategy to capture
image details at different levels of granularity. After that, an
adaptive feature fusion (AFF) block is used to adaptively
multi-scale features. To evaluate the content consistency, the
similarity between semantic features of text prompts and AGI
is computed. Through the cooperation of the MSI strategy and
the AFF block, our AMFF-Net performs better than nine state-
of-the-art blind IQA methods on three publicly available AGI
quality assessment databases. In addition, ablations experiments
demonstrate the effectiveness of the underlying concepts of
the MSI strategy and the AFF block.

REFERENCES

[1] W. Gan, Z. Ye, S. Wan, and P. S. Yu, “Web 3.0: The future of internet,”
arXiv preprint arXiv:2304.06032, 2023.

[2] S. Frolov, T. Hinz, F. Raue, J. Hees, and A. Dengel, “Adversarial text-
to-image synthesis: A review,” Neural Networks, vol. 144, pp. 187–209,
2021.

[3] C. Li, Z. Zhang, H. Wu, W. Sun, X. Min, X. Liu, G. Zhai, and
W. Lin, “Agiqa-3k: An open database for ai-generated image quality
assessment,” IEEE Transactions on Circuits and Systems for Video
Technology, accepted, in press, DOI: 10.1109/TCSVT.2023.3319020,
2023.
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