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Abstract

2-D-to-3-D registration is critical and fundamental in image-guided interventions. It could be 

achieved from single image using paired point correspondences between the object and the image. 

The common assumption that such correspondences can readily be established does not 

necessarily hold for image guided interventions. Intraoperative image clutter and an imperfect 

feature extraction method may introduce false detection and, due to the physics of X-ray imaging, 

the 2-D image point features may be indistinguishable from each other and/or obscured by 

anatomy causing false detection of the point features. These create difficulties in establishing 

correspondences between image features and 3-D data points. In this paper, we propose an 
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accurate, robust, and fast method to accomplish 2-D–3-D registration using a single image without 

the need for establishing paired correspondences in the presence of false detection. We formulate 

2-D–3-D registration as a maximum likelihood estimation problem, which is then solved by 

coupling expectation maximization with particle swarm optimization. The proposed method was 

evaluated in a phantom and a cadaver study. In the phantom study, it achieved subdegree rotation 

errors and submillimeter in-plane (X –Y plane) translation errors. In both studies, it outperformed 

the state-of-the-art methods that do not use paired correspondences and achieved the same 

accuracy as a state-of-the-art global optimal method that uses correct paired correspondences.

Index Terms

2-D–3-D registration; feature-based registration; image-guided interventions (IGIs); particle 
swarm optimization (PSO)

I. Introduction

Registering 2-D intraoperative images to 3-D pre- and intraoperative data is an essential 

component and a crucial step for all image-guided interventions (IGIs) [1], which is called 

2-D–3-D registration.1 2-D–3-D registration methods are briefly categorized into three 

classes: feature-based, intensity-based, and gradient-based [2]. In intensity- and gradient-

based methods, patient anatomy is generally used, and thus, a same-patient preoperative CT 

is required. To reduce radiation exposures to patient, we used custom-designed tracking 

fiducials for intraoperative guidance. A tracking fiducial is much smaller than the patient 

anatomy and, hence, it occupies a relatively small space and overlaps with the patient 

anatomy in intra-operative images. The tracking fiducial may hinder the use of intensity-

based methods (e.g., mutual information) because the intensity distribution of the tracking 

fiducial is easy to be overwhelmed by that of the anatomy. Moreover, the tracking fiducial is 

generally designed using simple geometric entities such as points and lines. This poses 

challenges to gradient-based methods in terms of accurate estimation of image gradient in 

noisy image for small structures, especially for small point entities (fiducial beads). 

Therefore, feature-based methods are comparatively more suitable when using tracking 

fiducials. In feature-based methods, point features have been used in a wide range of 

methods [3]–[10]. Practically, point features come from three sources: anatomical points, 

fiducial markers, and image contours (represented as a set of points).

2-D–3-D registration is a well-studied problem in cases where paired correspondences 

between a subset of a model and feature points are known, and many solutions have been 

proposed [11]–[14]. However, in clinical practice point correspondences cannot be readily 

established because feature points may be obscured and individually undistinguishable, and 

because cluttered image background and imperfect feature extraction may cause false 

detection in the image.

1Note that 2-D–3-D is different from 2-D/3-D. The former means 2-D-to-3-D registration that registers two sets of data in different 
dimensions, while the latter means 2-D-to-2-D or 3-D-to-3-D registration that registers two sets of data in the same dimension.
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Without known paired point correspondences, most existing feature-based registration 

methods follow a common two-step scheme, where paired correspondences are established 

in the first step and the registration parameter is computed afterwards using these pairs 

correspondences in the second step. The two steps are iterated until some stop criterion is 

reached.

This paper presents a novel scheme that bypasses the paired correspondence establishment 

step and goes directly to the registration parameter estimation, by formulating the 2-D–3-D 

registration as a maximum likelihood estimation (MLE) of the transformation parameter. 

The estimation is solved efficiently using an optimization method that couples the particle 

swarm optimization (PSO) and the expectation maximization (EM) algorithm. Instead of 

using PSO in the M-step of EM and resulting in a local optimizer, we embed EM into PSO 

and make our method potentially a global optimizer. We demonstrate in the experiments that 

the proposed method, without establishing paired correspondences, has the same accuracy as 

a state-of-the-art global optimal method that uses correct paired correspondences, from 

only one image.

This paper is a significant extension of our previous work [15], including extended literature 

review, detailed rationale of method design, a novel optimization method that embeds EM 

into PSO, additional evaluations in an animal study, and thorough comparisons with state-

of-the-art methods.

This paper is organized as follows. Section II reviews related work in the literature. Section 

III describes the proposed algorithm in detail. In Section IV, the accuracy and robustness of 

the method is evaluated and the comparison is performed using 100 X-ray images. 

Conclusions are drawn in Section VII with some brief discussions of our future work.

II. Related Work and Contributions

A. Problem Formulation

Given 3-D model points and 2-D image feature points with paired (one-to-one) 

correspondences known between a subset of these model and feature points, the 2-D–3-D 

registration is commonly formulated as a least squares using these paired correspondences to 

solve

(1)

where un, n = 1, …, N, represent 2-D image feature points, Xη (n) represent 3-D model 

points that correspond to un, : ℝ3 ↦ ℝ2 denotes a 3-D-to-2-D projection following a rigid 

transformation with parameters θ = {R, t} including a rotation R ∈ SO(3) and a translation t 
∈ , and η : {1, …, N} ↦ {1, …, M} is a function that assigns an image feature point to its 

model counterpart.

It is also known that (1) can be equivalently written as
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(2)

where Xm, m = 1 … M, represent the 3-D model points. The ηm n equals one if Xm 

corresponds to un and zero otherwise.

A 2-D–3-D registration method also needs to deal with outliers. Here “outliers” are defined 

as the false positive or irrelevant points detected in the image. This is different from the 

commonly used outliers in pose estimation in computer vision, which are defined as 

incorrect paired correspondences.

B. Related Work

The most critical part in the aforementioned formulation is how to establish paired 

correspondences in un and Xm, i.e., how to obtain ηm n. According to the essential idea on 

establishing paired correspondences, the related methods in the literature can be categorized 

into ICP-like, hypothesis-test-based, softassign-based, and correspondence-less methods.

1) ICP-Like Methods—A majority of methods [3]–[10] adapt the well-known iterative 

closest point (ICP) algorithm [16], by assigning paired correspondences to ηm n based on the 

closest distance criterion. The basic ICP performs poorly if the data include spurious data 

points (points without correspondences, also called outliers). To deal with outliers, robust 

methods such as M-estimators [3] and extended Kalman filters [5], are employed. Moreover, 

ICP can easily be trapped in local minima, making it sensitive to initializations. Therefore, 

these methods generally need an initialization in the neighborhood of the true 

transformation.

Zheng et al. [6]–[10] adopted 2-D–3-D registration to address the construction of patient-

specific surface models from a few X-ray images. Before estimating the global deformation 

using point distribution models (PDMs) [17] and the local deformation using TPSs, an affine 

transformation between the mean shape of the PDM and the X-ray was determined using an 

adapted ICP. To determine paired correspondences, the cross-matching elimination [9] was 

used.

2) Hypothesis-Testing-Based Methods—Pose estimation in computer vision (also 

called Perspective-n-Point, PnP) is a problem very close to the 2-D–3-D registration in this 

paper. To solve PnP, many methods utilize the random sample consensus (RANSAC) 

algorithm [18]. Their significant difference from the 2-D–3-D registration is that a set of 

candidate paired correspondences is first generated using feature descriptors. Then, a 

“hypothesis-testing” procedure is performed to find the most reliable subset of paired 

correspondences. Finally, the optimal pose is estimated using these paired correspondences.

Enqvist et al. [19], [20] proposed a method to deal with incorrect matchings, and hence, 

obtaining optimal correspondences. Applied to pose estimation [19], the method is used to 

find the most consistent subset from a set of candidate paired correspondences [20], while 
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the candidate paired correspondences were generated using scale-invariant feature transform 

(SIFT) [21].

In the 2-D–3-D registration in this paper, the local feature descriptors used in computer 

vision for generating candidate paired correspondences are not applicable. In addition, 

generating hypotheses using all the combinations of model points and image feature points 

is very time consuming, while a fast algorithm is need in clinical practice.

3) Softassign-Based Method—Chui and Rangarajan [22] proposed to use softassign 

[23], [24] and deterministic annealing for nonrigid matching of two point sets, both in 2-D 

or in 3-D. The nonrigid spatial mapping was formulated using the TPS. For each point set, 

the outlier was modeled using a Gaussian distribution with a very large variance and the 

mean placed at the center of mass. This is not optimal to reliably set the robustness 

parameter, and setting the weight of the smoothness term can be difficult [22]. Moreover, it 

implemented a simpler form than (2) since including outliers in its formulation is very 

cumbersome [22]. Last but not least, this method cannot be employed for 2-D–3-D 

registration since the perspective projection is a nonlinear mapping from 3-D to 2-D, while 

TPS models a nonrigid warp in 2-D or in 3-D.

For 2-D–3-D registration (pose estimation), David et al. [25] combined the softassign and 

deterministic annealing to determine paired correspondences and the POSIT [13] to estimate 

a 3-D transformation using these paired correspondences. This method, called SoftPOSIT, is 

arguably the most computationally effective method due to its accuracy and efficiency [26]. 

It iteratively estimates paired correspondences and transformation by minimizing the 

objective function

(3)

where α is a threshold that defines two points as unmatchable if their distance is greater than 

α, and ηm n ∈ {0, 1} are binary weights [13]. This method is sensitive to initializations, and 

is not robust in the presence of a large number of outliers.

4) Correspondenceless Methods—Several correspondence-less methods have been 

proposed. These methods either used simplified camera models [27] or have special 

requirements [28], [29]. In [28], it is assumed that the object consists of planar surfaces with 

closed curves drawn on them. In [29], a closed-form solution was proposed. However, the 

method has a very strong constraint: the camera can only have in-plane translations and 

rotations (i.e., moving in the X–Y plane and rotating around the optical axis parallel to the Z-

axis). In [5], bitangent lines and bitangent planes were employed to find an initial pose under 

projective projection. However, this method is not suitable for the registration of point sets 

that do not form curves or surfaces.

5) Related Methods in Point Set Registration—Our method adopts the Gaussian 

mixture model (GMM) [30] and EM [31]. These methods have been employed for 2-D–2-D 
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and 3-D–3-D point set registration [32]–[34], but to our knowledge not been used for 2-D–3-

D registration.

For 2-D–2-D/3-D–3-D point set registration, Myronenko et al. [32] proposed the coherent 

point drift (CPD) method. They considered the problem as a probability density estimation, 

where one point set represents the GMM centroids and the other represents the data points. 

An EM algorithm was derived to solve the problem. However, CPD cannot be extended to 

2-D–3-D registration since, unlike in point set registration where the rotational and 

translational parameters can be decomposed, the perspective projection is nonlinear and the 

two parameters cannot be decomposed.

For 3-D–3-D surface registration, Granger et al. [33] proposed the EM-ICP method. The 

scene points were modeled as noisy measurements of the model points. It models the 

localization error using a Gaussian. The variance of the Gaussian (called “scale”) is 

monotonically decreased by dividing it with a predefined value. However, doing so can 

sometimes lead to an increase of the criterion value in consecutive iterations [33]. This 

method anneals the variance rather than considering it as a parameter to be estimated. The 

initial value of the scale depends heavily on the initialization of registration. To handle 

outliers, a distance threshold was used rather than modeling outliers explicitly.

For 3-D–3-D rigid and articulated point set registration, Horaud et al. [34] have proposed 

the expectation conditional maximization for point registration (ECMPR) method using 

GMM and expectation conditional maximization [35]. Different from the CPD method [32], 

ECMPR uses general covariance matrices for the GMM components and it estimates the 

rotational and translational parameters using a method based on semidefinite positive 

relaxation. However, the ECMPR method cannot be extended to 2-D–3-D registration due to 

the nonlinear perspective projection involved. The nonlinearity of perspective projection 

complicates the estimation of the rotational parameter.

In summary, the existing literature shows that GMM and EM methods are well suited for 2-

D–2D/3-D–3-D point set registration. However, these methods cannot be extended directly 

to 2-D–3-D registration. We propose to combine GMM and EM methods with the global 

optimizer PSO for solving the 2-D–3-D registration robustly and effectively.

C. Contributions

To the best of our knowledge, this study is the first time that these methodologies are used 

for 2-D–3-D registration without using paired correspondences. This paper has the following 

original contributions.

1. Given a set of 3-D and 2-D unmatched points, the proposed method bypasses the 

paired correspondence establishing step and goes directly to the registration 

parameter estimation; it neither requires nor establishes paired correspondences. 

The method estimates the registration parameter solely based on geometry without 

considering the appearance of the feature points, which can become an unreliable 

measure when the scene contains many similar and easily confused fiducials. In 

addition, the method is able to achieve accurate 2-D–3-D registration from one 
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image, although it may also be adapted readily to cases where more than one image 

is available.

2. The method couples PSO with EM to solve the optimal estimation of the 

registration parameter. The intuitive manner of combining PSO and EM is to use 

POS as a numerical solver in the M-step since there is no closed-form solution. 

However, we integrate the E-step into the PSO.

First, PSO is a global optimizer, while EM is a local one. If we use PSO in the M-

step, EM will dominate the optimization procedure. This leads to a local optimizer, 

making the method sensitive to initializations. On the contrary, PSO ensures that 

the optimization is over the original parameter space and not over some subspace. 

Most importantly, PSO has advantages on solving the problems that are partially 

irregular and noisy, and change over time, as the 2-D–3-D registration formulated 

in this paper, for which other commonly used methods are not suitable. Benefiting 

from making PSO govern the optimization procedure, the proposed method is 

robust to initializations and outliers, and is as accurate as a state-of-the-art global 

optimal method that uses correct paired correspondences, as illustrated in the 

experiments.

Second, the direct use of PSO is hampered by the unknown paired correspondences 

and the variance of the GMM components, called nuisance parameters. A nuisance 

parameter is a parameter which is not of immediate interest but which must be 

accounted for in the analysis of the parameters of interest. When only PSO is used, 

these nuisance parameters have to be put into the parameters to be optimized. So 

doing increases the dimension of the problem, make the optimization more difficult 

and more computational intensive. Most importantly, these nuisance parameters are 

not free parameters; they are related to the transformation parameters. In the 

proposed method, the nuisance parameters are estimated by their closed-form 

MLEs derived using the EM, ensuring that the estimates are optimal in statistical 

meaning. The closed-form solutions also accelerate the optimization. Therefore, 

EM deals with the nuisance parameters, allowing the transformation parameters be 

optimized via the global optimizer PSO.

3. Extensive experiments were performed with the proposed 2-D–3-D registration 

method using real images. We thoroughly study the behavior of the method with 

respect to the initial parameter values and the presence of outliers. The proposed 

method is also compared with several state-of-the-art methods.

III. Registration Without Correspondences

A. 2-D–3-D Registration as MLE

We trace back the 2-D–3-D registration problem to the statistical inference solution of the 

transformation parameters, without establishing paired correspondences. We briefly derive 

the 2-D–3-D problem in the EM framework to make exposition of our method clearer and to 

introduce consistent notation. Similar derivation can be found in [32] and [34].
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Without knowing the “true” paired correspondences, we assume that the nth 2-D point, un, 

has a certain probability, pm n, to correspond to the mth 3-D point, Xm. We consider the 2-D–

3-D registration as an MLE of the transformation parameters θ, where the projected 3-D 

points are represented by a mixture model, whereas the 2-D points are observations drawn 

from this model.

The EM algorithm is a generic mathematical framework for solving incomplete-data 

problems by formulating a complete-data problem through augmenting the missing data. To 

form complete data, an unknown paired correspondence between a 2-D point, un, and a 3-D 

point, Xm, is modeled using a normal distribution p(un |m) =  (  (Xm; θ), σ2). This 

models the a priori probability of the mth 3-D point being the correspondence of the nth 2-D 

point. To account for outliers a dummy point, XM + 1, is introduced, which allows multiple 

points to be matched to its projection. Further, the probability of an image point being an 

outlier is modeled using a uniform distribution, p(un |M + 1) = (0, N), since without a 

priori knowledge of the outlier it could be anywhere in the image. Consequently, the 

observed-data log-likelihood is

(4)

where P (m) is the prior probability that the projection of Xm is one of the 2-D feature points 

detected in image. Generally, a prior knowledge on P(m) is not available. Thus, without loss 

generality, we define p(M + 1) = w and P (m) = (0, 1 − w), m = 1, …, M, where 0 < w < 1 

is constant.

Directly solving the MLE of θ and σ2 from (4) is extremely difficult since 1) the 

correspondence probabilities p(un |m) are constrained by the registration parameters; 2) the 

nonlinearity of perspective projection complicates the estimation of rotation matrix; 3) the 

estimate of θ further depends on σ2; and 4) the summation inside the logarithms makes the 

computation of (4) intractable. By augmenting the unknown paired correspondences the 

complete-data log-likelihood is simplified as

(5)

Accordingly, the target is to minimize the objective function

(6)

where  and pm n = P (m|un) denotes the posterior of a correspondence, 

which is calculated via Bayes’ formula (pm n = p(un |m)P (m)/p(un)) as

Kang et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

Furthermore, one can easily obtain the MLE of σ2 as

(8)

B. Optimal Transformation Estimation Using PSO

Obviously minimizing (6) over θ does not lead to a closed-form solution because  is a 

nonlinear perspective projection. To deal with this, one can estimate θ using some numerical 

optimization approach. However, the EM algorithm is a local optimization method. To a 

local method, good initial parameter estimates are essential. In our method, PSO [36] is 

adopted to estimate the global optimum of the objective function (6) because it combines a 

broader region search and a locally oriented search to obtain closer to an global optimum 

[37].

In PSO, the optimal solution is achieved by having a swarm of particles (candidate 

solutions) moving around in the search space . The movements of the particles are guided 

by their own best known position θi,best and the entire swarm’s best known position θbest. At 

beginning, each particle’s position and velocity are initialized as uniformly distributed 

random vectors θi ~ (θ0 − r/2, θ0 + r/2) and vi ~ (−r, r), respectively, where θ0 and r are 

the center and the range of . And each particle’s best known position is set to its initial 

position (i.e., θi,best = θi). Then, each particle updates its position and velocity according to 

the following equations:

(9)

(10)

where rp, rg ~ (0, 1), ω is the inertia weight, and cp and cg are the “cognitive” and “social” 

parameters. This process is iterated until a minimum error criterion or a predefined 

maximum iteration is attained.

The coupling of the PSO and the EM allows us to solve 2-D–3-D registration problems 

robustly, accurately, and efficiently, as we will demonstrate in our experiments.

C. Implementation

The proposed method is as follows.

1.
Set , the search space center θ0, the search space range r and 

the outlier prior w
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2. Initialize K random particles by generating θi ~ (θ0 − r/2, θ0 + r/2) and vi ~ (−r, 

r), i = 1, …, K.

3.
Compute the posterior modes  using (7) with θi.

4. Obtain θi,best and θbest by evaluating the objective function (6), and set θ(t) = θbest 

and .

5. Compute (σ2)(t+1) by (8) using θ(t) and .

6. Update each particle’s position and velocity using (9) and (10)

7. Iterate Step 3 to 6 until meeting the stop criteria

8. (Optional) Compute the maximum a posteriori (MAP) paired correspondence of un 

as

(11)

and the set of valid MAP paired correspondences

(12)

If |L| > cL (a predefined constant), reinitialize K = 2K particles and go to Step 10.

9. (Optional) Compute the root mean square (RMS) error

(13)

If e > ε (a predefined threshold), reinitialize K = 2K.

10. (Optional) Check whether the maximum re-initialization is attained, otherwise go 

to Step 2.

There are three common ways to set a stop criterion in Step 7: 1) defining a maximum 

number of iterations, 2) checking the change of the objective function values and/or the 

transformation parameters between two consecutive iterations, and 3) checking the number 

of inactive particles [38]. In both phantom and cadaver studies, we used the threshold on the 

change of objective function values of 10−6, the maximum iteration of 250, the initial 

number of particles K = 200, the maximum reinitialization of 3 and the outlier priori w = 

0.01.

The Steps 8–10 intend to accelerate the method. Using a larger amount of particles could 

benefit PSO as more function values can be evaluated in one iteration. However, this leads 

to a higher computational load. More importantly, a sufficient number is application 

dependent. We design to start from a small number of particles and increase the number if 
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the result is not desirable, avoiding using a large number of particles and handling the 

possibility of obtaining poor result using a small number of particles.

The Steps 8 and 9 are used to measure the plausibility of a result. A minimal set of three 

noncollinear point pairs can give a 2-D–3-D registration result (with ambiguities), but at 

least five noncollinear, noncoplanar pairs are preferred in practice for a stable and accurate 

result. In our application, we set cL = 5. This is also a tradeoff for allowing occlusions and 

false negatives in feature detection. In our case, nine 3-D model points were used for 

registration, but their counterparts in the image were occluded by other strong features or 

other model points, or too weak to detect. Thus, some model points may not have their MAP 

paired correspondence. In other applications, this number can be defined as desired.

In our experiments, the threshold of the RMS error was empirically set to  pixels as 

the projected model points are expected to be within the eight neighborhood of the detected 

image points. If the maximum reinitialization is attained, the result with the minimal RMS 

error e is given as the final result.

Steps 8–10 are optional for the proposed method and the relevant thresholds are application 

dependent, but the scheme is effective in our application as illustrated in the experiments.

IV. Experiments

The experiments aim to evaluate the performance of the proposed algorithm. For this 

purpose, we have chosen femoroplasty (injection of bone cement into the proximal femur) 

as a specific example application. Femoroplasty is an effective countermeasure to reduce the 

risk of fracture in an osteoporotic hip. An image-guided, robotic-assisted system [39] has 

been proposed to facilitate the femoroplasty surgery of hip fractures in at-risk patients. The 

workflow of the system is described in detail in [39]. This paper focuses on the critical step 

of estimating the pose of the C-arm via 2-D–3-D registration from a single X-ray image.

A hybrid fiducial called “FTRAC” [40] is used in the system for C-arm pose estimation. The 

FTRAC is a mathematically optimized fluoroscope tracking fiducial initially developed for 

prostate brachytherapy [40] and extended to a hybrid fiducial for femoroplasty [39]. It 

comprises nine stainless steel beads and four straight lines and two ellipses made of stainless 

steel wires. The size of the FTRAC used in this experiment is 18 × 18 × 72 mm. It was 

designed for estimating the 6-DOF pose of the C-arm from its projection in the X-ray image.

Our method was evaluated in a phantom and a cadaver study. In both studies, only the nine 

beads were used for the 2-D–3-D registration. In all experiments, the image points were 

automatically detected from the X-ray images, and exactly the same points detected were 

used in all the methods. Our detection method is based on a multiscale voting scheme 

utilizing both image intensity and gradient. A detailed description of the method will be the 

subject of another publication. But it is worth noting that the detection method is generic and 

does not favor any particular registration method.

In both studies, the proposed method were compared with SoftPOSIT, which is arguably the 

most computationally effective method due to its accuracy and efficiency [26], and a global 
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optimal PnP solver [41] (referred to as “gOp”). In the cadaver study, we further compare the 

proposed method with a newly proposed multiview intensity-based method [39].

A. Phantom Study

The experiments were performed using X-ray images of the FTRAC attached on a plastic 

bone phantom (Sawbone, Pacific Research Laboratories, WA, USA) (see Fig. 1) acquired by 

a cone-beam CT (CBCT) imaging bench [42]. The flat-panel detector (FPD) was a PaxScan 

4030CB (Varian Imaging Products, Palo Alto, CA, USA) that provide distortionless images. 

Geometric calibration was performed using the method proposed by Cho et al. [43] with 

submillimeter and subdegree accuracy. In total 100 images were acquired from different 

viewpoints. The nine radio-opaque metal beads with known configuration on the FTRAC 

were used to evaluate our method.

In the X-ray images, the fiducial occupies a relatively small portion and overlaps with the 

sawbone, due to its structure and size. In addition, there were some metal beads affixed on 

the sawbone. Furthermore, the metal beads on the fiducial (and the phantom) are not 

distinguishable from each other in the X-ray images. These conditions pose challenges in 

intensity-based registration methods. Our method achieved the 2-D–3-D registration using 

the nine small beads on the fiducial without knowing the correspondences between the beads 

on the model and the points detected in the X-ray images. The larger beads affixed on the 

phantom (see Fig. 1) were not used for registration.

1) Ground-Truth Transformations—The ground-truth transformations (rgt, tgt) was 

obtained from high-resolution CBCT images. Each bead in the CBCT data was manually 

segmented and fit with a sphere so that a surface model of each bead was created. Then, a 

point-to-point rigid registration between the surface model and the CAD model was carried 

out, using the centers of the fitted spheres. The fiducial registration error of this procedure 

for all the beads is 0.14 ± 0.06 mm.

2) Robustness to Initializations—The proposed method was evaluated using 100 X-ray 

images taken from different viewpoints. For each image, 50 trials were conducted using 50 

different initializations generated using the ground-truth rotation rgt and the C-arm source-

to-detector distance dSD.

Each initialization (r, t) represents a 6-DOF transformation using a 3-vector for translation 

and Euler angles for rotation. The initial translations were independent from tgt; they were 

set to t = (0, 0, dSD/2) since practically the imaged object is oftentimes around the middle of 

C-arm. In the phantom study, dSD = 1184 mm. The rotations were initialized as uniformly 

distributed random vectors r ~ (rgt − 20°, rgt + 20°).

For each image, 50 random independent initializations were generated without duplicate. 

Using these initializations, the projected FTRAC beads were outside the image in some 

cases.

The search range of the PSO, r, was set to 40° in rotations and 200 mm in translations. 

These ranges are much larger than the ranges used in literature.

Kang et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3) Robustness to a Large Amount of Outliers—In the proposed method, the fiducial 

beads were automatically localized as feature points in the X-ray images and directly used 

for 2-D–3-D registration. In practice, automatic feature point detection is preferable, 

requiring that the method is robust to outliers. As mentioned before, there were also seven 

beads affixed on the femur phantom for calculating ground-truth transformations. These 

beads were automatically detected and they were outliers.

To evaluate the robustness of our method to a large amount of outliers, we added 80 

uniformly generated random false detections in the image. Thus, together with the seven 

beads on the phantom, there were in total 87 outliers in each testing image. Still, only the 

nine beads on FTRAC were used for registration.

The proposed method was carried out on these 100 images without providing any paired 

point correspondences. The same initializations and search range in Section IV-A2 were 

used.

4) Comparison With a Global Optimal PnP Method—To further demonstrate the 

accuracy of our method, it is compared with a global optimal PnP solver [41] (referred to as 

“gOp”).

Note that, as a PnP solver the gOp requires correct paired correspondences. In this 

comparison, the ground-truth paired correspondences were used in gOp, whereas no paired 

correspondences were used in our method. The results of the gOp were compared with the 

results obtained in Section IV-A2.

B. Cadaver Study

We also evaluate our method in a cadaver study containing 27 images taken from different 

viewpoints. The experimental setup and an example image is shown in Fig. 2. The images 

were acquired using a prototype mobile C-arm [44] from a cadaver hip with the FTRAC 

affixed on the femur shaft. Images without distortion were acquired by rotating the scanner 

about the long axis of the femur.

1) Comparison With a Multiview Intensity-Based Method—We compared our 

method with a multiview mutual information-based 2-D–3-D registration method [39] 

(referred to as MV-MI) for C-arm pose estimation.

In MV-MI, an initial pose is obtained by performing POSIT [13] using manually established 

paired correspondences. Starting from this initial pose, the C-arm pose is iteratively updated 

by maximizing the mutual information [45] between a DRR of the CAD model generated at 

the estimated pose and the original X-ray image. The Downhill Simplex algorithm [46] was 

used to maximize the objective function. Finally, a multiview refinement is carried out to 

improve the accuracy. For details, readers are referred to [39].

In the comparison, six images were used in MV-MI for pose estimation, whereas only one 

image was used in our method.
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For initialization, MV-MI used four paired correspondences obtained by manually selecting 

four nonplanar fiducial beads in the image and their counterparts on FTRAC, whereas our 

method took the same initialization procedure and search range used in Section IV-A2. The 

source-to-detector distance is dSD = 1330 mm. Since there is no ground truth, the initial 

rotations were generated using the results of MV-MI. However, to ensure a “poor” 

initialization, the estimated rotation of the image three apart from the current one in order 

was used. That is, when performing registration on the #1 image, the estimated rotation of 

the MV-MI on the #4 image was used.

2) Comparison With SoftPOSIT and gOp—Our method was also compared with 

SoftPOSIT [25] and gOp [41]. SoftPOSIT used the same initializations in Section IV-B1 

and ran until convergence without setting a maximum iteration. For gOp, the ground-truth 

paired correspondences were used.

Note that the comparison between the MV-MI and the proposed method is a comparison 

between a multiview intensity-based method and a single-view feature-based method, while 

the comparison between the proposed method and SoftPOSIT is a comparison between two 

feature-based methods.

V. Experimental Results

A. Phantom Study

1) Robustness to Initializations—For each image, the mean and standard deviation of 

the errors between the estimated and ground-truth transformation parameters are shown in 

Fig. 3. The means are plotted using the solid, dash-dot and dotted lines, and the standard 

deviations are shown using the regions in light colors accordingly. The overall mean errors 

and standard deviations of each individual parameters over the 5000 experiments were 

(−0.26° ± 0.22°, 0.16° ± 0.12°, −0.15° ± 0.22°) in rotations around X-, Y-, and Z-axes, and 

(0.32 ± 0.11, 0.08 ± 0.10, 1.65 ± 1.00) mm in translations along X-, Y-, and Z-axes, 

respectively.

The aforementioned errors for each individual images over 50 trials are also shown using 

box-and-whisker plots in Fig. 4. Compared with the plots using means and standard 

deviations, a box-and-whisker plot give a less biased visualization of the data spread as it 

shows the registration errors of each individual trials. The area between the upper and lower 

boundaries of the box, called the interquartile range, shows the spread of the middle 50% of 

the registration errors. It is a more robust range for interpretation because the middle 50% is 

not affected by outliers or extreme values.

The proposed method estimated rotations and in-plane translations (along the X- and Y -

axes) accurately with subdegrees and submillimeter accuracy (see Fig. 4). All rotation errors 

were less than 1°, and all in-plane translation errors were less than 1 mm. The errors in the 

projection direction Z-axis (i.e., the depth) were relatively large since the depth can be 

difficult to accurately estimate from only single image.
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2) Dynamic Behavior of the Proposed Method—To depict the dynamic procedure of 

our method, Fig. 5 shows one typical trial of the experiments. It also displays 

correspondence maps of iterations #0, #5, #10 and #50. A correspondence map is a 

visualization of the correspondence probabilities pm n, with the horizontal axis the order of 

image points and the vertical axis the order of model points. In a correspondence map, a 

block in the bottom row represents the probability of an image point being an outlier, while 

a block in the nth column and the mth row above the bottom row represents the probability 

between the nth image point and the mth model point. A higher block value indicates a 

higher correspondence probability.

At initialization (iteration #0), there was no dominant correspondence as the bottom line 

shows the highest values for all points. In iteration #5, multiple correspondences with low 

probabilities were established for several points, indicated by light blue color. In iteration 

#10, correspondences with high probabilities were found. In iteration #50, the 

correspondences with high certainty were established. A side product of the proposed 

method is that, paired correspondences can be obtained using the maximum a posteriori 

(MAP) of the correspondence probabilities. Though our method does not intend to establish 

them, after the 2-D–3-D registration, an image point that has the largest probability to a 

model point could be considered as the correspondence of that model point.

3) Robustness to Outliers—The registration errors for each individual images are 

shown in Fig. 6. Although there were a large amount of outliers and the initializations were 

large, the proposed method produced subdegree rotation errors and submillimeter in-plane 

translation errors. Comparing the results with that in Fig. 3, it can be seen that the 

registration errors were at the same level as that obtained with much less outliers.

Fig. 5(c) also illustrates the robustness of our method to outliers. In the image, the 3-D 

structure of FTRAC is degraded and one outlier (a bead on the femur phantom) is very close 

to the projection of a FTRAC bead. In this case, our proposed method still achieved the 

registration with errors of (−0.47°, 0.03°, −0.25°, 0.33 mm, −0.12 mm, 1.84 mm). As can be 

seen in Fig. 5(b), the projected registered FTRAC beads well fit the detected beads.

4) Comparison With gOp and SoftPOSIT—Using the ground-truth paired 

correspondences, gOp was performed on the 100 images. The registration errors are shown 

in Table I and Fig. 7, along with the mean errors of our method for comparison. The average 

errors of the proposed method were the same as that of gOp for most images, and they were 

smaller than that of gOp for some images. Also seen from Table I is that the depth is hard to 

estimate accurately from single image.

The registration errors of SoftPOSIT were larger than 1° and 1 mm in almost all cases, and 

hence, were not plotted in Fig. 7. To show the accuracy of SoftPOSIT, we performed 

another experiment using “good” initializations that were very close to the ground-truth 

(within 1° and 1 mm). The best registration results in the 50 trials per image, named as 

SoftPOSIT (best), were used to calculate the statistics for comparison in Table I.
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B. Cadaver Study

To measure the accuracy of the proposed method, the RMS projection error was used 

because there is no accurate ground truth for the cadaver data. The RMS projection errors of 

the proposed method, MV-MI, SoftPOSIT, and gOp are shown in Table II and Fig. 8, 

associated with a visual comparison using #14 image. Only the errors no more than 5 pixels 

are shown in the figure for a better comparison since the errors of SoftPOSIT in some failed 

cases were more than 100 pixels.

As shown in Table II, our method had the smallest RMS projection error of approximately 

0.5 pixels (0.49 ± 0.08). The gOp produced the same accuracy (0.48 ± 0.09) as the proposed 

method. MV-MI had intermediate accuracy of approximately 1.3 pixels (1.29 ± 0.21). While 

SoftPOSIT produced the largest errors of 26.16 ± 45.46 pixels.

As a typical example, the registration results of the four methods for the #14 image is also 

shown in Fig. 8. Using the estimate of the proposed method, the projections of the beads on 

the FTRAC model (yellow asterisks) are very close to the centers of the fiducial beads 

(green points). The projections obtained using the estimate of gOp coincide with those of the 

proposed method. While using the estimate of MV-MI, the projections are a little bit further 

from the centers of the beads, and using the estimate of SoftPOSIT, some projections are 

quite far. As for the automatically detected centers of the fiducial beads, they are very close 

to the centers of the beads in the image [see Fig. 8(b) and (d)].

C. Computational Time

We used a laptop with 2.53 GHz Intel Core 2 Duo CPU and 4 GB memory for this project. 

The approximate computation time of SoftPOSIT and gOp was 1.8 and 1.3 s, respectively. 

The approximate computation time for the MATLAB implementation of our method was 2 

s. This computation time included the automatic extraction of the fiducial beads, and can be 

improved using an C++ implementation.

VI. Discussion

A. Comparison With SoftPOSIT

The proposed method has three essential differences from SoftPOSIT. First, pm n ∈ [0, 1] is 

the posterior probability of paired correspondences. Whereas, ηm n ∈ {0, 1} in SoftPOSIT is 

a binary assignment. Although softassign is used, it ends up with a “zero-one assignment 

matrix” that specifies the paired correspondences between image and model points.

Second, a predefined distance threshold α in (3) is used to penalize mismatching when ||un − 

 (Xm ; θ)||2 > α. In our method, the correspondence is modeled using a Gaussian 

distribution. Although σ2 can be interpreted as a “distance penalization” parameter, the use 

of Gaussian makes the penalization adaptive. More importantly, the penalization is driven 

by the data and optimized. In our method, σ2 is initially set to a relaxed state (the half of 

image size), allowing the search of optimal solutions with a large tolerance, and 

subsequently tightened up, forcing the final solution to approach a minimum projection 

error. When σ2 is large, our method loses precise local alignment and focuses on a more 
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global geometry. When σ2 decreases, the local geometry contributes more and drags the 

projections toward a better alignment.

Third, in the annealing scheme, the temperature β is simply increased monotonically. This 

has three shortcomings: 1) the optimal update ratio can be difficult to determine beforehand; 

2) it is image- and initialization-related, i.e., a particular value of the update ratio (e.g., 1.05 

in [25]) may not be optimal for different images or initializations; and 3) the optimal initial 

and stop values of β (0.0004 and 0.5 in [25]) are also difficult to determine in advance, 

which may potentially cause large registration errors. In our experiments, when the 

initialization was not good, SoftPOSIT produced large errors (see Table II). This is because 

that the search of SoftPOSIT is local, and there is no guarantee of finding the global 

optimum given a single initial guess [25]. For our method, σ2 is optimized during each 

iteration, making our method robust to the initialization. In all experiments, we simply set σ2 

to the half of image size without influencing the registration accuracy. Since our method is a 

global optimizer, it produced accurate results.

B. Comparison With gOp

In both phantom and cadaver studies, our method and gOp produced essentially identical 

accuracy. But gOp requires correct paired correspondences, which is a common 

requirement for any PnP solver. Our method does not have this requirement. In the scenarios 

where the C-arm pose needs to be continuously estimated, manually establishing paired 

correspondences is time consuming and interrupts the procedure. In this case, our method is 

preferable because of its fully automatic fashion.

Our method can also be used when rough or partial paired correspondences are available. In 

this case, it can start with initial correspondence probabilities or a σ2 that reflects the 

certainty of the available paired correspondences.

The gOp can always produce a global solution given correct paired correspondences due to 

its use of convex optimization. Our method cannot theoretically guarantee to always produce 

a global solution, but PSO has demonstrated its capability of finding global solutions in 

many different applications, which is also shown in the intensive evaluations in this paper.

C. Comparison With MV-MI

Compared with MV-MI, our method has three advantages. First, MV-MI uses multiple 

images, requiring accurate spatial interrelationship of the images. This means the C-arm has 

to be tracked, and MV-MI is used to refine the tracking data. Our method uses only one 

image, leading to a pure image-guided scheme. Second, MV-MI needs to manually identify 

the beads in images and select their corresponding points on the 3-D model, while our 

method runs in an automatic manner. Third, our method has better accuracy than MV-MI.

D. Estimation Along Projection Direction

As shown in the experiments, the estimates had relatively large errors in the projection 

direction along the Z-axis (i.e., the depth). However, the depth can be difficult to accurately 

estimate for a 2-D–3-D registration method using only one image because the image does 
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not contain distance information in the projection direction, and depth typically remains 

ambiguous given only local image features [47]. The movement of an object along the 

projection direction results in a scale change only in its 2-D projection, and it is difficult to 

accurately solve the ambiguity between the scale and depth using only one image. The 

limited accuracy in depth is an issue of the proposed method that need to be improved. One 

solution is to use two or more images if their relative poses are known.

E. Extension to Multiple Views

In general, the use of two or more images taken from different viewpoints will decrease the 

registration error along the projection direction. In this study, we did not implement 

multiview 2-D–3-D registration because the C-arm is not tracked in our system due to the 

large movement range of the C-arm compared with the high-precision tracking volume [39] 

and the interference of the line-of-sight. Similar setups were also used in other image-guided 

systems [48]–[50]. In such systems, the C-arm pose has to be accurately and robustly 

estimated from one image.

The propose method can be easily extended to multiview scenario if accurate spatial 

interrelationship between images are available. Having I views associated with the 

transformation  from the ith view to the first view, the multiview 2-D–3-D registration is 

formulated as

where  is the identity matrix. Theoretically, any view can be chosen as the first view. 

After convergence, we can, as most multiview methods do in computer vision, further refine 

the registration using bundle adjustment [51]. This is one of our ongoing work.

F. Extension to Contour-Based 3-D–2-D Registration

The proposed method is not limited to fiducial-based 2-D–3-D registration. It can be readily 

adapted for contour-based 2-D–3-D registration. Representing image contours using 

oriented points and a 3-D object using a triangulated surface mesh, the proposed method can 

be extended to a contour-based 2-D–3-D registration method [52].

The contour-based method can also incorporate image gradient information in our 

probabilistic representations of image features. Finally, the 2-D–3-D registration is achieved 

by obtaining the optimal registration parameters using the same method that couples PSO 

and EM. Some preliminary studies along this direction have been reported in [53] and [52].

VII. Conclusion and Future Work

We propose a 2-D–3-D registration method without the need for known paired 

correspondences. Unlike the methods that find the “best” correspondences from a set of 

candidate matchings, and then, estimate the registration from them, directly or iteratively, in 
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the proposed method, every 3-D point has certain correspondence probabilities to all the 2-D 

points. Though this formulation in its nature is a combinatory explosion problem, it is solved 

in the proposed method by making use of a global optimization method coupled with 

statistical inference effectively. The correspondence probabilities are modeled using a 

mixture model, and then, the 2-D–3-D registration is solved using our method that couples 

PSO with EM, without the need for paired correspondences.

Compared with a global optimal method that uses correct paired correspondence, both the 

phantom and cadaver studies have showed that the proposed method is accurate, in terms of 

producing estimates with the same accuracy as a state-of-the-art global optimal method.

The experiments also illustrated the robustness of the proposed method to initializations and 

the presence of a large amount of outliers (false detections in the image). Presenting a large 

amount outliers (87 false detections versus 9 correct ones), and starting from a poor 

initialization, the proposed method also produced accurate estimates. Furthermore, the 

estimation accuracy was at the same level as the global optimal method that uses correct 

paired correspondences.

Although the evaluations were performed on one phantom and one cadaver, we believe the 

promising results on 27 images of the cadaver and 5000 trials on 100 images of the phantom 

demonstrate the efficacy of our method. This method will be further validated and verified 

in more cadaver and clinical studies in future.

In addition to extending the propose method to multiview and 2-D–3-D rigid registration, 

another important future work is to extend it to a contour-based 2-D–3-D deformable 

registration.
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Fig. 1. 
(Left) Plastic femur phantom with the fiducial affixed on it and (right) a typical X-ray image 

of them taken by the bench system. The Z -axis of the image points out of the paper. The 

nine beads on the fiducial were used in the experiments, whereas the larger beads affixed on 

the femur phantom were not used and they were outliers in our experiments.
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Fig. 2. 
Setup of the cadaver study in a well-calibrated environment, and an example X-ray image. 

The FRAC fiducial was affixed firmly on the cadaver hip on the right femur shaft. The flat-

panel C-arm was used to acquire X-ray images by rotating approximately around the long 

axis of the right femur.
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Fig. 3. 
Means and standard deviations of the registration errors in (top) rotations in degrees and in 

(bottom) translations in millimeter, respectively, on each of the 100 X-ray images over 50 

trials. The solid, dash-dot and dotted lines are the mean values, and the shadow regions 

show the standard deviations.
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Fig. 4. 
Registration errors of our method in rotations and translations. In the left column, from top 

to bottom, the plots show the registration errors (in degrees) around the X -, Y -, and Z -axes 

over 50 trials on 100 images. In the right column, from top to bottom the plots show the 

registration errors (in millimeter) along the X -, Y -, and Z -axis. All rotation errors around X 

-, Y -, and Z -axis were less than 1° (indicated by the horizontal dashed lines), and all 

translation errors along X - and Y -axes were less than 1 mm, whereas the translation errors 

along Z -axis were relative larger.
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Fig. 5. 
Behavior of the proposed method. The detected beads, initialization, and final estimate are 

shown using blue plus signs (“+”), red asterisks (“*”), and red circles (“○”), respectively. 

Four correspondence maps below the image illustrate the behavior of our method at 

iterations #0 (initialization), #5, #10, and #50. The correspondence map is a visualization of 

the correspondence probabilities pm n with the horizontal axis the order of image points and 

the vertical axis the order of model points. The higher the value of a block in the map, the 

higher the correspondence probability is. Two enlarged regions give close-up displays of the 

final estimate (b) and an outlier (a large bead on the femur phantom) that is very close to a 

FTRAC bead (c).
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Fig. 6. 
Robustness of the proposed method to a large amount of outliers (87 outliers versus 9 

correct feature points). The rotation errors for all images were within ±0.5°. The translation 

errors along X- and Y-axes were less than 1 mm, and the errors along Z-axis were relative 

large. Notably, the registration errors were at the same levels as that when there were much 

less outliers, by comparing with Fig. 3.
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Fig. 7. 
Comparison of the registration errors between the proposed method with gOp [41]. For most 

images, the average errors of the proposed method were the same as that of gOp, and they 

were smaller than that of gOp for some images. Note that gOp requires correct paired point 

correspondences, while no paired correspondences were used in the proposed method.
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Fig. 8. 
RMS projection errors and an example registration results of different methods. In the 

image, the green points are extracted feature points, and the cyan crosses, the red plus signs, 

the white circles and the yellow asterisks are the projections using the estimate of 

SoftPOSIT [25], MV-MI [39], gOp [41], and the proposed method, respectively. The yellow 

asterisks overlapped the white circles, indicating the proposed method had the same 

accuracy as gOp.
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TABLE I

Registration Errors of Our Method, gOp [41] and SoftPOSIT [25] in the Phantom Study

Method

Rotation Errors (in degrees)

X Y Z

Our method −0.26 ± 0.22 0.16 ±0.12 −0.15 ±0.22

gOp −0.25 ± 0.22 0.17 ±0.11 −0.13 ±0.22

SoftPOSIT (best) 1.28 ± 9.40 5.98 ± 3.22 0.78 ± 5.28

Method

Translation Errors (in mm)

X Y Z

Our method 0.32 ±0.11 0.08 ±0.10 1.65 ± 1.00

gOp 0.32 ±0.11 0.09 ± 0.09 1.76 ± 0.90

SoftPOSIT (best) 0.59 ± 0.62 −0.81 ± 1.51 −7.77 ± 17.05

The errors are the difference between the estimated and ground-truth transformation.
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TABLE II

RMS Errors (in Pixels) of Different Methods in the Cadaver Study

Our method gOp [41] MV-MI [39] SoftPOSIT [25]

0.49 ± 0.08 0.48 ± 0.09 1.29 ± 0.21 26.16 ± 45.46
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