° NAT/O

1duasnuely Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

yduasnuey Joyiny vd-HIN

" NIH Public Access
A & Author Manuscript

2 eSS

Published in final edited form as:
/EEE Trans Biomed Eng. 2010 October ; 57(10): 2617-2621. doi:10.1109/TBM E.2010.2060338.

An Integrative Approach for In Silico Glioma Research

Lee A. D. Cooper,
Center for Comprehensive Informatics, Atlanta, GA 30322 USA, and also with Emory University,
Atlanta, GA 30322 USA

Jun Kong,
Emory University, Atlanta, GA 30322 USA

David A. Gutman,
Emory University, Atlanta, GA 30322 USA

Fusheng Wang,
Emory University, Atlanta, GA 30322 USA

Sharath R. Cholleti,
Emory University, Atlanta, GA 30322 USA

Tony C. Pan,
Emory University, Atlanta, GA 30322 USA

Patrick M. Widener,
Emory University, Atlanta, GA 30322 USA

Ashish Sharma,
Emory University, Atlanta, GA 30322 USA

Tom Mikkelsen,
Department of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, Ml 48202 USA

Adam E. Flanders,
Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 USA

Daniel L. Rubin,
Stanford University Medical Center, Stanford, CA 94305 USA

Erwin G. Van Meir,
Emory University, Atlanta, GA 30322 USA

Tahsin M. Kurc,
Emory University, Atlanta, GA 30322 USA

Carlos S. Moreno,
Emory University, Atlanta, GA 30322 USA

Daniel J. Brat, and
Emory University, Atlanta, GA 30322 USA

Joel H. Saltz
Emory University, Atlanta, GA 30322 USA

© 2010 IEEE
Correspondence to: Lee A. D. Cooper, | ee. cooper @nory. edu.
Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.


http://ieeexplore.ieee.org

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Cooper et al.

Page 2

Lee A. D. Cooper: lee.cooper@emory.edu; Jun Kong: jun.kong@emory.edu; David A. Gutman: dgutman@emory.edu;
Fusheng Wang: fusheng.wang@emory.edu; Sharath R. Cholleti: sharath.cholleti@emory.edu; Tony C. Pan:
tony.pan@emory.edu; Patrick M. Widener: patrick.widener@emory.edu; Ashish Sharma: ashish.sharma@emory.edu;
Tom Mikkelsen: nstom@neuro.hfh.edu; Adam E. Flanders: adam.flanders@jefferson.edu; Daniel L. Rubin:
rubin@med.stanford.edu; Erwin G. Van Meir: evanmei@emory.edu; Tahsin M. Kurc: tkurc@emory.edu; Carlos S.
Moreno: cmoreno@emory.edu; Daniel J. Brat: dbrat@emory.edu; Joel H. Saltz: jhsaltz@emory.edu

Abstract

The integration of imaging and genomic data is critical to forming a better understanding of
disease. Large public datasets, such as The Cancer Genome Atlas, present a unique opportunity to
integrate these complementary data types for in silico scientific research. In this letter, we focus on
the aspect of pathology image analysis and illustrate the challenges associated with analyzing and
integrating large-scale image datasets with molecular characterizations. We present an example
study of diffuse glioma brain tumors, where the morphometric analysis of 81 million nuclei is
integrated with clinically relevant transcriptomic and genomic characterizations of glioblastoma
tumors. The preliminary results demonstrate the potential of combining morphometric and
molecular characterizations for in silico research.

Index Terms

Biology; brain tumor; image analysis; in silico; microscopy

[. Introduction

The integration of imaging and genomic data is critical to develop a deeper understanding of
disease. Projects like The Cancer Genome Atlasl (TCGA) [1] and the Repository for
Molecular Brain Neoplasia (REMBRANDT) [2] are producing extensive multidimensional
datasets containing high-resolution pathology imagery, magnetic resonance imaging, and an
array of molecular data for the characterization of diseases. These datasets present a unique
opportunity to conduct in silico scientific research, where image analysis and informatics
can converge to shed light on complex biological phenomena. In a project funded by the
National Cancer Institute In Silico Research Centers of Excellence program,2 we are
conducting an integrative in silico study of diffuse glioma brain tumors that leverages
clinical, molecular, radiology, and pathology imaging data. Our goals in this project are to
achieve a finer granularity in the subtyping of glioma tumors that is predictive of outcome
and response to treatment, and to study the mechanisms of progression from low- to high-
grade tumors.

This letter focuses on the particular aspect of pathology image analysis and the integration
of morphometry with clinical and molecular characterizations. Digitized pathology images
contain a wealth of information on tissue and microanatomical morphology, and in many
cases, these morphologies reflect underlying genetic alterations that are predictive of patient
prognosis and response to treatment. Computerized image analysis provides a means for
extensive morphometric analysis of microanatomy in large-scale datasets [3], [4]. In this
letter, we describe our methodology for morphometric analysis of nuclei in large-scale
datasets of diffuse glioma brain tumors, and present preliminary results correlating nuclear
morphometry with clinically relevant molecular characterizations. These preliminary results
demonstrate the potential of in silico research combining morphological analyses with
clinical and molecular data.

1http://cancergenome.nih.gov/
2https://wiki.nci.nih.gov/display/ISCRE
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Il. Challenges in Microanatomy Characterization

The diffuse gliomas are a broad category of brain tumors that include the astrocytomas,
oligodendrogliomas, and oligoastrocytomas [5]. Histopathologic distinction of these lesions
requires morphological discrimination between astrocytic and oligodendroglial cell
differentiation. Features of cell nuclei morphology are the primary cue in this distinction [6].
In general, the astrocytomas contain an abundance of nuclei that are elongated, irregularly
shaped, and contain visible chromatin clumping, resulting in a rough interior texture. In
contrast, nuclei in oligodendrogliomas tend to appear smaller, round, and have relatively
uniform interior characteristics. Between the endpoints of pure oligodendroglioma and pure
astrocytoma tumors, there exists a spectrum of lesions that exhibit mixtures of
morphological qualities, as depicted in Fig. 1. Due in part to the qualitative nature of
pathological evaluation, the overlap in morphologies significantly confounds diagnosis,
resulting in large interob-server variabilities [7]. A limited set of molecular tests is available
to aid in diagnosis [5], based on characteristic chromosome deletions, somatic mutations,
and gene expression, however, the large majority of morphologically mixed tumors lack
definitive genetic markers.

The analysis of large pathology image datasets for in silico exploration presents several
challenges. Data size, image heterogeneity, validation of algorithms, and management of
results are the primary impediments for mining morphological information from large-scale
multimodal datasets.

A. Image Size

High-resolution scans of digital slides produce extremely large images, typically with tens of
thousands of pixels in each dimension. Typical studies like TCGA may include hundreds of
patients, each with multiple associated slides.

B. Heterogeneity

Large collections of tissues spanning multiple diagnoses and individuals inevitably exhibit
significant heterogeneity. Variations in slide preparation, scanning, and natural variations
between individuals influence the colors, textures, and densities of structures of interest. A
fundamental challenge for large-scale in silico studies is to develop algorithms that are
robust to these variations.

C. Public Datasets

Often features of interest, such as blood vessels can be highlighted using
immunohistochemical staining. This option may not be possible when using existing or
publicly available datasets that were not designed with image analysis considerations. In the
case of TCGA, sections are stained with standard hematoxylin and eosin (H&E), and
therefore, structures of interest, such as mitotic cells or blood vessels are not easily
distinguishable by stain.

D. Validation

Extensive validation of image analysis algorithms is required to ensure the fidelity of
derived scientific conclusions. The analysis of large datasets like TCGA produces
morphological information on tens of millions of microanatomical entities, prohibiting even
a qualitative, but exhaustive review of results. Acquiring human markup on a sampled
subset of results requires careful planning and supporting infrastructure. Sampling must
reflect the heterogeneity of tissues to account for regions, where algorithm performance is
expected to vary significantly. Additionally, mechanisms must exist for the management and
query of algorithm results and the submission of human markup feedback.
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lll. Methodology

This section presents our methodologies for pathology image analysis for integrative in
silico study of nuclear morphometry in diffuse gliomas. Our dataset is drawn from TCGA
[1]. The digitized slides used in these studies are formalin-fixed paraffin embedded H&E
stained sections of tumor resections. Each sample has been characterized with multiple
molecular platforms to measure gene expression, micro RNA expression, copy humber
variation, sequence, and DNA methylation.

A. Nuclear Analysis

We have developed an objective system for the quantification of nuclei in diffuse gliomas
that is aimed at characterizing the shape and texture of nuclei in whole-slide images. The
system consists of three stages, as presented in Fig. 2.

1) Nuclei Segmentation and Characterization—The first stage in nuclear analysis is
the identification and segmentation of nuclei. In an effort to solve issues mostly arising from
large variations in image intensity, texture and histological shape, we use a computationally
efficient method consisting of standard techniques that accommodates the identification of
nuclei with distinct characteristics. Image regions exhibiting either nontissue areas or red
blood cells are first excluded from analysis by thresholding color channels. The remaining
regions are then converted to grayscale prior to applying morphological reconstruction. The
reconstruction denoises background regions by removing artifacts due to nonspecific
hematoxylin staining and out-of-plane nuclei. Foreground nuclei are then separated from the
background by thresholding the reconstruction result. Overlapped nuclei are then separated
with a watershed segmentation.

The second stage captures information on the shape and texture of individual nuclei. A
collection of features, selected for its ability to represent the differences in oligodendroglial
and astrocytic differentiation, is calculated for each nucleus to form a nuclear feature vector.
These features are drawn from four categories: morphometry, texture, intensity statistics,
and gradient statistics. The feature groups are presented in Table I.

2) Data Management and Query Support—Each whole-slide image contains hundreds
of thousands of nuclei. Managing the characterizations of these nuclei analyzed under
multiple parameter sets is a significant challenge. To address this problem, we have
designed and implemented an object-oriented information model, the Pathology Analytical
Imaging Standards (PAIS), to store pathology image analysis results. This model consists of
62 classes that collectively store segmentation boundaries, annotations/classifications on
segmented regions, derived features, human markup and annotation, and provenance
information regarding analysis methods and parameters. The major components of this
model are shown in Fig. 3. This model supports aggregation, comparison, and metadata-
based queries for validation and query of results. For example, one can search for regions
that are segmented by human experts, but are not segmented by a computerized algorithm,
or find aggregate overlap of intersections of nuclei between two images analyzed by
different algorithms. We are in the process of implementing a validation protocol using
PAIS to systematically select subsets of images with varying diagnostic and/or molecular
characteristics, obtaining pathology expert reviews, markups, and annotations on these
images, and storing and comparing computerized and human analysis results.

V. Results and Discussion

In this section, we demonstrate an example integrative analysis of pathology imaging and
molecular data to correlate nuclear morphometry with molecular characterizations, using
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publicly available TCGA data for grade IV glioblastomas (GBMs). The TCGA GBM dataset
contains extensive molecular characterizations of GBM tissue including multiple gene-
expression platforms, comparative genomic hybridization and single nucleotide
polymorphism (SNP) arrays, exon tiling arrays, and sequencing analysis [4]. Digitized
formalin-fixed paraffin embedded sections are also provided for the same GBM tumors.
These images were used for the purpose of diagnosis, and have a rich set of annotations
generated by TCGA consortium neuropatholgists.

We obtained 213 20x magnification whole-slide permanent section scans from the TCGA
portal, corresponding to 79 distinct patients. A total of 90 million nuclei were segmented in
these images, and nuclear features were calculated for each individual nucleus. Sample
nuclei segmentations were visually reviewed by two neuropathologists for quality control.
We are currently developing a more extensive validation using PAIS as described earlier.

A. Separation of TCGA Molecular Subtypes

A recent study of TCGA GBM data has defined four clinically relevant subtypes of GBM
tumors, namely the proneural, neural, mesenchymal, and classical types [8]. These subtypes
vary in their response to treatment, with proneural-type patients experiencing a significant
survival advantage. These four subtypes were defined through analysis of gene expression
and genomic data, and have been demonstrated to exhibit characteristic patterns of gene
expression, somatic mutations, and chromosome alterations. A comparison of molecular-
subtype gene signatures with signatures of normal brain cell types suggests a link between
tumor subtype and neural cell lineages as well.

To examine the relationship between molecularly defined tumor subtypes and nuclear
morphology, the subtypes for the 213 image dataset were obtained from [8] using TCGA
sample codes. Of the 213 images, 183 have available molecular-subtype classifications.
Among this set, 48 are proneural type, 33 are neural, 61 classical, and 41 mesenchymal.

For each subtype-labeled image, we calculated the mean feature vector and the feature
covariance over all nuclei in the image as a summary statistic. These summary statistics
were combined into a single-feature vector to represent each image as a point in the
summary statistic feature space. We then performed pairwise classifications between the
four subtypes using simple linear support vector machines (SVM) to examine the linear
separability of the subtypes-based purely on nuclear morpholgy. A linear SVM was chosen
both to avoid overfitting and to preserve the feature space structure, as the transformations
induced by kernels can complicate biological interpretation of results. A tenfold cross
validation with stratified sampling was used to maintain the proportionality of subtypes in
training data. The validation was averaged over 1000 trials with randomized folds. The
significance of classification accuracy was also examined using a permutation test with 50
000 trials [9]. By randomly permuting the sample labels in each trial, we obtain an estimate
of classifier accuracy distribution under the null hypothesis that morphometry and subtype
are not associated.

The averaged classification accuracies are presented in Table 1. Many subtype pairs are
mutually well separated, at 80% or greater classification accuracy. The permutation test
results indicate significance bounded by p < (2e-5) for all subtype pairs except the classical/
mesenchymal. These results suggest a possible link between nuclear morphology and
clinically relevant subtypes defined by molecular analysis.

The aim of this integrated analysis is not to develop morphometry-based classifiers of tumor
subtypes, but rather to gain insight into the possible underlying biological mechanisms by
determining which morphological features best distinguish the subtypes. To further illustrate
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this point, we have tested the binary classification power of individual summary statistics for
the proneural and classical subtypes (the two subtypes receiving least and most benefit from
aggressive therapy, respectively). Treating each statistic independently, a two sample t-test
was used to calculate p-values, which are then sorted to rank prediction power. Table 11l
contains the top five distinguishing statistics from the proneural/classical comparison, all of
which are covariance statistics. These covariance statistics have morphological
interpretations, for example, larger covariance between axis length and intensity suggests an
increased correlation between staining and nuclei size or elongation. Visualizations of the
top-ranked summary statistic for the proneural/classical comparison are presented in Fig. 4.
Sets of nuclei from multiple images for the proneural and classical subtypes are presented in
Fig. 4(b). These nuclei were sampled using a search criterion to identify candidate nuclei,
where the product of max intensity and major-axis length falls within a small interval
centered at the proneural or classical covariance, respectively.

V. Conclusion

The public datasets produced by large-scale efforts, such as TCGA, provide unique
opportunities to integrate complementary data sources and conduct scientific research in
silico. The pathology images in these datasets contain a wealth of morphological
information that can be correlated with genomic characterizations. In this letter, we present
our vision for the role of pathology image analysis in integrative in silico research and
provide a motivating example that correlates nuclear morphometry with clinically relevant
molecular GBM tumor subtypes. Our analysis of TCGA GBM data suggests a possible
relationship between nuclear morphometry and the established subtypes defined by the
analysis of Verhaak et al. [8].

In future work, we plan to further investigate the connections between morphometry and
molecular characterization in the TCGA and REMBRANDT datasets. Additionally, we are
planning a similar investigation of the morphology of blood vessels in angiogenesis within
the context of tumor progression.
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Fig. 1.
Spectrum of nuclear morphologies in glioma tumors varies between the pure morphologies
of oligodendroglial and astrocytic nuclei.
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Fig. 2.
Overview of the nuclear analysis workflow is presented. Each nucleus is characterized by a
set of feature descriptors that are stored in a relational database for further analysis.
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Pathology analytical imaging standards schema supports storage and retrieval of human
markup and annotation as well as algorithmic results for pathology images. Numbers

indicate.
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TABLE |
Nuclear Features
Category Features
Morphometry Area, Perimeter, Eccentricity, Circularity, Major Axis Length, Minor Axis Length, Extent Ratio
Intensity Statistics Mean Intensity, Max Intensity, Min Intensity, Std. Dev. Intensity
Texture Entropy, Energy, Skewness, Kurtosis
Gradient Statistics Mean Grad. Magnitude, Std. Dev. Gradient Magnitude, Entropy Gradient Magnitude, Energy Gradient Magnitude,

Skewness Gradient Magnitude, Kurtosis Gradient Magnitude, Sum Canny Pixels, Mean Canny Pixels

Note: Set of 23 features for characterization of nuclei fall into four broad categories.
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TABLE Il
Classification Accuracy of TCGA Subtypes Using Nuclear Morphometry

Neural Classical Mesenchymal

Proneural  76.3+3.0% 82.0+2.1% 76.6+2.6%
Neural 80.3+2.5% 81.7+2.8%
Classical 70.0+£2.5%

Note: Pairwise classification accuracies of tumor subtypes based on nuclear morphometry summary statistics. The indicated intervals are one
standard deviation of 1000 trials of tenfold cross validation. The results suggest a possible link between nuclear morphology and the clinically
relevant subtypes derived from genomic and transcriptomic analysis.
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TABLE lll
Feature Ranking for TCGA-Subtype Classifications

Subtype Pair Top Five Features

covariance(Max Intensity, Major Axis Length)

covariance(Area, Max Intensity)
Proneural/Classical ~ covariance(Perimeter, Max Intensity)

covariance(Max Intensity, Sum Canny Pixels)

covariance(Max Intensity, Entropy)

Note: Ranking features according to separation power provides cues on which features best separate and define tumor classes.
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