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Abstract
Spatial light interference microscopy (SLIM) is a recently developed method for the label-free
imaging of live cells, using the quantitative optical path length through the sample as an
endogenous source of contrast. In conventional SLIM, spatial resolution is limited by diffraction
and aberrations. This paper describes a novel constrained deconvolution method for improving
resolution in SLIM. Constrained deconvolution is enabled by experimental measurement of the
system point-spread function and the modeling of coherent image formation in SLIM. Results
using simulated and experimental data demonstrate that the proposed method leads to significant
improvements in the resolution and contrast of SLIM images. The proposed method should prove
useful for high-resolution label-free studies of biological cells and subcellular processes.

Index Terms
Constrained image reconstruction; deconvolution; live cell imaging; quantitative phase imaging
(QPI); spatial light interference microscopy (SLIM)

I. Introduction
Live cell imaging can provide new insight into cellular and subcellular dynamics, structure,
and function, and thus has a wide range of important biological applications. Most live cell
imaging is performed using light microscopy techniques [1]. However, one limitation of
light microscopy for biological samples is that most cellular structures absorb very little
visible light and can be considered transparent unless some form of additional sample
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preparation is performed (e.g., staining or labeling with exogenous contrast agents, including
fluorescent tags). While staining/labeling methods can provide images with high contrast
between certain preidentified cellular structures of interest, the preparation and imaging of
labeled cells can be complicated and/or can potentially disrupt natural cell behavior.

An alternative to using exogenous contrast agents is the use of phase-sensitive microscopy
techniques like phase contrast (PC) [2] and differential interference contrast (DIC)
microscopy [3]. These methods rely on the fact that light passing through a transparent
sample undergoes a phase shift determined by the optical path length through the sample,
which is itself a function of the sample’s refractive index and thickness. As a result, phase-
sensitive techniques can use the optical path length as a source of endogenous contrast in
transparent objects. While PC and DIC only provide qualitative phase information, recent
advances in quantitative phase imaging (QPI) allow for quantitative measurement of the
optical path length, thus enabling new approaches for the study of cellular structure and
dynamics [4].

Spatial light interference microscopy (SLIM) is a new QPI method that uses high numerical
aperture and spatially coherent white-light illumination to accurately measure optical phase
shifts with both high sensitivity and high axial resolution [5], [6]. Its potential for novel
biological applications has been recently demonstrated. However, as in most microscopy
methods, the spatial resolution of SLIM is limited by diffraction and aberrations. In this
paper, we introduce a new constrained deconvolution approach for SLIM that uses prior
knowledge of the system point-spread function (PSF) to significantly enhance the spatial
resolution of the SLIM phase images. To the best of our knowledge, this paper represents
the first reported application of a deconvolution method to light microscopy QPI in this
context. A preliminary account of this paper was previously given in [7].

This paper is organized as follows. Section II describes the relevant background on SLIM
imaging and deconvolution. Section III introduces our proposed constrained deconvolution
method. Section IV shows example results of applying the proposed method to real SLIM
datasets, and provides additional characterization and discussion. Finally, we draw
conclusions in Section V.

II. Background
A. SLIM Data Acquisition

A schematic of the SLIM instrument setup is given in [5]. The physics of SLIM are based on
QPI with broad-band fields [8], as described in detail in [5] and [6]. We will focus in this
paper on the resulting mathematical model of the imaging process. The starting point for
SLIM is the transmission of white light through a specimen of interest. The use of white
light means that SLIM provides high-resolution axial sectioning, high SNR, and images that
are free of the speckle artifacts that contaminate laser-based QPI results. For the spatially
coherent illumination used in SLIM, the light passing through the specimen can be described
by the complex-valued optical field

(1)

where |A(x)| is the magnitude and Ψ(x) is the phase of U (x). The phase function Ψ(x) is
proportional to the optical path length through the sample and is the main optical parameter
of interest in SLIM.
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Based on the assumptions of uniform illumination and the near transparency of biological
samples, we additionally assume that A(x) is constant throughout the field of view and use |
A(x)| = 1 without loss of generality. As a result, U (x) is represented as a pure phase object,
i.e.,

(2)

After passing through the sample, light travels from the sample plane through the rest of the
microscope system before finally arriving at the detector plane. As a result of aberration and
diffraction, the optical field observed at the detector plane O(x) represents a degraded
version of the original optical field of interest U (x). Generally, this degradation process can
be modeled with the linear integral equation

(3)

where K (x; s) describes the response at location x in the detector plane to a point source at
location s in the sample plane, and the spatial coordinate systems have been normalized to
remove any optical image inversion or magnification. For a well-corrected microscope, the
imaging system can be considered to be isoplanatic or shift invariant over small spatial
regions of interest (ROIs), meaning that K (x; s) = h (x − s) for some function h (·). In this
case, (3) can be represented as the convolution integral

(4)

The function h(x) is the PSF of the microscope system over the isoplanatic ROI, and is
assumed to be known, since PSFs can be modeled theoretically and/or measured
experimentally using standard methods. In this paper, we measure the PSF by SLIM
imaging of microbeads that have diameters smaller than one-third of the microscope
resolution, which are used as models of point sources [9], [10].

Ideally, the PSF h(x) would be a Dirac delta function, since this would represent an ideal
imaging system for which no spatial information is lost as light travels from the sample
plane to the detector plane. However, for practical microscopes, finite numerical aperture
means that many of the high-frequency spatial Fourier components of U (x) are not
transmitted by the imaging optics, and the observed field O(x) is heavily blurred relative to
the original optical field.

After the light has passed through the microscope, the final step of SLIM data acquisition is
the sampling of O(x). We will denote the magnitude and phase of O(x) as |M (x)| and Φ(x),
respectively. SLIM makes use of interferometry to measure the phase function Φ(x) on a
rectangular array of points determined by the spatial locations of charge-coupled devices
(CCDs) in a CCD camera. The magnitude M (x) is not typically measured directly, as this
would require modification of the SLIM optics.

While SLIM measures the phase Φ(x) of the blurred field, the original phase function Ψ(x)
is significantly more interesting for high-resolution microscopy applications. However, with
access to prior knowledge about the PSF, it can often be possible to enhance Φ(x) to regain
some of the high-resolution content of Ψ(x). This kind of resolution enhancement is the
objective of the method proposed in this paper. The process of using knowledge of the PSF
to transform a blurred image into a higher resolution image is known as deconvolution.
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B. Deconvolution
Standard deconvolution is a classical linear systems problem, with many applications in
light microscopy and other imaging modalities [9]–[15]. The standard formulation of the
problem is as follows: given the convolution relationship in (4), recover U (x) from
measurements of O(x) and prior knowledge of the PSF. The characteristics of this inverse
problem are easily analyzed in the Fourier domain. In particular, denoting the spatial Fourier
transforms of O(x), U (x), and h(x) as Ô(k), Û(k), and Ĥ(k), respectively, the convolution
property of the Fourier transform implies that (4) can be equivalently expressed as the
simple Fourier-domain multiplication

(5)

As a result of this multiplicative relationship, a straightforward approach to recovering U (x)
from O(x) would be to use simple division in the Fourier domain to reconstruct the original
U (x):

(6)

However, there are a couple of important problems preventing the direct application of (6) to
SLIM deconvolution. First, it is important to note that the division in (6) is poorly defined
whenever Ĥ(k) is equal to zero and is unstable with respect to small noise perturbations in
Ô(k) whenever Ĥ(k) is nearly zero. For practical microscopes with finite aperture, Ĥ(k) will
only be nonzero within a small region of k-space determined by the microscope pupil
function. As a result, deconvolution for microscopy is well known to be an ill-posed
problem—the measured data contain little or no information about high-resolution image
features, and there are generally multiple different potential reconstructed images that match
closely with the measured data. This issue is common to most deconvolution microscopy
applications, and the approach that is generally taken to make the deconvolution problem
well posed is to incorporate additional prior information into the reconstruction process.
Frequently, prior information is incorporated through the use of an appropriate
regularization strategy [9], [11]–[14]. In this paper, we also make use of regularization to
address ill conditioning, as described in the next section.

The second issue in applying (6) to SLIM images is that existing SLIM processing does not
provide the magnitude of O(x), while standard deconvolution methods traditionally assume
that complete information about O(x) is available. This means that we have less information
than we would for standard deconvolution, and that we cannot easily compute Ô(k). As a
result, SLIM deconvolution can be even more poorly conditioned than standard
deconvolution. However, useful SLIM deconvolution is still feasible if the standard
deconvolution problem formulation is adjusted to include appropriate modeling of the
coherent image formation process in SLIM and appropriate assumptions about U (x). We
describe our proposed approach to SLIM deconvolution in the next section.

III. Proposed Method
A. Problem Formulation

To simplify notation, the remainder of this paper will assume 2-D imaging of thin samples,
with x = (x, y). We begin the formulation of our proposed method by using our previous
assumptions about the SLIM imaging of biological specimens to expand (4) as
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(7)

In writing this equation, we have explicitly assumed that U (x, y) is a phase object. This
constraint is crucial for enabling SLIM deconvolution, since magnitude information about
O(x) is not provided. Due to spatial sampling by the CCD detector array, we assume that we
only have access to the values of Φ(x, y) on a rectangular lattice of N equally spaced points

 that are ordered lexicographically. In addition, it is assumed that h (x, y) has
already been measured and is known.

Our proposed method seeks to estimate the unknown functions |M (x, y)| and Ψ(x, y) from
the data. In particular, we will seek estimates of these functions that are consistent with the
measurement model given in (7). However, due to the ill-posed nature of the problem, a data
consistency constraint is not sufficient by itself to guarantee unique and stable SLIM
deconvolution. As a result, we will impose additional constraints on U (x, y) to obtain a
better posed reconstruction problem. In the absence of stronger prior information, it is
standard in inverse problems to constrain reconstructed images to be spatially smooth [11]–
[14]. This choice is based on the observation that most images of interest are spatially
piecewise homogeneous, while reconstructed noise images frequently demonstrate very
significant pixel-to-pixel spatial variation. As a result, our proposed method seeks to obtain
a reconstruction that is both data consistent and spatially smooth.

Before explicitly specifying our proposed deconvolution formulation, we will first
additionally assume that we can use a finite-dimensional image model to represent the
continuous function U (x, y). In particular, we will assume that

(8)

where v (x, y) is a pixel basis function and  is a set of real numbers. The use of a
finite-dimensional representation is important to enable practical implementation of our
proposed method on digital computers, and is standard in inverse problems [11]–[14]. Many
choices for the pixel basis function v (x, y) are possible, and we choose Dirac delta functions
to obtain the following numerical approximation of (7):

(9)

for n = 1, 2, …, N, where Hnp = h (xn − xp, yn − yp ). To simplify notation in the sequel, we
will equivalently express (9) in terms of matrices and vectors as follows:

(10)

where ⊙ denotes the Hadamard product (element-by-element multiplication), H is an N × N
matrix with elements [H]np = Hnp, m and ψ are from the space of N -dimensional real-
valued vectors ℝN with elements [m]n = |M (xn, yn )| and [ψ]n = ψn, respectively, and eiφ and
eiψ are from the space of N -dimensional complex-valued vectors ℂN with elements [eiφ]n =
eiφ(xnyn) and [eiψ]n = eiψn, respectively. We will also use e−iφ and e−iψ to denote the complex
conjugates of eiφ and eiψ, respectively. With this notation, we now explicitly describe the
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data consistency and spatial smoothness constraints we propose to use for SLIM
deconvolution.

In traditional deconvolution microscopy [9], it is common to use a data-fidelity constraint
that models the Poisson statistics of photon-limited optical imaging. In contrast to photon-
limited scenarios, SLIM has an intrinsically high signal-to-noise ratio due to the use of
white-light illumination, and the dominant sources of measurement errors for SLIM are
small instrumental instabilities. As a result, we adopt a least-squares data-fidelity criterion
because it leads to efficient computations. If we were to use only data consistency
constraints, a deconvolved reconstruction could be obtained by solving

(11)

where ||·||ℓ2 is the ℓ2-norm defined as , and m ≽ 0 denotes the constraint
that every element of the vector m should be real and nonnegative. As described previously,
the problem in (11) is ill posed, in the sense that the inverse mapping from Φ(x, y) to Ψ(x, y)
through (11) can be nonunique and is unstable with respect to small perturbations of Φ(x, y).
As a result, we propose to augment (11) with an additional constraint that encourages
spatially smooth reconstructions. In particular, we estimate m and ψ by solving the
penalized nonlinear least-squares problem as follows:

(12)

where R(eiΨ) is a regularization functional that penalizes non-smooth functions and λ is a
scalar regularization parameter which can be adjusted to balance the tradeoff between the
data consistency and smoothness constraints.

Use of smoothness-based regularization is a standard approach used to stabilize ill-posed
inverse problems like deconvolution [9], [11]–[14]. While many different regularization
strategies are possible, we will restrict our attention in this paper to two different common
regularization functionals that penalize the magnitude of the spatial gradient of eiψ. In
particular, let Dx and Dy be N × N sparse matrices that use finite differences to approximate
spatial differentiation of eiΨ(s,t) along the x and y dimensions such that

(13)

and

(14)
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where n′ and n″ are chosen such that (xn′, yn′) = (xn + Δ, yn) and (xn″, yn″) = (xn, yn + Δ),
where Δ is the detector spacing in the CCD array. The first regularization functional we
consider penalizes the magnitude squared of the spatial gradient of the reconstructed field:

(15)

This type of quadratic regularization heavily discourages large values of the spatial gradient
and, thus, results in smooth reconstructions. The second regularization functional we
consider penalizes the magnitude of the spatial gradient:

(16)

and is often referred to as a total-variation (TV) penalty [13], [14], [16], [17]. The constant ε
appearing in (16) is a small positive scalar (we use ε = 10−10) that is used to ensure
differentiability of RTV (·) and improve the stability of numerical optimization algorithms
[13]. Similar to the quadratic penalty of (15), the TV penalty also encourages spatial
smoothness but penalizes large spatial gradient elements less strongly. As a result, the TV
penalty is able to preserve image discontinuities (i.e., edges) better than the quadratic
penalty and thus can lead to better reconstructions for images with significant edge
structures. However, one disadvantage of the TV penalty compared to the quadratic penalty
is that numerical optimization problems involving TV are generally more nonlinear and
more difficult to solve.

We describe our solution to the numerical optimization problem in (12) for both
regularization functionals in the following section.

B. Solving the Optimization Problem
Regardless of the choice of regularization functional, (12) represents a nonlinear, nonconvex
optimization problem that does not have a closed-form solution. As a result, it is necessary
to use iterative methods to determine the optimal solution. However, rather than applying an
iterative algorithm to (12) directly, we first observe that the problem in (12) can be
simplified to improve computational efficiency. In particular, for a fixed value of ψ, we
observe that the optimal solution for m does have a closed-form expression. In particular,
consider the optimization problem given by

(17)

Since the second term in this expression does not depend on m, the solution to (17) is
equivalent to the solution of

(18)

Using Parseval’s identity, (18) can be rewritten as
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(19)

where we have used the fact that pointwise multiplication with e−iφ is a unitary operation,

and the fact that  for any complex vector c ∈ ℂN. The
operators real (·) and imag (·) return the real and imaginary parts of their inputs,
respectively.

From (19), we can derive the optimal solution for m ̂(ψ) as

(20)

where [·]+ is an operator that sets all of the negative entries in a vector to zero.

As a result of this closed-form solution, we can use the variable projection framework [18]
to eliminate the variable m from the optimization procedure. In particular, by substituting
the optimal m ̂(ψ) from (20) into (12) and simplifying, we obtain the following reduced
problem that only requires the optimization of Ψ:

(21)

where the [·]− operator is defined for arbitrary c ∈ ℂN as [c]− = c − [real (c)]+. The variable
projection framework ensures that (21) has the same optimal solution for ψ̂ as (12). In
addition to reducing the number of unknowns from 2N to N, the use of variable projection
generally also reduces computational complexity, helps to avoid undesirable local minima,
and improves the convergence rate of iterative algorithms [18].

In this paper, we use the Polak–Ribiere nonlinear conjugate gradient (NCG) algorithm [19]
to minimize (21). The NCG algorithm is an iterative method for minimizing differentiable
cost functions that is well suited to large-scale optimization problems, because it tends to
converge rapidly and does not require the storage of any large-scale auxiliary matrices.
Using the NCG algorithm requires computation of the gradient gψ of (21) with respect to ψ,
which is given by

(22)

where Hi = imag (φH), Hr = real (ΦH), Φ is an N × N diagonal matrix with diagonal
elements [Φ]nn = e−iΦ(xnyn), and Z is an N × N diagonal matrix with diagonal elements
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(23)

The matrix W appearing in (22) is also N × N and diagonal, though the diagonal entries of
this matrix depend on our choice of regularization functional. For the quadratic penalty in
(15), the diagonal entries are given by [W]nn = 1 for all n = 1, 2, …, N. For the TV penalty
in (16), the diagonal entries of W are given by

(24)

Given the expression for the gradient in (22), the NCG algorithm is implemented as
described in [19]. For practical computation, it is important to note that all of the matrices
appearing in (22) have special structures that can be leveraged to improve computational
speed and reduce memory requirements for the algorithm. In particular, the Dx, Dy, W, Z,
and Φ matrices are all sparse or diagonal. Sparse or diagonal matrix structure significantly
reduces storage requirements and can improve the speed of matrix-vector multiplication,
because it is only necessary to store and operate on the nonzero elements of the matrix [20].
In addition, the matrix H has Toeplitz-block-Toeplitz structure because it implements a
convolution [13]. This structure means that it is only necessary to store the convolution
kernel h (x, y) instead of the full N × N H matrix in memory, and that matrix-vector
multiplications with H can be performed efficiently by using the fast Fourier transform
(FFT) to implement multidimensional convolution [13], [21].

In practice, the cost function in (21) is nonconvex and will have many local minimizers. As
a result, it is important to initialize the NCG algorithm well. We have found that a
reasonable starting point can be obtained by ignoring the constraint that U (x, y) should be a
pure phase object, and instead assuming that O (x, y) is a pure phase object (note that this
latter assumption will be approximately valid when U (x) is a pure phase function and the
phase function Ψ(x, y) has very small spatial variations). In this case, a deconvolved
reconstruction can be obtained by solving

(25)

where u is the N × 1 complex vector with elements [u]n = U (xn, yn ). Note that under the
assumption that O (x, y) = eiΦ(x,y), (25) is also one of the standard formulations that are
commonly used to address the general deconvolution problem introduced in Section II-B.

Once a solution to (25) is obtained, an initial guess for ψ is obtained from extracting the
phase from û. While (25) makes less accurate assumptions about SLIM imaging than (12),
the benefit to using (25) to initialize the NCG algorithm is that (25) is equivalent to a
standard linear least-squares problem, and thus, the solution has an analytic closed-form
expression:

(26)
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Since the matrices in this expression are all Toeplitz-block-Toeplitz and/or sparse, the
optimal û can be found using standard Toeplitz/circulant solvers that leverage the FFT to
considerably improve computational efficiency [22].

To summarize this section, pseudocode for the proposed algorithm is given as follows.

Proposed algorithm to find the ψ̂ that optimizes (12)

Given: Inputs Φ and h(x, y).

Initialization:

• Compute û using (26).

• Set iteration number i = 0.

• Set the initial estimated phase Ψ(0) equal to the phase of û.

Main Algorithm:

• Minimize (21) using the NCG algorithm [19]. In particular, iterate the following steps until convergence:

1. Compute gΨ(i) using (22).

2. Use gΨ(i) and the Polak-Ribiere NCG update equations [19] to obtain a search direction ΔΨ(i).

3. Set Ψ(i+1) = Ψ(i) + αiΔΨ(i) where the real scalar αi is a step size parameter that is chosen via a
one-dimensional line search to optimize (21) along the search direction.

4. Set i = i + 1.

Output: Converged value of Ψ(i).

IV. Results and Discussion
All algorithms were implemented in MATLAB 7.11 (Math-works Inc, Natick, MA), and
computations were performed on a Linux-based workstation with two Intel Quad-Core Xeon
3.16GHz processors and 48 GB RAM. The following sections describe and discuss results
obtained by applying the proposed method to experimental and simulated data. In all of the
real experiments, SLIM imaging was performed with a white-light source emitting
wavelengths between 400 and 700 nm and using a 1388×1040 Zeiss AxioCam MRm CCD
detector array sampling uniformly over a 100 μm × 75 μm field of view. All experiments
were performed using a Zeiss EC Plan-Neofluar 40 ×/0.75 PH2 objective.

A. Experimental Live Cell Imaging Results
Fig. 1 demonstrates the application of deconvolution to SLIM images of a mixed glial
culture derived from bilateral dissection of the ventral hypothalamus of postnatal (P1-P2)
Long-Evans BluGill rats. Fig. 2 demonstrates the application of deconvolution to SLIM
images of primary hippocampal neuron cultures derived from the CA1-CA3 region of the
same type of rats. In both datasets and for both regularization penalty functions, the
deconvolved SLIM images demonstrate significantly enhanced resolution and visual quality
relative to the original SLIM images.

The images in Fig. 1 show ROIs from the first frame of a 396-frame image sequence
acquired at 0.5 Hz over a 13-min time span. Movies illustrating the full image sequence can
be viewed in the supplementary videos accompanying the paper.1 All videos use the

1This paper has supplementary downloadable material provided by the authors. This material includes three video clips, totals 47.4
MB in size, and is available at http://ieeexplore.ieee.org.
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MPEG-1 video format, and are played 50× faster than the true data acquisition speed. Clip 1
shows videos of the full field of view for the (left) original SLIM phase images Φ(x, y) and
(right) quadratically regularized deconvolved SLIM phase images Ψ̂(x, y). Clips 2 and 3
show (left) original SLIM phase images and (right) quadratically regularized deconvolved
SLIM phase images for different ROIs. The white scale bars in all videos correspond to 10
μm. These videos demonstrate the temporal cellular dynamics that are observable with
SLIM, both before and after deconvolution. Combining the temporal resolution of this
acquisition with the spatial resolution enabled by deconvolution, it is possible to clearly
visualize a number of different subcellular processes, including the dynamics of the
cytoskeleton and various transport processes.

When comparing quadratically regularized reconstructions using (15) with TV-regularized
reconstructions using (16), there are a few important features to note. First, while both
methods offer similar levels of resolution enhancement, reconstructions using TV
regularization generally contained sharper edges and displayed reduced “noise” and ringing
artifacts than reconstructions using quadratic regularization, as would be expected based on
the known characteristics of TV. These characteristics are easily appreciated in Fig. 3, which
plots a single row from the reconstructed glial phase image. While artifact reduction is
desirable, TV-regularized reconstructions can also be known to exhibit certain undesirable
characteristics, including loss of image contrast, distortion of geometrical image structure,
and loss of image texture [17]. As a result, preference between quadratically regularized and
TV-regularized reconstructions will depend on the objectives of the imaging experiment and
should be tailored to each application. Second, it is important to note that TV-regularized
reconstruction is significantly more computationally intensive than quadratically regularized
reconstruction. For our MATLAB-based implementation, TV-regularized reconstruction
requires about 3× longer computation time on average compared to quadratically regularized
reconstruction. In particular, TV-regularized reconstruction requires approximately 530 s of
computation per image frame, while quadratically regularized reconstruction requires
approximately 180 s/frame. For comparison, the initialization computed using (25) only
requires approximately 40 s/frame. Note that the algorithm speed for all formulations could
be significantly improved through implementation in a more computationally efficient
programming environment.

An important consideration for regularized image reconstruction is the selection of the
regularization parameter λ. If λ is set too small, then the smoothness constraints will not be
heavily enforced and noise perturbations can dominate the useful information contained in
the reconstruction. On the other hand, if λ is set too large, then smoothness constraints will
be overly enforced, and the deconvolved images will have lower resolution than necessary.
These effects are illustrated in Fig. 4. While many automatic regularization parameter
selection methods exist in the inverse problems literature [11]–[14], we heuristically
adjusted λ in this study to achieve good visual image quality. In practice, we have observed
that for the same physical SLIM setup, the optimal regularization parameter is fairly
consistent for different datasets. For quadratic regularization, we choose λ such that the
condition number [13], [14] of the matrix being inverted in (25) is 500. For TV
regularization, we choose λ to match the same level of data consistency achieved by the
quadratically regularized reconstruction.

B. Analysis of Resolution Enhancement
To assess the level of resolution improvement using deconvolution, we applied the proposed
method to SLIM images of 200-nm polystyrene beads (representing small point sources that
are significantly smaller than the experimental resolution of the microscope), and a
representative result is shown in Fig. 5. These results indicate that deconvolution both
reduces the full-width-at-half-maximum (FWHM) and increases the peak phase of the
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beads, as expected for successful resolution enhancement. In particular, the FWHM of the
bead in the original SLIM image was measured to be 660 nm, while the FWHM has
decreased down to 545 nm for deconvolution with quadratic regularization and down to 565
nm with TV regularization, representing improvements of roughly 20%. Note, however, that
resolution improvement is a function of the regularization parameter λ, and the value of λ
used to generate Fig. 5 was the same as in the reconstructions shown in Figs. 1, 2, and 4(b).
Further improvements in resolution would be obtainable by choosing smaller values of λ,
though this would come at the expense of significant noise sensitivity. In the absence of
noise limitations, further improvements in resolution could also be possible by more
accurate calibration of the PSF (e.g., using smaller beads or specialized signal processing
methods [23]).

C. Magnitude Modeling
One of the unique features of our approach compared to traditional deconvolution is that we
do not directly observe the magnitude of O (x, y). Instead, we estimate this magnitude after
making physics-based assumptions about the magnitude of U (x, y). However, as mentioned
previously, if we had made assumptions about the magnitude of O (x, y) instead of U (x, y),
then deconvolution would be possible using the traditional simple linear least-squares
formulation in (25). Due to the closed-form solution to (25) given in (26), solving (25) is
considerably less computationally intensive than solving (12). As a result, it is of interest to
test how these different modeling assumptions influence deconvolution performance.
Simulations were performed to investigate this issue. In each case, we simulated U (x, y) as a
pure phase object, with the gold standard phase image Ψ(x, y) generated based on real SLIM
data. Subsequently, we simulated the SLIM imaging experiment, first convolving the
simulated U (x, y) with the PSF, and then sampling the phase of the resulting blurred field.
Finally, deconvolution reconstructions were obtained using the proposed method from (12)
and the simpler traditional method from (25). Reconstruction results were visually similar
and are not shown here. However, as shown in Fig. 6, quantitative phase results were
distinct for the two different reconstruction schemes. In particular, while the proposed
method was accurate in reconstructing the original image phase, the linear reconstruction of
(25) had a tendency to underestimate large phase values. This result implies that while
solving (25) may be easier than solving (12), using the more accurate assumptions of (12)
can lead to better quantitative phase estimates.

D. Extension to Other QPI Methods
Compared to traditional deconvolution approaches, our proposed method explicitly models
SLIM-specific data acquisition assumptions, and we have demonstrated that such modeling
leads to improved quantitative phase estimation. In practice, many of the assumptions made
for SLIM will also be similar for other live cell QPI approaches. As a result, the proposed
deconvolution approach has the potential to be applied to other QPI methods. However, one
significant difference between other QPI methods and SLIM is that most QPI methods use
laser illumination, while SLIM uses white-light illumination. Due to the high coherence of
laser illumination, most QPI methods suffer from speckle, multiple reflection, and related
artifacts, and will generally have lower contrast-to-noise ratios compared to a white-light
QPI method like SLIM [5]. Due to these differences, additional investigation would be
necessary to determine the usefulness of our proposed deconvolution method for QPI
methods other than SLIM.

V. Conclusion
This paper proposed a deconvolution-based approach for enhancing SLIM images, using a
novel formulation that is specifically tailored to the SLIM imaging physics for transparent
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biological samples. A new fast algorithm was derived to solve the resulting optimization
problem, and the performance of the method was evaluated with simulated and experimental
data. These results demonstrate that the proposed method enables significant resolution
enhancement for SLIM imaging, with important implications for label-free high-resolution
imaging of live cells.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported in part by Grant NIH-P41-RR023953, Grant NIH-P41-EB001977, Grant NIH-R21-
EB009768, Grant NSF-CBET-07-30623, Grant NSF-CBET-1040462 MRI, Grant NSF-CBET-08-46660 CAREER
(GP), and Grant NIH-R21-CA154813 (GP).

The authors would like to thank L. Millet and M. Gillette for providing live cell specimens.

References
1. Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003; 300:82–

86. [PubMed: 12677057]
2. Zernike F. How I discovered phase contrast. Science. 1955; 11:345–349. [PubMed: 13237991]
3. Pluta M. Nomarski’s DIC microscopy: A review. Proc SPIE. 1994; 1846:10–25.
4. Popescu G. Quantitative phase imaging of nanoscale cell structure and dynamics. Methods Cell

Biol. 2008; 90:87–115. [PubMed: 19195547]
5. Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, Gillette MU, Popescu G. Spatial light

interference microscopy (SLIM). Opt Exp. 2011; 19:1016–1026.
6. Wang Z, Chun IS, Li X, Ong ZY, Pop E, Millet L, Gillette M, Popescu G. Topography and

refractometry of nanostructures using spatial light interference microscopy. Opt Lett. 2010; 35:208–
210. [PubMed: 20081970]

7. Haldar, JP.; Wang, Z.; Popescu, G.; Liang, Z-P. Label-free high-resolution imaging of live cells
with deconvolved spatial light interference microscopy. Proc. IEEE Eng. Med. Bio. Conf.; Aug.
2010; p. 3382-3385.

8. Wang Z, Popescu G. Quantitative phase imaging with broadband fields. Appl Phys Lett. 2010;
96:051117-1–051117-3.

9. Sibarita JB. Deconvolution microscopy. Adv Biochem Eng/Biotechnol. 2005; 95:201–243.
10. Swedlow JR. Quantitative fluorescence microscopy and image deconvolution. Methods Cell Biol.

2007; 81:447–465. [PubMed: 17519179]
11. Tikhonov, AN.; Goncharsky, AV.; Stepanov, VV.; Yagola, AG. Numerical Methods for the

Solution of Ill-Posed Problems. Dordrecht, The Netherlands: Kluwer; 1995.
12. Bertero, M.; Boccacci, P. Introduction to Inverse Problems in Imaging. London, U.K: Inst. Phys.

Publishing; 1998.
13. Vogel, CR. Computational Methods for Inverse Problems. Philadelphia, PA: SIAM; 2002.
14. Hansen, PC. Discrete Inverse Problems: Insight and Algorithms. Philadelphia, PA: SIAM; 2010.
15. Cotte Y, Toy MF, Pavillon N, Depeursinge C. Microscopy image resolution improvement by

deconvolution of complex fields. Opt Exp. Sep.2010 18:19 462–19 478.
16. Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D.

1992; 60:259–268.
17. Chan, T.; Esedoglu, S.; Park, F.; Yip, A. Total variation image restoration: Overview and recent

developments. In: Paragios, N.; Chan, Y.; Faugeras, OD., editors. Handbook Mathematical Models
Computer Vision. Vol. 2. New York: Springer Science+Business Media, Inc; 2006. p. 17-32.

18. Golub G, Pereyra V. Separable nonlinear least squares: The variable projection method and its
applications. Inverse Problems. 2003; 19:R1–R26.

Haldar et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Press, WH.; Teukolsky, SA.; Vetterling, WT.; Flannery, BP. Numerical Recipes in C. 2.
Cambridge, U.K: Cambridge Univ. Press; 1992.

20. Gilbert JR, Moler C, Schreiber R. Sparse matrices in MATLAB: Design and implementation.
SIAM J Matrix Anal Appl. 1992; 13:333–356.

21. Oppenheim, AV.; Schafer, RW. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice-Hall; 1999.

22. Chan RH, Ng MK. Conjugate gradient methods for Toeplitz systems. SIAM Rev. 1996; 38:427–
482.

23. Yoo H, Song I, Gweon DG. Measurement and restoration of the point spread function of
fluorescence confocal microscopy. J Microsc. 2006; 221:172–176. [PubMed: 16551278]

Biographies

Justin P. Haldar (S’06) received the B.S. and M.S. degrees in electrical engineering in
2004 and 2005, respectively, and the Ph.D. degree in electrical and computer engineering in
2011, all from the University of Illinois at Urbana-Champaign, Urbana.

His research interests include image reconstruction, parameter estimation, and experiment
design for biomedical imaging applications.

Dr. Haldar has received several awards, including the M. E. Van Valkenburg Graduate
Research Award, an NSF Graduate Research Fellowship, a Beckman Institute Graduate
Fellowship, an IEEE ISBI 2010 Best Student Paper Award, and the First-Place Award in the
IEEE EMBC 2010 student paper competition.

Zhuo Wang received the B.E. degree (Hons.) in precision instruments, measurement, and
control from Tsinghua University, Beijing, China, in 2002, the M.S. degree in electrical
engineering from Wayne State University, Detroit, MI, in 2006, and the Ph.D. degree in
electrical and computer engineering from the University of Illinois at Urbana-Champaign,
Urbana, in 2011.

He was an Optical Design Engineer at Tsinghua-Foxconn Nanotechnology Research Center.
His research interests include biomedical imaging, biopho-tonics, biosensors, and their
clinical applications.

Dr. Wang is the recipient of the Yuen T. Lo Outstanding Research Award and the Sundaram
Senshu International Student Fellowship.

Haldar et al. Page 14

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gabriel Popescu received the B.S. and M.S. degrees in physics from the University of
Bucharest, Bucharest, Romania, in 1995 and 1996, respectively, and the M.S. and Ph.D.
degrees in optics from the School of Optics/CREOL (now the College of Optics and
Photonics), University of Central Florida, Orlando, in 1999 and 2002, respectively.

He continued his training with the G. R. Harrison Spectroscopy Laboratory, Massachusetts
Institute of Technology, as a Postdoctoral Associate. He joined the University of Illinois at
Urbana-Champaign, Urbana, in August 2007, where he is an Assistant Professor in the
Department of Electrical and Computer Engineering, and holds a full faculty appointment
with the Beckman Institute for Advanced Science and Technology. He is also an Affiliate
Faculty in bioengineering.

Zhi-Pei Liang (F’06) received the Ph.D. degree in biomedical engineering from Case
Western Reserve University, Cleveland, OH, in 1989.

He is currently a Professor of electrical and computer engineering at the University of
Illinois at Urbana-Champaign (UIUC), Urbana. His research interests include image
formation theory, algorithms, and biomedical applications.

Dr. Liang is a recipient of the 1990 Sylvia Sorkin Greenfield Best Paper Award (Medical
Physics), an NSF CAREER Award (1995), and an IEEE-EMBS Early Career Achievement
Award (1999). He was named Henry Magnuski Scholar (1999–2001), and University
Scholar (2001–2004) at UIUC. He is a Fellow of the American Institute for Medical and
Biological Engineering (2005) and the International Society for Magnetic Resonance in
Medicine (2010).

Haldar et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
SLIM and deconvolved SLIM phase images of live cells from a mixed glial culture. (top
row) Images of a 41.4 μm × 31.0 μm ROI featuring a live microglial cell. (bottom row)
Images of a 41.4 μm × 31.0 μm ROI featuring part of the glial membrane. The white scale
bar in (a) corresponds to 5 μm, and is valid for both rows. (a) Original Φ(x, y) SLIM phase
image. (b) Proposed Ψ̂(x, y) using the quadratic regularization of (15). (c) Proposed Ψ̂(x, y)
using the TV regularization of (16). Both deconvolution approaches significantly enhance
the resolution and visual quality of the SLIM images. Videos illustrating the temporal
dynamics of these datasets can be viewed in the supplementary videos accompanying the
paper.
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Fig. 2.
SLIM and deconvolved SLIM phase images of live cells from a primary hippocampal
neuron culture. The images correspond to a 41.4 μm × 31.0 μm ROI. The white scale bar in
(a) corresponds to 5 μm. (a) Original Φ(x, y) SLIM phase image. (b) Proposed Ψ̂(x, y) using
the quadratic regularization of (15). (c) Proposed Ψ̂(x, y) using the TV regularization of (16).
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Fig. 3.
Plots of a section from a single row of Ψ̂(x, y) from the deconvolved glial culture dataset
shown in Fig. 1. The TV-regularized reconstruction has reduced oscillatory “noise” and
ringing artifacts relative to the quadratically regularized reconstruction, though this possibly
comes at the expense of reduced image contrast, geometric distortion, and loss of fine
texture.

Haldar et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Reconstructions of a 19.7 μm × 16.1 μm ROI from the glial culture dataset using different
regularization parameters. The white scale bar in (a) corresponds to 5 μm. (top row)
Quadratically regularized reconstructions. (bottom row) TV-regularized reconstructions. The
regularization parameter for quadratic regularization was selected such that the condition
number of the matrix being inverted in (25) was (a) 50 (λ = 0.04), (b) 500 (λ = 0.003), and
(c) 50000 (λ = 0.00003). For TV regularization, λ was adjusted to match the level of data
consistency achieved with quadratic regularization. The choice of λ represents a tradeoff
between resolution and noise.
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Fig. 5.
SLIM phase images of a 200-nm bead. The white scale bar in (a) corresponds to 2 μm. (a)
Original SLIM image. (b) Proposed method (quadratic regularization). (c) Proposed method
(TV regularization). (d) 1-D vertical profile through the bead reconstructions. (e) 1-D
vertical profile through the bead after scale normalization.
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Fig. 6.
Scatter plot comparing the quantitative phase estimation performance of the proposed
nonlinear deconvolution method in (12) versus the computationally simpler linear
deconvolution method in (25). For the proposed method, the reconstructed phase matched
well with the true gold standard phase image. However, the linear method in (25)
systematically underestimates large phase values.
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