
1

ROVER: RTL Optimization via Verified
E-Graph Rewriting

Samuel Coward, Theo Drane, and George A. Constantinides, Senior Member, IEEE,

Abstract—Manual RTL design and optimization remains
prevalent across the semiconductor industry because commercial
logic and high-level synthesis tools are unable to match human de-
signs. Our experience in industrial datapath design demonstrates
that manual optimization can typically be decomposed into a
sequence of local equivalence preserving transformations. By
formulating datapath optimization as a graph rewriting problem
we automate design space exploration in a tool we call ROVER.

We develop a set of mixed precision RTL rewrite rules inspired
by designers at Intel and an accompanying automated validation
framework. A particular challenge in datapath design is to
determine a productive order in which to apply transformations
as this can be design dependent. ROVER resolves this problem
by building upon the e-graph data structure, which compactly
represents a design space of equivalent implementations. By
applying rewrites to this data structure, ROVER generates a set
of efficient and functionally equivalent design options. From the
ROVER generated e-graph we select an efficient implementation.
To accurately model the circuit area we develop a theoretical cost
metric and then an integer linear programming model to extract
the optimal implementation. To build trust in the generated
design ROVER also produces a back-end verification certificate
that can be checked using industrial tools.

We apply ROVER to both Intel-provided and open-source
benchmarks, and see up to a 63% reduction in circuit area.
ROVER is also able to generate a customized library of distinct
implementations from a given parameterizable RTL design,
improving circuit area across the range of possible instantiations.

Index Terms—hardware optimization, design automation, dat-
apath design, computer arithmetic

I. INTRODUCTION

IN recent years many new domain specific languages and
tools have allowed hardware engineers to write designs

at different levels of abstraction [1], [2]. Even with these
developments, Register Transfer Level (RTL) design using
hardware description languages such as Verilog still dominates
industry and much of academia. Despite reaching maturity,
logic and high-level synthesis tools are limited in their design
space exploration and are unable to match skilled engineers.
The hardware design space is large and mostly unexplored
due to strict correctness requirements and slow debug time
frames. The numerous optimization objectives and constraints
present a challenge for both humans and automated systems.
Automatic datapath synthesis research has focused on heuristic
search and statistical methods [3]–[6] or deployed machine
learning [7]. Automatic datapath synthesis can expand design

S.Coward and T.Drane are with the Intel Numerical Hardware Group.
E-mail: samuel.coward@intel.com

G.A.Constantinides and S.Coward are with Imperial College London,
Department of Electronic and Electrical Engineering, London, UK

Manuscript received November 17, 2023

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

Proportion of Rewrites Applied

C
ir

cu
it

A
re

a
M

et
ri

c
C

ha
ng

e
(%

)

Fig. 1. Progression of design cost throughout RTL rewriting for the Weight
Calculation benchmark (described in Section VII). We plot the percentage
change in the circuit area metric compared to the original design at every
point in the rewrite chain. The area metric may converge non-monotonically.

space exploration resulting in better quality circuit designs. It
may also improve productivity reducing the engineering effort
required to produce an optimized implementation.

Inspired by traditional compiler optimization techniques and
previous work on RTL optimization [3], [8], we observe that
manual datapath optimization at RTL can be described in
terms of local equivalence-preserving transformations. Skilled
engineers learn such transformations through experience and
discover patterns or sequences of valuable transformations.
Often these optimizations can be generalized, facilitating their
application more widely. Automating transformation-driven
hardware optimization is complex since it is often necessary
to apply several “bad” transformations before an ultimately
beneficial transformation can be applied. Figure 1 illustrates an
example where it is necessary to initially apply transformations
that increase circuit area cost via operator duplication or
replacement, but eventually lead to subsequent area saving
transformations such as arithmetic simplification or clustering,
providing a net area reduction. This is a challenge faced by
traditional rewriting techniques [9].

In order to meet the automation objective, we leverage
recent advances in e(quivalence)-graph rewriting and equality
saturation, bringing them to the RTL optimization problem.
By representing combinational RTL as a dataflow graph we
can exploit properties of e-graphs that make them a promising
technology for hardware design. Firstly, in e-graph rewriting
the order in which transformations are applied is unimpor-

ar
X

iv
:2

40
6.

12
42

1v
1

 [
cs

.A
R

]
 1

8
Ju

n
20

24

2

Input
Verilog

Slang

JSON

ROVER Front-End

VeriLang
egg

E-Graph

Rewrite

Extraction
VeriLang

ROVER Back-End

Opt. Verilog

Proof Production

VeriLang

ROVER Back End

Intermediate
Verilog 1

Intermediate
Verilog 2

· · · Intermediate
Verilog n

EC EC EC

Fig. 2. Flow diagram describing the operation of ROVER. The intermediate RTL designs are formally verified to be functionally equivalent using a commercial
equivalence checker (EC) forming a chain of reasoning. The orange boxes denote the novel contributions.

tant, allowing the e-graph to capture early transformations
that initially degrade the design but potentially enable later
beneficial optimizations. Secondly, e-graphs are designed to
explore equivalent implementations, and RTL optimization
typically maintains functionality producing bit-identical imple-
mentations. Lastly, the e-graph maintains the complete history
of all designs it has explored, which allows us to decompose
formal verification into a sequence of equivalence checks.

In this paper, we address the following problem. Given
an RTL implementation R, we seek a functionally equivalent
implementation R′ that minimizes some cost, typically area or
delay. Two implementations R and R′ are equivalent, R ∼= R′,
iff for all inputs they produce identical outputs. The result-
ing optimized implementation R′ is passed to an industrial
logic synthesis tool, producing a netlist from which we can
extract relevant circuit quality metrics. ROVER’s optimization
objective is to generate RTL that the logic synthesis tool can
synthesize into the most efficient circuit representation. This
means that ROVER must capture and model the downstream
logic synthesis capabilities. Figure 2 provides an overview of
the tool flow.

The primary contributions of this work are:

• application of e-graph rewriting to RTL datapath opti-
mization,

• a multi-bitwidth and multi-signage rewrite set that en-
ables datapath design space exploration capturing the
connection between optimal architecture selection and
bitwidth,

• an automated method to generate necessary and sufficient
conditions for RTL rewrites using an equivalence checker,

• a robust method to verify the correctness of the generated
RTL based on problem decomposition.

An initial application of e-graphs to general datapath opti-
mization was presented at the 29th Symposium on Computer
Arithmetic [10] as a preliminary version of this work. Here we
extend the conference paper by supporting signed arithmetic,
providing semantics for ROVER’s intermediate language, and
introducing novel methods for rewrite condition generation

and formal verification not present in the conference version.
In the next section we provide the necessary background on

datapath optimization and e-graphs. In Section III we describe
the intermediate language and supported subset of Verilog.
Then we describe the rewrites that encode the optimizations
and allow the e-graph to grow in Section IV. In Section V
we describe how the optimal design is extracted from the
generated e-graph. The verification methodology is described
in Section VI. In the final two sections we present results.

II. BACKGROUND

A. Datapath Synthesis

Datapath synthesis is the process of generating gate level
netlists from higher-level arithmetic circuit designs expressed
in RTL. Zimmermann decomposes this process into three
steps: RTL extraction of arithmetic operations, followed by
high-level arithmetic optimizations, and finally netlist gener-
ation [11]. Such datapath optimization engines form a core
component of all logic and high-level synthesis tools and are
essential for generating state-of-the-art circuit designs.

Logic synthesis tools implement a range of hardware-
specific optimizations, detecting opportunities to merge partic-
ular operator sequences and exploit redundant number repre-
sentations [11]. Synopsys Design Compiler provides datapath
coding guidelines, which describe how designers can best
exploit the synthesis tool’s capabilities [12]. Of particular
relevance is the front-end logic synthesis pass that performs
datapath extraction, which clusters operators into datapath
blocks [11]. Extracting larger clusters enables more effective
downstream optimization. Datapath clustering can be pre-
vented by datapath leakage in a design, where a designer,
possibly intentionally, truncates an arithmetic operation. A
key objective of ROVER is to enable logic synthesis datapath
extraction to form larger datapath blocks, which in turn results
in more efficient circuit implementations.

In this work we use a rewrite driven approach to the datapath
optimization problem. The most relevant prior academic work
is from Verma, Brisk and Ienne [3], who automatically apply

3

dataflow transformations to combinational circuit designs. This
work was inspired by the observation that ASIC logic synthesis
tools could effectively deploy carry-save representation when
presented with consecutive arithmetic operations, generating
optimized netlists. However, when given arithmetic blocks
separated by additional logical operations, the tool was not
able to move the logical operations to facilitate optimal clus-
tering. To address this issue, the authors designed specific logic
arithmetic interchange rewrites that produced circuit designs,
which when passed to logic synthesis could maximally cluster
arithmetic operators together. By leveraging and extending
these rewrites in the e-graph optimization framework, we can
reproduce and extend results from this paper [9]. In addition
to the work of Verma, Brisk and Ienne, a general purpose and
verified RTL rewriting framework has been developed by Carl
Seger and collaborators [13], [14]. The Voss II framework
provides a design visualization environment and proposes
a more interactive design space exploration approach, with
little emphasis on automation. Datapath rewriting has also
been applied to specific design challenges such as the design
of large bitwidth multipliers [15]. In datapath verification,
rewriting has proven to be an invaluable technique [16]–[18].

Although we target general datapath RTL optimization,
there are several problem domains that have received particular
attention and can be captured in the framework we present.
One such instance is the multiple constant multiplication
(MCM) problem [19]–[21], where the design problem is as
follows: given a set of integer coefficients {a1, ..., an}, find an
optimal circuit producing all the outputs ai × x for a variable
input x. The challenge presents many non-obvious operator
sharing opportunities and is beyond the reach of existing
logic synthesis tools. These problems are usually solved by
hand or with bespoke tools, which represent constants using
a fixed representation [20] such as Canonical Signed Digit
(CSD) [22]. Alternative approaches deploy adder graph algo-
rithms [19] or have encoded the problem as an integer linear
programming problem [23]–[25] or as Boolean satisfiability
problem [26]. Owing to the generality of the e-graph rewriting
framework, such MCM optimizations are another class of
methods that are automatically subsumed within our ROVER
framework as a special case. Note that bespoke MCM tools
will outperform ROVER on complex MCM problems, as we
shall see in Section VII.

B. E-Graphs
An e-graph is a data structure developed in the theorem

proving community [27]. E-graphs provide a compact repre-
sentation of equivalence classes (e-classes) of expressions. An
e-graph represents a set of equivalent expressions, where nodes
represent variables, constants or functions clustered together in
e-classes. Edges represent operator inputs and connect nodes
to e-classes, as shown in Figure 3. In this way, a small number
of nodes can represent exponentially many more expressions.
Figure 3 contains a series of e-graphs, demonstrating how
multiple equivalent expressions can be represented.

E-graphs are grown using a technique called equality satu-
ration [28]–[30], where rewrites that define equivalent expres-
sions are applied to the e-graph. E-graphs are based on the

(a) Initial e-graph contains
(2× x) >> 1

(b) Apply x× 2 → x << 1

(c) Apply (x << s) >> s → x

Fig. 3. E-graph rewriting for standard integer arithmetic. Dashed boxes
represent e-classes of equivalent expressions. Green nodes represent newly
added nodes. Red dashed boxes highlight which e-class has been modified.

theory of uninterpreted functions therefore an operator, e.g.
addition, only gains any meaning via rewrites defined on that
operator. For example x + x → 2 × x tells the e-graph that
x+x is equivalent to 2×x. Given a set of rewrites, rewriting
opportunities are detected via a process known as e-matching
that identifies expressions in the e-graph that match the left-
hand side patterns [31], [32]. A key differentiating property of
e-graphs is constructive rewrite application. More formally, a
rewrite is defined as a pair of expressions (lhs, rhs), such
that when an expression syntactically matching the lhs is
discovered in the e-graph, the rhs is added to the matched
e-class in the e-graph. The left-hand side is not destroyed
and remains in the e-class. This means that the e-graph grows
monotonically and application of one rewrite does not remove
alternative rewriting opportunities. Figure 3 shows an e-graph
before (Figure 3a) and after (Figure 3b) application of a
constructive rewrite that adds a new node to the e-graph. The
final rewrite applied to produce Figure 3c, (x ≪ 1) ≫ 1 → x,
adds no new nodes to the e-graph, since the right-hand side
expression is already contained within the e-graph. In this case,
rewriting merges two existing equivalence classes, which, in
this instance, leads to a loop in the e-graph.

Traditional rewrite engines suffer from the phase-ordering
problem, which describes how the order of rewrite application
can impact the final outcome [33]. Consider the following two
ways to rewrite the initial expression from Figure 3a.

Order 1: (x× 2) ≫ 1 → (x ≪ 1) ≫ 1 → x

Order 2: (x× 2) ≫ 1 → (x+ x) ≫ 1

4

A destructive rewriting process leads to two different endpoints
depending on the order of rewrite application, hence the
phase-ordering problem. This problem is avoided entirely by
constructive rewrite application [28]. Applying the rewrite in
“Order 2”, the x×2 expression is retained and can be matched
again, facilitating the application of “Order 1”. This will prove
to be a particularly valuable property for hardware design.

A general purpose and reusable e-graph library, egg [28],
was recently released and has fueled a new wave of e-graph
research. In addition to its usability, egg provides innovations
in e-graph performance and numerous analysis features. In
this work we will exploit the ability to write conditional
and dynamic rewrite rules as well as the e-class analysis
framework [28]. The validity of conditional rules can be
determined at runtime based on the specific values matched by
the left-hand side pattern. The dynamic rewrite rules construct,
at runtime, the right-hand side of a rewrite having matched
a pattern. The e-class analysis feature allows users to attach
additional information to an e-class, enabling program analysis
techniques [34]. Since e-graphs grow monotonically, they
usually reach a fixed point called saturation, where no further
rewrite applications add additional information to the e-graph.

Proof production was recently added to egg allowing users
to extract a rewrite sequence mapping one expression to
an equivalent expression in the e-graph [35]. This enables
translation validation techniques to be applied to e-graph
applications. Translation validation is a compiler technique
to verify the correctness of a compiler’s output [8]. The
verification problem is broken down into a sequence of sub-
problems, verifying each step of the transformation. The proof
production feature has been leveraged to develop an RTL
verification assistant [17].

E-graphs can be found in widely used SMT solvers such as
Z3 [36]. More recently, egg has helped to automate numerical
stability improvement in the Herbie tool [37] and synthesis
smaller and more efficient rewrite sets via the Ruler tool [38].
In the hardware domain, there is growing interest, with Ustun,
Yu and Zhang advocating e-graph rewriting [39]. Previous
datapath research has explored alternative implementations of
large multipliers on FPGAs, where different levels of decom-
position were efficiently explored via equality saturation [15].
ROVER tackles the more general ASIC RTL optimization
problem, maximally exploiting logic synthesis capabilities.

III. INTERMEDIATE REPRESENTATION

To facilitate RTL exploration via e-graph rewriting, we have
developed an intermediate language, VeriLang, along with a
parser and generator for translation to and from Verilog/Sys-
temVerilog [42]. Since e-graphs work with expressions, Veri-
Lang is a nested S-expression language in Common Lisp [43].
A formal description is given in Grammar 1.

As an example, in VeriLang, an 8-bit unsigned addition,
stored in a 9-bit result would be expressed as:

(+ 9 8 unsign x 8 unsign y). (1)

TABLE I
VERILANG OPERATORS INCLUDING THE ARCHITECTURE USED FOR

THEORETICAL COST ASSIGNMENT. OPERATORS ABOVE THE DASHED LINE
ARE THOSE THAT DIRECTLY TRANSLATE FROM VERILOG, WHILST THOSE
BELOW ARE CUSTOM OPERATORS THAT ALLOW VERILANG TO EXPRESS

MORE OPTIMIZATIONS.

Operator Symbol Arity Architecture

Add/Sub +/- 2 Prefix Adder (PA)
Negation - 1 PA [40]
Multiplication × 2 Booth Radix-4 [41]
Reduce &, |,̂ 1 Log Tree
Inverse Reduce ∼ &,∼ |,∼ˆ 1 Log Tree
Shifting ≪,≫ 2 Mux Tree
Multiplexer ·?· : · 3 Mux Gates
Concat/Repl {, } n Wiring

Comparison
==, ! =
<,≤ 2 PA
>,≥

Range Select slice 1 Wiring
Sum SUM n CSA and PA
Muxed Mult Array MUXAR 3 Reduction and PA
Fused Mult-Add FMA 3 Booth Radix-4

term ::= (op width [arg] . . . [arg])
| var | int

arg ::= width signage term
width ::= var | int
signage ::= var | unsign | sign

Grammar 1. VeriLang grammar definition. The terminal variable var is a
symbol drawn from a set of expression variables, and op is an operation from
the supported set of VeriLang operators as described in Table I.

To provide VeriLang semantics, we first specify two functions.

J·K :term → Z (2)
··,· :Z× N× {unsign,sign} → Z (3)

We then define the semantics in terms of integer arithmetic:

J(op w w1 s1 t1 . . . wn sn tn)K = (4)
(JopK Jt1Kw1,s1 . . . JtnKwn,sn)w,unsign (5)

where JopK denotes the standard interpretation of op acting on
integers and for k ∈ Z, w ∈ N and s ∈ {unsign,sign},

kw,s =

{
k mod 2w, if s == unsign

2(k mod 2w−1)− (k mod 2w), else.
(6)

This is a valid model of bitvector arithmetic under the least
positive residue definition of modulus.

· mod · : Z× N → N (7)

Under these semantics, (1) has the following interpretation:(
+

(
JxK mod 28

) (
JyK mod 28

))
mod 29.

Type annotations are essential, since Verilog is a context
determined language. The signage of an operator is determined
by the signage of its input operands. For this reason we do
not include a signage annotation for the output of an operator
in VeriLang. The bitwidth of an operator is determined by the
bitwidth of the largest operand, including the left-hand side of
an assignment [42]. Therefore we do include a bitwidth anno-
tation for the output of an operator in VeriLang. Only the sub-
set of VeriLang expressions comprised of concrete instances

5

(a) Consecutive additions (b) Merged additions encoded as a
SUM

Fig. 4. Edge labels show the operand’s index and bitwidth in square brackets.

of the width and signage type parameters, meaning these
cannot be variables, can be translated to synthesizable Verilog.

Since e-graph rewriting is based on the theory of uninter-
preted functions, operators take on meaning via rewrites that
define equivalent implementations. VeriLang is designed with
rewrites in mind, making it simple to express conditional and
dynamic rewrites with access to all the relevant parameter
values. In Section IV we describe how ROVER’s rewrites
differentiate between type annotations and variables. Type an-
notations are also essential for accurate hardware costing, since
an 8-bit addition should be cheaper than a 32-bit addition.

VeriLang currently supports almost all the fundamental
Verilog operators, with the exception of less commonly used
operators such as trigger (->), modulus (%) and power (**),
though these could easily be added. In total we support 29 of
the Verilog defined operators as shown in Table I, which omits
the single gate operators that are also supported.

In addition to the Verilog operators, VeriLang supports a
set of custom operators as described in Table I, which capture
the optimization capabilities of modern ASIC logic synthesis
tools. These additional operators greatly improve correlation
between ROVER’s cost model and the final circuit cost re-
ported by commercial synthesis tools [11]. The SUM operator
encodes how multiple additions can be clustered into a single
carry-save adder (CSA) allowing the circuit to deploy fewer
expensive carry-propagate adders. These clustering nodes are
typically valuable but may not be useful if an intermediate
result is required. Figure 4 shows two consecutive additions
being reduced to a single SUM node. We include two further
merged operators, the familiar Fused Multiply-Add (FMA),
which encodes the ability to construct the circuit for a ∗ b+ c
using a single carry-propagate adder and the Muxed Mult
Array, which encodes the synthesis optimization for a×b+ā×c
as described in [11]. The Muxed Mult Array will be discussed
further in Section IV.

As shown in Figure 2, the input Verilog/System Verilog is
first parsed by the open-source slang parser [44], generating
a JSON representation. The ROVER front-end then translates
this JSON representation into a VeriLang expression. From
this VeriLang expression egg generates an initial e-graph,
where each e-class contains a single node. In the initial
translation phase, we construct a mapping from the original
variable names to their corresponding VeriLang expressions.

By attaching the variable name to the corresponding e-classes,
we retain information from the original RTL, which we can use
during code generation (Section V-C) to improve readability.

IV. REWRITES

A. Specifying Rewrites

Rewrites define local equivalences between two expressions
that, when chained, enable architectural exploration. Equiv-
alence is defined as functional equivalence over terms in
VeriLang. Namely, given terms t1 and t2, t1 ∼= t2 if and only
if for all possible inputs t1 and t2 produce identical outputs
under the semantics of VeriLang. A rewrite is defined as a
transformation from a term to a term. Note that rewrite
pattern terms may contain free variable bitwidth and signage
type parameters. This is analogous to using parameterizable
bitwidths in Verilog as opposed to concrete integer values.

Via the e-matching process described in Section II-B,
egg matches a term in the e-graph returning a map that
is an assignment of (some of the) variables in the term to
concrete values. A partial evaluation of a term with respect to
a map produces a new term, J·K· : term×map → term. As
a first example, we describe the unconditional commutativity
rewrite that is always valid. Later we will give an example of
a conditional rewrite. Commutativity of addition is defined as:

lhs︷ ︸︸ ︷
(+ w wa sa a wb sb b) →

rhs︷ ︸︸ ︷
(+ w wb sb b wa sa a) .

If applied to an e-graph containing (1), the e-matching
process would return a map,

m =


w 7→ 9
wa 7→ 8
sa 7→ unsign
wb 7→ 8
sb 7→ unsign

(8)

Note that m is a partial function because it does not provide
any assignment for variables a and b. This approach differs
from other e-graph based applications, in that a single rewrite
encodes a rewrite over many distinct types. Previous work
encoded types in the operator name itself e.g. +16 and
×32 [15], but in our setting this is impractical due to the
number of operators we would have to support. The partially
evaluated term, JrhsKm is then added to the e-graph, where

JrhsKm = (+ 9 8 unsign b 8 unsign a).

For this simple commutativity example, the rewrite is valid
anywhere that it matches. However, the set of RTL rewrites
for which this statement holds is small. To enable meaningful
RTL transformations, we define a set of conditionally applied
rewrites specified as a triple (cond,term,term), where

cond : map → Bool.

The condition is checked each time the left-hand side term
of a rewrite is matched. The partially evaluated right-hand
side is only added to the e-graph if the condition returns true.

6

wire [7 : 0] A, B , C ;
wire [7 : 0] a d d 8 b i t ;
wire [8 : 0] a d d 9 b i t , a d d r i g h t ;
wire [9 : 0] l e f t 1 , l e f t 2 , r i g h t ;

a s s i g n a d d 8 b i t = A + B ; / / carry −o u t d i s c a r d e d
a s s i g n l e f t 1 = a d d 8 b i t + C ;

a s s i g n a d d 9 b i t = A + B ; / / carry −o u t r e t a i n e d
a s s i g n l e f t 2 = a d d 9 b i t + C ;

a s s i g n a d d r i g h t = B + C ;
a s s i g n r i g h t = A + a d d r i g h t ;

Fig. 5. Verilog associativity rewriting example. Signals left1 and right
are functionally distinct, because the carry-out is discarded in computing
add_8bit, therefore left1̸→right. The signals left2 and right are
functionally equivalently, therefore it is valid to rewrite left2→right.

That is, the condition for correctness of a conditional rewrite
(ϕ, lhs, rhs) is that for any map m:

ϕ(m) ⇒ JlhsKm ∼= JrhsKm. (9)

In Figure 5, we provide an example, to highlight where the
validity of a rewrite can depend on the context. Specifically,
the associativity rewrite is valid in the case where the inter-
mediate signal retains the carry-out of the first addition.

Conditional rewriting allows ROVER to detect all syntactic
opportunities to apply a transformation and then filter out those
that would be semantically invalid. Such an approach allows
ROVER to capture a wide range of RTL transformations
without sacrificing correctness. In Section IV-B we describe
the construction of the conditions and return to this example
to construct a condition for this exact associativity rewrite.

The set of rewrites described in Table II captures optimiza-
tions learnt from Intel’s Numerical Hardware Group, prior
work [3] and logic synthesis documentation [11], [12]. All
rewrites include the type annotations described in Section III.
We impose no restrictions on the bitwidth and signage pa-
rameters in the rewrites, to ensure maximum generality of the
rewrites. We omit the bitwidth and signage annotations as well
as the conditions in Table II to maintain readability.

ROVER combines both static rewrites, where the right-hand
side is known at compile time, and dynamic rewrites, where
the right-hand side is constructed at runtime. Dynamic rewrites
are particularly useful for constant manipulation, building
normal forms and computing sufficient bitwidths.

The first group, bitvector arithmetic identities, contains
familiar arithmetic rewrites allowing ROVER to re-arrange and
simplify arithmetic expressions. The second group includes
transformations more commonly encountered in hardware de-
sign, simplifying logical expressions and removing redundant
logic. The third class of rewrites, Arithmetic Logic Exchange,
are inspired by the work of Verma et al. [3] and facilitate
the discovery of additional arithmetic clustering opportunities.
These opportunities can be missed by logic synthesis as
arithmetic operations can be separated by logical operations.
The Arithmetic Logic Exchange rewrites allow ROVER to
move logic operations over arithmetic operations, enabling
larger arithmetic clusters to form. Once clustered together,

these blocks can be effectively optimized by logic synthesis
resulting in more optimal circuit designs. We extend prior
work on this subject [3], generalizing and expanding the scope.

The Merging Ops rewrites detect certain operator combina-
tions and cluster them into a single custom operator which,
as described in Section III, allows ROVER to identify sub-
circuits that synthesis tools will specifically optimize [12].
Both the “Merge Additions” and “FMA Merge” rewrites
exploit carry-save format to construct a multi-row array which
can be reduced using half- and full-adders [22]. Like the SUM
operator, the FMA operator requires a single carry-propagate
adder to generate the result a×b+c. The “Merge Mult Array”
identifies disjoint multiplier arrays that can be merged. Letting
a[i] represent bit i of a and u = ⌈log2 r⌉, MUXAR in the table
denotes the right hand side of the rewrite, where the SUM
represents array reduction:

MUXAR(b, a, c) =

SUM((b[0]?a : c) ≪ 0,

(b[1]?a : c) ≪ 1, ...,

(b[r − 1]?a : c) ≪ (r − 1)).

These rewrites help ROVER to identify the best design to pass
onto logic synthesis as they encode downstream logic synthesis
optimizations directly in the e-graph.

The remaining class of rewrites, “Constant Expansion”,
explores alternative representations of constants in hardware
with particular attention paid to multiplication of a variable
by a constant. These rules generalize MCM optimizations
and are valuable where constant manipulation can occur
as a sub-problem in a larger design optimization, where a
specialist MCM tool is not applicable. We shall encounter
such results in Section VII, but will also encounter limitations
of a rewriting approach for complex MCM problems. These
rules allow ROVER to re-create and generalise results from
the MCM literature described in Section II-A. As in previous
egg implementations, constant folding is implemented as an
e-class analysis [28].

B. Synthesizing Rewrite Conditions

As described above, rewrites are encoded as triples
(cond,term,term), where the terms may contain variable
width and signage parameters. Not all assignments to
these parameters produce valid rewrites. Namely, in general,
for rows in the table with † conditions, there exist mappings
m such that JlhsKm ̸∼= JrhsKm. In this section we describe
a solution to the following problem. Given a pair of terms,
(lhs, rhs), construct a cond, ϕ, such that for all maps m,

ϕ(m) ⇔ JlhsKm ∼= JrhsKm. (10)

The sufficiency of ϕ (⇒) is essential because applying a
single invalid rewrite introduces a non-equivalent expression
into the e-graph, meaning that no design in the e-graph can
be trusted. The necessity of ϕ (⇐) ensures that no rewriting
opportunities are missed by ROVER. In practice, constructing
a ϕ satisfying (10) is challenging. To make progress, we make
certain assumptions that simplify the problem, as described
below.

7

TABLE II
ROVER’S BITWIDTH AND SIGNAGE DEPENDENT DATAPATH REWRITES. BITWIDTH AND SIGNAGE PARAMETERS ARE OMITTED HERE. THE ∗ OPERATION
REPRESENTS BOTH {+,×}. THE RULES ARE CONDITIONALLY APPLIED AS A FUNCTION OF THE BITWIDTH AND SIGNAGE INFORMATION ATTACHED TO
EACH OPERAND. THE NECESSARY AND SUFFICIENT CONDITIONS ARE TOO COMPLEX (DENOTED BY †) TO DISPLAY IN COLUMN 4 FOR MOST REWRITES.

Class Name Left-hand Side Right-hand Side Condition

Bitvector Arithmetic

Commutativity a ∗ b b ∗ a True
Associativity (a ∗ b) ∗ c a ∗ (b ∗ c) †

Associativity of Sub (a− b)− c a− (b+ c) †
Dist Mult over Add/Sub a× (b± c) (a× b)± (a× c) †
Dist Add/Sub over Mult (a× b)± (a× c) a× (b± c) †

Add Zero a+ 0 slice(a) †
Mul by Zero a× 0 0 †
Mult by One a× 1 slice(a) True
Mult by Two a× 2 a ≪ 1 True
Sub to Neg a− b a+ (−b) True
Sum Same a+ a 2× a †

Mult Sum Same (a× b) + b (a+ 1)× b †

Bitvector Logic

Merge Left Shift (a ≪ b) ≪ c a ≪ (b+ c) †
Merge Right Shift (a ≫ b) ≫ c a ≫ (b+ c) †

Redundant Sel b?a : a slice(a) True
Nested Mux Left a ? (a ? b : c) : d a ? b : d †

Nested Mux Right a ? b : (a ? c : d) a ? b : d †
Sel Left Shift e?(a ≪ b) : (c ≪ d) (e?a : c) ≪ (e?b : d) †

Sel Right Shift e?(a ≫ b) : (c ≫ d) (e?a : c) ≫ (e?b : d) †
Not over Con ∼ {a, b} {(∼ a), (∼ b)} †

Arithmetic Logic
Exchange

Left Shift Add (a+ b) ≪ c (a ≪ c) + (b ≪ c) †
Add Right Shift a+ (b ≫ c) ((a ≪ c) + b) ≫ c †
Left Shift Mult (a× b) ≪ c (a ≪ c)× b †
Sel Add/Mul e?(a ∗ b) : (c ∗ d) (e?a : c) ∗ (e?b : d) †

Sel Add Zero Left e?(a+ b) : c (e?a : c) + (e?b : 0) †
Sel Add Zero Right e?a : (b+ c) (e?a : b) + (e?1 : c) †
Sel Mul One Left e?(a× b) : c (e?a : c)× (e?b : 1) †

Sel Mul One Right e?a : (b× c) (e?a : b)× (e?1 : c) †
Move Sel Zero (b?0 : a)× c a× (b?0 : c) †
Concat to Add {a, b} (a ≪ wb) + b †

Neg Not −a (∼ a) + 1 †

Merging Ops
Merge Additions a1 + (a2 + (a3 + ...+ an)...) SUM(a1, a2, ..., an) †

Merge Mult Array (a× b) + (c× (∼ b)) MUXAR(b, a, c) †
FMA Merge (a× b) + c FMA(a, b, c) †

Constant Expansion Mult Constant c× x ((2× (c ≫ 1))× x) + (c[0]× x) †
One to Two Mult 1× x (2× x)− x †

We have developed an automated condition synthesis flow,
shown in Figure 6, that makes ROVER extensible. Developers
or design engineers can specify new ROVER rewrite rules as
pairs of terms and run ROVER’s condition synthesis flow
to automatically generate a correct cond. This allows design
engineers to include valuable transformations drawing from
their own experience, but avoids the overhead of considering
all the scenarios in which the transformation is valid or invalid.
The idea is to sample the space of all signages and all small
bitwidth combinations, and to build a general rule for validity
consistent with the sample taken.

The automated condition synthesis flow deploys program
synthesis [45], where a correct condition is learnt from data.
Let lhs contain H free bitwidth parameters w1 to wH and G
free signage parameters s1 to sG.

M = {w1 7→ w1, . . . wH 7→ wH, s1 7→ s1, . . . sG 7→ sG

| wi ∈ {1, . . . , 8} ∧ si ∈ {unsign,sign}} .

We enumerate the entire parameter space, M , constructing
VeriLang expressions JlhsKm and JrhsKm for all m ∈ M , and
determine, for each m ∈ M , whether these representations
are equivalent. ROVER converts both JlhsKm and JrhsKm to
Verilog then deploys a commercial RTL equivalence checker

(EC). This enables the re-use of the RTL generation framework
(see Section V-C) and defers Verilog semantic interpretation
to the commercial tool. Each mapping corresponds to a single
lemma, which the EC either proves (true) or disproves (false).
These results are stored in a lookup table T such that

T (m) =

{
true, if JlhsKm ∼= JrhsKm
false, else.

(11)

The lookup table T , represents the data from which ROVER
learns a condition. The objective is to determine a condition,
ϕ, that can be extrapolated beyond the domain M . To achieve
this ROVER fits a decision tree classifier [46] to determine a
predicate, ϕ, such that

∀m ∈ M, ϕ(m) = T (m). (12)

ROVER uses Python’s sklearn library implementation to fit a
decision tree classifier. The classifier learns based on Boolean

8

lhs term

rhs term

Enumerate
Mappings VeriLang

JlhsKm1 = JrhsKm1

. . .

JlhsKmR = JrhsKmR

Problem
Generation

RTL
EC Lookup Table

m1 → {T, F}
. . .

mR → {T, F}

Classifier
Training

Decision
Tree

Fig. 6. Flow diagram for the automated process of synthesizing rewrite conditions. The output is a decision tree that is translated into a Boolean expression.

(+ w3 w2 s2 (+ w2 w1 s1 a w1 s1 b) w1 s1 c) →
(+ w3 w1 s1 a w2 s2 (+ w2 w1 s1 b w1 s1 c))

w2 < w3

w1 < w3

T(5) s1

s2

T(4) F

T(3)

w1 < w2

F s1

s2

T(2) F

T(1)

ϕ =
(1) (w2 < w3 ∧ w1 < w2 ∧ s1) ∨
(2) (w2 < w3 ∧ w1 < w2 ∧ !s1 ∧ !s2) ∨
(3) (!(w2 < w3) ∧ w1 < w3 ∧ s1) ∨
(4) (!(w2 < w3) ∧ w1 < w3 ∧ !s1 ∧ !s2) ∨
(5) (!(w2 < w3) ∧ !(w1 < w3))

Fig. 7. A decision tree classifier, which determines whether the restricted
associativity of addition rewrite (shown above the tree) is valid (T) or invalid
(F). The right/left branch is taken if the condition is true/false. The si nodes
evaluate to true when si == unsign. The decision tree corresponds to the
sum of product Boolean expression displayed at the bottom of the tree, where
each product corresponds to a particular T leaf.

features (13)-(18).

i = 1 . . .m, si == unsign (13)
i, j, k = 1 . . . n, i ̸= j ̸= k, wi == wj (14)

wi < wj (15)
wi ± 1 < wj (16)
wi + wj < wk (17)
wi + 2wj < wk (18)

These features are relevant for the operators supported in
VeriLang. For example, (15) indicates whether an addition of
wi-bit integers stored in a wj-bit signal will retain a carry-out.
Similarly, (17) relates to a multiplication of a wi-bit integer
and a wj-bit integer stored in a wk-bit signal. Lastly, (18)
relates to a wi-bit integer left-shifted by a wj-bit integer stored
in a wk-bit signal.

Starting from depth one, ROVER incrementally increases
the maximum decision tree depth during the fitting procedure
until the generated classifier satisfies (12), corresponding to

zero classification error on the training set. In Figure 7, we
take a restricted associativity of addition rewrite as an example,
where we force the variables a, b and c to have identical
bitwidth and signage parameters. This rewrite contains H = 3
free bitwidth parameters and G = 2 free signage parameters.
The procedure shown in Figure 6 generates |M | = 83 × 22 =
2048 equivalence checks. The equivalence check results are
used to train a decision tree classifier, which achieves perfect
classification accuracy at depth four. The resulting decision
tree is shown in Figure 7, where each T (F) leaf corresponds
to valid (invalid) rewrite instances.

The decision tree is converted to a Boolean expression in
sum of product form, yielding a ϕ that satisfies (12), where
only the leaves that are classified as true are retained. The sum
of product expression corresponding to the example decision
tree is shown in Figure 7. The minimum depth classifier
satisfying (12) corresponds to a condition with the minimal
number of products. Even for a relatively simple rewrite such
as the unrestricted associativity of addition, there are H = 5
free bitwidth parameters and G = 4 free signage parameters.
As a result, the fitting process described above generates a
depth 9 decision tree classifier.

Via the e-matching process egg searches the e-graph for
expressions matching the left-hand side of a given rewrite,
returning a mapping m. ROVER evaluates the synthesized
cond, ϕ(m), to determine whether the rewrite can be applied
or not. ϕ is guaranteed to be necessary and sufficient if the
mapping returned by the e-matching process m ∈ M . For
example, applying the rewrite described in Figure 7 to an
e-graph corresponding to the Verilog shown in Figure 5,
e-matching returns two maps m1 and m2 corresponding
to the expressions for left1 and left2 respectively.

m1 =


w3 7→ 9
w2 7→ 8
s2 7→ unsign
w1 7→ 8
s1 7→ unsign

m2 =


w3 7→ 9
w2 7→ 9
s2 7→ unsign
w1 7→ 8
s1 7→ unsign

Evaluating the cond, ϕ, shown in Figure 7

ϕ(m1) = false ϕ(m2) = true. (19)

This agrees with the validity statements made in Figure 5.
Since ROVER supports Verilog with signals exceeding 8-

bit integers (the limit of the training data), we extrapolate by
assuming that the predicate, ϕ, learnt on training data is valid
for the entire domain of feasible bitwidths, which is an infinite
space. Even if this assumption is incorrect, false positives,
which we did not observe in practice, are detected by the back-
end verification, described in Section VI, preventing ROVER
from delivering functionally incorrect RTL.

9

V. EXTRACTION AND BACK-END

ROVER applies rewrites to the e-graph until saturation
(defined in Section II-B) or a user defined iteration limit
is reached. The final e-graph contains a set of valid imple-
mentations. The extraction process selects a set of e-classes
to implement and within these e-classes chooses the best
node to implement that particular e-class. ROVER selects the
minimum area design according to a theoretical area metric.

A. Cost Model

The theoretical area metric estimates, per operator, the
number of two-input gates required to build that operator, as a
function of the input and output parameters. For most logical
operators the cost metric is fairly simple, but for the arithmetic
operators we fix a particular architecture from amongst the
various possibilities. These architecture choices are described
in Table I and are representative of operator architectures
implemented by commercial synthesis tools [11]. When at
least one operand is constant we use different constant specific
costs, as logic synthesis propagates constants throughout a cir-
cuit to reduce the number of gates, e.g. constant multiplication.

Having assigned a cost to each operator, the objective is to
minimize the sum of the operator costs. Note that by comput-
ing theoretical costs for the merging operators, SUM, MUXAR
and FMA downstream synthesis optimizations are encoded
directly in the cost model. The theoretical cost metric allows
ROVER to efficiently evaluate alternative designs in the e-
graph. Commercial ASIC high-level synthesis (HLS) tools use
call-outs to logic synthesis engines to evaluate different circuit
designs [2]. Such an approach is more computationally inten-
sive thus limiting design space exploration. In Section VIII,
we evaluate the effectiveness of the theoretical cost metric.

B. Common Sub-Expression Aware Extraction

An accurate circuit area model must correctly account for
common sub-expressions. For example a circuit to generate
(a + b) × (a + b) should be costed as let c = a + b in
c× c. Such a requirement makes extraction a global problem,
since an optimal e-node implementation for a given e-class
is no longer local, instead it may depend on implementation
choices made in other e-classes. The default greedy extraction
method in egg fails to account for common sub-expression
re-use, therefore yielding sub-optimal solutions. The common
sub-expression problem has been solved by casting extraction
as an integer linear programming (ILP) problem [47].

Let N denote the set of all nodes, C denote the set of
all e-classes and E ⊆ N × C be the set of e-graph edges.
Additionally, let Nc be the set of nodes in a particular e-
class c. For each node n ∈ N , we associate some cost,
cost(n), based on the theoretical cost metric and a binary
variable xn ∈ {0, 1}, indicating whether n is implemented in
the final RTL. The objective function of the ILP is described
in (20). The program constraints ensure that we extract a valid
circuit description. The first constraint (21) ensures that at least
one node from all children e-classes of a selected node is
implemented. The final constraint ensures that for all output

expressions found in the set of e-classes S, we generate a
circuit producing that output.

minimize:
∑
n∈N

cost(n)xn subject to: (20)

∀(n, c) ∈ E. xn ≤
∑

n′∈Nc

xn′ (21)

∀c ∈ S.
∑
n∈Nc

xn = 1. (22)

Since e-graphs may contain cycles we include additional
topological sorting variables associated with each class tc. Let
N denote the number of e-classes and C(n) be the e-class
containing node n. The constraint (23) ensures that the output
expression is acyclic.

∀(n, k) ∈ E tC(n) −Nxn − tk ≥ 1−N (23)

Selecting a node n ∈ Nc with child k, i.e. xn = 1, the
constraint simplifies to tc ≥ tk + 1 to get a topologically
sorted result, whereas in the case xn = 0, the constraint is
vacuously satisfied. To solve this ILP problem we deploy the
CBC solver [48]. The ILP solution corresponds to a single
VeriLang expression, that is a minimal circuit implementation
according to the theoretical area metric.

C. Code Generation

Having obtained a VeriLang expression, ROVER translates
this expression into System Verilog to be processed by down-
stream synthesis tools. The translation is implemented as an
e-class analysis, as described in Section II-B. Initializing a
code generation e-graph with a single VeriLang expression,
the e-class analysis is constructed from the leaves upwards
producing a valid System Verilog implementation. To each e-
class we assign a unique signal name, its defined bitwidth and
the System Verilog string that implements the particular oper-
ation in the e-class. Each e-class in the e-graph corresponds
to a single line of functional System Verilog in the output.
Traversing the e-graph, ROVER defines a signal at each e-
class and assigns the stored expression to that signal name.

An advantage of the e-graph approach is that ROVER can
maintain a mapping between user defined signal names and e-
classes throughout the exploration. If such an e-class is present
in the extracted implementation, ROVER overwrites the signal
name of the appropriate e-class in the code generation e-graph.
As a result, the generated System Verilog retains a subset of
the original signal names. For example, if a user defined a
signal two_x, assigning it to the expression x + x, and that
was rewritten as x ≪ 1, then the two_x signal would still
appear in the generated output, with a different assignment.

VI. VERIFICATION

To increase trust and ensure that the input and generated
circuit designs are equivalent, ROVER generates verification
scripts for a commercial EC. In many cases, the EC is able
to prove the functional equivalence of the input and ROVER
generated RTL, without any additional guidance. However,

10

there are instances where the equivalence engine returns an
inconclusive result [16]. Debugging inconclusive proofs can be
time consuming for verification engineers. To provide a robust
verification flow, ROVER uses the egg proof production
feature [35] described in Section II-B, to decompose the
verification problem into a sequence of simple sub-problems.

ROVER uses proof production to extract a sequence of
intermediate VeriLang expressions, differing by a single local
rewrite at each step. The sequence traces a path between the
input and optimized expressions, as shown in Figure 2. Using
the ROVER back-end, each intermediate VeriLang expression
is converted to System Verilog. Each pair in the sequence
is proven equivalent using the EC, constructing the chain
of reasoning that the original and optimized implementations
are equivalent. To further aide proof convergence, ROVER
identifies the specific signal modified in each pair via an
additional lemma. ROVER’s proof sequences can contain
hundreds of intermediate steps. ROVER generates both the
RTL and proof scripts, providing a proof certificate to the
user which can be re-run to verify the RTL.

VII. RESULTS

We used ROVER to optimize a number of industrially
and academically sourced RTL benchmarks, automatically
producing optimized RTL implementations. The original and
optimized designs are synthesized using a commercial syn-
thesis tool for a TSMC 5nm cell library. We also study the
synthesis reports to analyze the effectiveness of ROVER’s dat-
apath clustering optimizations. Using the approach described
in Section VI we verified the functional equivalence of the
original and optimized architectures. We compare each pair of
designs at two points along the area-delay trade-off curve using
logic synthesis. Firstly, we compare at the minimal delay target
at which both designs can meet timing (rounded to the nearest
10 picoseconds), corresponding to the vertical dashed line in
Figure 8. The second comparison point, is at the minimum area
that both designs can fit within (yielding different performance
levels), corresponding to the horizontal dashed line in Figure 8.

The results are summarized in Table III. We will primarily
focus on the area and delay impact since the cell count
and power measurements are proportional to the area in this
work. In Figure 8 we plot the area-delay profile comparing
the original and ROVER optimized designs across the delay
spectrum. We separate the results into two contributions.
Firstly, we show how ROVER can optimize general RTL
benchmarks. Then we demonstrate how ROVER can optimize
different instances of parameterizable RTL, generating a suite
of tailored implementations.

A. Exploiting Datapath Optimizations

The first set of benchmarks in Table III are Intel RTL
designs. The first benchmark is a kernel from the Intel media
module. The initial design was optimized by hand by a hard-
ware design expert. ROVER is able to automatically optimize
the design and achieve comparable results to the manually
optimized RTL, discovering the opportunity to merge two
multiplication arrays into a single array using the “Merge Mult

0.3 0.35 0.4 0.45 0.5 0.55 0.6

100

150

200

Delay (ns)

A
re

a
(µ
m

2
)

Original
ROVER

Fig. 8. Area-delay profiles for the original and ROVER optimized Media
Kernel designs. The dashed grey lines indicate the minimum area and delay
comparison points used in Table III.

Array” rewrite. Studying the reports generated by the synthesis
tool, we can identify the source of the area reduction. The
original design produces four datapath clusters, corresponding
to four carry-propagate adders in the synthesized netlist. By
contrast, the ROVER optimized design produces two datapath
clusters, halving the number of carry-propagate adders in the
generated netlist. These improvements translate to a 14.7%
reduction in minimum achievable delay within a circuit area
35.4% smaller. In the logic synthesis engine, further arithmetic
clustering is prevented because the tool detects datapath leak-
age (as described in Section II-A) due to supposed truncation
in the following System Verilog.

a[8:0]= 9’d256 - {1’b0,b[7:0]};

This analysis, however, is flawed. There is in fact no overflow
as we are dealing with constants. ROVER meanwhile, rewrites
this expression to avoid this supposed datapath leakage. The
Weight Calculation benchmark is a two-stage pipelined design
computing pixel offsets in the graphics pipeline. ROVER
optimizes each stage independently. By rewriting the MUX
tree structure within each stage, using the “Sel Mul” rewrites,
ROVER reduces the number of multipliers instantiated from
five to three. The work of Verma et al. [3] has no ability to
combine multipliers by manipulating the MUX tree structure,
so can not reach these designs generated by ROVER.

The next two benchmarks are taken from [3], where ROVER
generalizes and exceeds the capabilities of this prior work. The
first example is a familiar finite impulse response (FIR) filter
with 8-taps (a 3-tap version is shown in Figure VII-B). Via
the “Arithmetic Logic Exchange” rewrites, ROVER explores
all the alternative arithmetic clustering opportunities extracting
an optimal clustering according to the theoretical cost metric.
In contrast, the logic synthesis engine appears to greedily
cluster all operators. This maintains carry-save representation
throughout, but, we speculate, results in shifting carry-save
representations, incurring additional circuit area overhead. The
ADPCM decoder is a design which approximates a 16×4 mul-
tiplier. For this benchmark, both ROVER and the logic synthe-

11

TABLE III
LOGIC SYNTHESIS RESULTS COMPARING THE ORIGINAL AND ROVER OPTIMIZED DESIGNS UNDER TWO DIFFERENT SYNTHESIS CONSTRAINTS.

FIRSTLY, AT THE MINIMUM DELAY WHICH BOTH DESIGNS COULD MEET AND SECONDLY, CONSTRAINED TO THE MINIMUM AREA THAT BOTH DESIGNS
COULD MEET. DELAY, POWER AND AREA ARE MEASURED IN NS, µW AND µm2 , RESPECTIVELY. WE BOLD THE BEST RESULT FOR EACH METRIC.

Source Benchmarks Min Delay Original ROVER Min Area Original ROVER

Cells Power Area Cells Power Area Delay Delay

Intel Media Kernel 0.35 1759 959.4 167.3 918 427.9 84.2 (-50%) 117.6 0.60 0.30 (-50%)
Weight Calculation 0.25 1353 927.1 75.3 1030 719.4 57.8 (-23%) 39.8 0.84 0.40 (-52%)

Open-Source

FIR Filter Kernel 0.67 8067 2839.0 552.6 7846 1837.9 428.6 (-22%) 209.0 4.40 4.09 (-07%)
ADPCM Decoder [49] 0.12 620 197.4 41.8 556 190.6 38.0 (-09%) 20.8 0.84 0.84 (+00%)
Shifted FMA 0.22 996 502.0 83.7 855 445.1 68.6 (-18%) 54.6 0.85 0.31 (-64%)
Shift Mult 0.30 2864 1356.4 240.1 1317 522.0 88.8 (-63%) 150.7 1.88 0.26 (-86%)
MCM(3,7,21) 0.12 894 161.0 36.6 1015 249.2 51.4 (+40%) 23.3 0.81 0.58 (-28%)
MCM(5,93) 0.12 687 204.8 38.2 778 292.0 53.6 (+40%) 22.4 0.73 0.58 (-21%)
MCM(7,19,31) 0.09 1079 230.0 53.3 1082 236.4 54.1 (+02%) 21.8 0.72 0.72 (-00%)

TABLE IV
ROVER PERFORMANCE AND E-GRAPH SIZE BEFORE/AFTER REWRITING.

Benchmark Init Nodes Final Nodes Extract Runtime (sec)

Media Kernel 45 1312 ILP 10.67
Weight Calc. 107 3036 ILP 165.00
FIR Filter 30 8487 ILP 155.90
ADPCM 17 7290 Greedy 16.64
Shifted FMA 13 26 ILP 0.09
Shift Mult 13 72 ILP 0.13
MCM(3,7,21) 13 17493 ILP 135.00
MCM(5,93) 12 2986 ILP 113.86
MCM(7,19,31) 13 7601 ILP 50.59

sis engine achieve a complete clustering. ROVER manipulates
the MUX tree structure, whilst the logic synthesis tool appears
to add additional operators to facilitate the clustering.

The next two benchmarks demonstrate optimizations
beyond the capabilities of [3]. Shifted FMA exploits
multiplication-manipulating rewrites since logic synthesis
tools will effectively cluster multiplications followed by ad-
ditions to reduce the number of carry-propagate adders. As
in the FIR filter example, the logic synthesis greedily clusters,
such that it must perform a shift of a carry-save representation.
By moving the shift ROVER enables a simpler arithmetic
clustering. Shift Mult is a kernel extracted from a floating
point multiplier that normalizes the product of two denor-
mals. By re-ordering the shift and multiplication operators
a smaller multiplier can be instantiated, reducing the circuit
area. In contrast, the logic synthesis tool does not manipulate
the higher-level dataflow graph to explore the interaction of
arithmetic and logical operators, and does not discovers this
opportunity. These ROVER optimizations are not reachable
by [3], since their tool did not explore the interaction between
multiplication and logic.

The “Constant Expansion” rewrites are valuable for the
MCM benchmarks, where for MCM(a1,a2,...,an) we ask
ROVER to generate optimized RTL producing {a1 × x, a2 ×
x, ..., an × x}. MCM(3,7,21) is an example taken from [19].
ROVER is able to match the operator count from [19],
extracting a design that uses three addition/subtraction op-
erators by sharing intermediate results. Such an architecture
serializes the construction of 3 × x and 21 × x, which at
low delay targets introduces an area penalty, because the

original architecture can compute each result in parallel with
no dependency. However, from the ROVER generated RTL
a smaller circuit can be synthesized, as shown in Table III.
For the MCM(5,93) benchmark ROVER is similarly able to
use just 3 adders, matching the minimal adder count, and
showing similar synthesis results to MCM(3,7,21). For the
MCM(7,19,31) benchmark1 ROVER recovers the standard
CSD solution using 4 adders and matching the synthesis tool
(hence the identical synthesis results). The minimal solution
uses 3 adders, but is unreachable using ROVER’s existing
rewrites as it relies upon representing 19 = (31 + 7) ≫ 1.

In this work, we used the logic synthesis tool with all
datapath optimizations enabled to provide a baseline. However,
this baseline includes state-of-the-art datapath optimization
techniques. If we disable these optimizations we get an
alternative baseline that highlights the significance of the
datapath optimizations built-in to the logic synthesis and those
performed by ROVER. On average, with datapath optimization
disabled the logic synthesis tool produced circuits 17.6% larger
than with datapath optimization enabled, and 55.8% larger
than the ROVER generated circuits. Furthermore, in 5 out
of the 9 benchmarks, disabling datapath optimization led to
timing violations in the synthesized netlists.

B. Bitwidth Dependent Architectures

In this section we consider parameterizable RTL designs.
As the complexity of integrated circuits grows, reusable and
parameterizable hardware has become increasingly popular
amongst engineers and architects as it facilitates faster devel-
opment. Each instance of this RTL will be synthesized using
the same architecture. By contrast, ROVER automatically
optimizes each instance generating a bespoke component that
is optimized for a given instance.

To investigate whether ROVER can usefully adapt the ar-
chitecture depending on parameter values, we considered a 3-
tap FIR filter with parameterizable input bitwidths. We passed
ROVER each design, increasing the input bitwidth parameter
from 4 to 64 and allowed ROVER to explore the design space
for each parameterization. As shown in Figure 9, ROVER
extracted one of three distinct architectures. In the FIR kernel

1Thank you to the anonymous reviewer for providing this benchmark.

12

(a) Architecture 0 {4,8}

(b) Architecture 1 {12,...,24}

(c) Architecture 2 {28,...,64}

Fig. 9. Simplified FIR filter data-flow graphs representing optimal architec-
tures for different choices of the input bitwidth parameter p and shift bitwidth
parameter q. Edge labels indicate the operator index and bitwidth in square
brackets. The sets in curly braces are bitwidths for which that architecture is
optimal. In these graphs 2S and 3S are constant multiples of S.

testcase the benefits of clustering consecutive additions into
a SUM node compete with the additional shift operations
required to facilitate the merging. Note that Architecture 0 uses
four carry-propagate adders, Architecture 1 uses two carry-
propagate adders, whilst Architecture 2 uses only a single
carry-propagate adder at the expense of additional shifting
logic. ROVER automatically detects the point at which this
tradeoff becomes favourable.

For each bitwidth, we synthesized Architecture 0 and the
distinct ROVER generated RTL (which implements either
Architecture 0, 1 or 2) at the minimum delay target that both
can meet. Figure 10 plots synthesis results at each bitwidth
comparing against the baseline, Architecture 0 (Figure 9).
The architectural selections made by ROVER reduce the
circuit area by up to 30% and by 15% on average. For
4-bit and 8-bit designs, ROVER increases the circuit area
despite deploying the same architecture as the baseline. This
is due to synthesis noise, an effect quantified precisely in [10].
Using ROVER to automatically generate an optimized design
for each parameterization allows engineers to avoid manual

8 16 24 32 40 48 56 64

−30

−20

−10

0

10

Bitwidth

A
re

a
C

ha
ng

e
(%

)

Arch 0
Arch 1
Arch 2

Fig. 10. Synthesis results for the 3-tap FIR kernel at a range of different
bitwidths. We synthesized both the ROVER generated RTL and original RTL
(Architecture 0) with a minimum delay objective. We plot the relative change
in area and delay against the baseline.

customization without sacrificing IP quality.

C. Performance

Table IV presents benchmark properties and optimization
statistics. For the ILP extraction method, we set a timeout
limit of 120 seconds and in all the longer running benchmarks,
ILP solving dominated the runtime. Note that the number
of ILP constraints is proportional to the number of nodes
in the final e-graph. Whilst ILP scalability is a concern,
the modular nature of RTL design ensures that we rarely
meet large scale problems. We resorted to the faster greedy
egg extraction method [28] for the ADPCM decoder since
there was no scope to exploit common sub-expressions in
this benchmark. Extraction method selection is a user defined
option for ROVER. We note that the final e-graph size is not
well correlated with the number of operators in the initial e-
graph. The size of the final e-graph depends more upon the
structure of the initial design.

Highlighting the importance of the verification flow, for the
Media Kernel and Shift Mult benchmarks, the EC returned
inconclusive results, even when running for several hours,
when only given the original and ROVER generated RTLs.
Using the ROVER generated problem decomposition, the
correctness of the generated RTL could be proven in seconds.
For all other benchmarks presented here, the EC could prove
the equivalence of the original and ROVER generated RTLs
without the problem decomposition described in Section VI.

VIII. COST METRIC EVALUATION

The primary objective of the theoretical cost metric is to
steer the extraction process in order to generate an optimized
architecture. Previously, we evaluated the noise floor in logic
synthesis to understand inherent variability of such a com-
plex tool [10]. We used an approach known as performance
fuzzing [50], [51], that differs from the more traditional
application of fuzzing to automated bug detection [50]. We

13

−60 −40 −20 0

−80

−60

−40

−20

0

FIR

Media

ADPCM

FMA

ShiftMult

Weight

Estimated Change (%)

A
ct

ua
l

C
ha

ng
e

(%
)

Fig. 11. ROVER’s predicted percentage change vs. the actual percentage
change based on logic synthesis at the minimum delay target. Points above/be-
low the diagonal indicate that ROVER over/under-predicts the area reduction.
We omit the MCM results. Red lines represent the synthesis noise window.

randomly applied non-functional mutations to designs, for
example renaming a variable in RTL, and observed up to a
15% difference in logic synthesis area. ROVER’s cost model
cannot be expected to capture this. The variability is equally
likely to benefit ROVER as it is to be detrimental for the results
shown in Table III. However, the overall benefit demonstrated
by ROVER is statistically significant and explainable.

To evaluate the accuracy of the cost model, we plot the
ROVER estimated circuit area reduction against the actual
change seen in the logic synthesis results at the minimum
delay target in Figure 11. The graph shows that ROVER both
under- and over-estimates the benefit of its optimizations but
does provide a reasonable indicator. The ADPCM and Weight
benchmarks exhibit significant over-estimates. In the ADPCM
example, ROVER manipulates the MUX tree structure of the
design to enable arithmetic clustering, which the synthesis tool
exploits successfully. Analyzing the datapath extraction report
generated during synthesis of the original ADPCM design, we
see that the synthesis tool is already capable of manipulating
this design to cluster the arithmetic operations limiting the
observable benefit of ROVER’s optimizations. For the Weight
Calculation benchmark, ROVER reduces the number of multi-
pliers instantiated by two. In the original design, the synthesis
tool includes these multipliers in a datapath cluster, therefore
the circuit area benefit is less than the full multiplier area cost.
The omitted MCM benchmarks highlight the limitations of an
area only model, as the benefit depends upon the delay target.

IX. CONCLUSION

This paper presents methods to exploit the properties of
the e-graph data structure, finding an ideal application in
the RTL optimization problem. E-graphs greatly simplify
this problem by avoiding any need to specify an order in
which to apply transformations whilst maintaining bit identical
functionality. The e-graph’s foundations rest on functional
equivalence principles, which are crucial in hardware design
where the correctness requirements are higher than most

other domains. By defining a set of parameterized bitvector-
manipulating transformations, learnt from Intel engineers, we
have matched human-engineered designs in terms of circuit
quality. The productivity and circuit quality benefits that stem
from automated rewriting techniques allow engineers to write
behavioural, less bug prone designs and leave the optimization
to a tool that can provide verified implementations.

Future work will seek to address delay optimization; this
will allow ROVER to select different arithmetic operator ar-
chitectures depending on the timing budget available. We will
also address the limitations of the rewrite condition synthesis
flow, which currently relies upon an unproven extrapolation
assumption. We believe the integration of a theorem prover
such as ACL2 [52] will allow us to prove this assump-
tion. For extraction, we will resolve the ILP bottleneck in
ROVER’s current implementation, by leveraging the outcome
of a community effort to improve common sub-expression
aware extraction2. Lastly, as noted in the MCM discussion,
there are scenarios in which bespoke tools yield optimal
solutions more efficiently. Through dynamic rewrites, we will
provide an interface to such tools.

ACKNOWLEDGMENT

The authors would like to thank Yann Herklotz for the
fuzzing tool and Bryan Tan who contributed useful rewrites.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-
level synthesis tool for FPGA-based processor/accelerator systems,”
Transactions on Embedded Computing Systems, vol. 13, no. 2, 2013.

[2] Cadence, “Stratus HLS,” 2023. [Online]. Available:
https://www.cadence.com/en US/home/tools/digital-design-and-signoff/
synthesis/stratus-high-level-synthesis.html

[3] A. K. Verma, P. Brisk, and P. Ienne, “Data-flow transformations to
maximize the use of carry-save representation in arithmetic circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 10, pp. 1761–1774, 2008.

[4] S. Xydis, K. Pekmestzi, D. Soudris, and G. Economakos, “Compiler-in-
the-loop exploration during datapath synthesis for higher quality delay-
area trade-offs,” ACM Transactions on Design Automation of Electronic
Systems, vol. 18, no. 1, 2012.

[5] D. S. Harish Ram, M. C. Bhuvaneswari, and S. S. Prabhu, “A novel
framework for applying multiobjective GA and PSO based approaches
for simultaneous area, delay, and power optimization in high level
synthesis of datapaths,” VLSI Design, vol. 2012, 2012.

[6] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space
exploration of datapaths during high-level synthesis,” IEEE Transactions
on Evolutionary Computation, vol. 10, no. 3, 2006.

[7] R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman,
S. Godil, and B. Catanzaro, “PrefixRL: Optimization of Parallel Prefix
Circuits using Deep Reinforcement Learning,” in Proceedings - Design
Automation Conference, vol. 2021-December, 2021.

[8] K. D. Cooper and L. Torczon, Engineering a compiler: Second edition.
Elsevier, 2011.

[9] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: a new paradigm for arithmetic circuit design,” in Proceedings
-Design, Automation and Test in Europe, DATE, 2008.

[10] S. Coward, G. A. Constantinides, and T. Drane, “Automatic Datapath
Optimization using E-Graphs,” in IEEE 29th Symposium on Computer
Arithmetic (ARITH). IEEE, 9 2022, pp. 43–50.

[11] R. Zimmermann, “Datapath synthesis for standard-cell design,” in 19th
IEEE Symposium on Computer Arithmetic, 2009.

[12] Synopsys, “Coding Guidelines for Datapath Synthesis,” Synopsys,
Mountain View, Tech. Rep., 12 2019.

2https://github.com/egraphs-good/extraction-gym

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

14

[13] C. Seger, “Voss II,” Chalmers, 2023. [Online]. Available: https:
//github.com/TeamVoss/VossII

[14] J. Pope and C.-J. H. Seger, “Bifröst: Creating Hardware With Building
Blocks,” in 2023 Forum on Specification & Design Languages (FDL),
2023, pp. 1–8.

[15] E. Ustun, I. San, J. Yin, C. Yu, and Z. Zhang, “IMpress: Large Integer
Multiplication Expression Rewriting for FPGA HLS,” in 2022 IEEE
30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2022, pp. 1–10.

[16] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to RTL equivalence checking,” in Proceedings -Design,
Automation and Test in Europe, DATE, 2009.

[17] S. Coward, E. Morini, B. Tan, T. Drane, and G. Constantinides,
“Datapath Verification via Word-Level E-Graph Rewriting,” in Formal
Methods in Computer-Aided Design, 8 2023. [Online]. Available:
http://arxiv.org/abs/2308.00431

[18] C. Yu and M. Ciesielski, “Automatic word-level abstraction of datap-
ath,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), 2016, pp. 1718–1721.

[19] O. Gustafsson, “A difference based adder graph heuristic for multiple
constant multiplication problems,” in IEEE International Symposium on
Circuits and Systems, 2007, pp. 1097–1100.

[20] R. I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers,” IEEE Transactions on Circuits and Systems, vol. 11,
1996.

[21] M. Kumm, “Multiple Constant Multiplication Optimizations for Field
Programmable Gate Arrays,” Ph.D. dissertation, Universität Kassel,
Kassel, Germany, Wiesbaden, 2016.

[22] M. D. Ercegovac and T. Lang, Digital arithmetic. Elsevier, 2004.
[23] F. De Dinechin, S. I. Filip, M. Kumm, and A. Volkova, “Towards

Arithmetic-Centered Filter Design,” in Proceedings - Symposium on
Computer Arithmetic, vol. 2021-June, 2021.

[24] M. Kumm, “Optimal constant multiplication using integer linear pro-
gramming,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 5, 2018.

[25] R. Garcia and A. Volkova, “Toward the Multiple Constant Multiplication
at Minimal Hardware Cost,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 70, no. 5, 2023.

[26] N. Fiege, M. Kumm, and P. Zipf, “Bit-Level Optimized Constant Mul-
tiplication Using Boolean Satisfiability,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 71, no. 1, pp. 249–261, 2024.

[27] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford University, 1980.

[28] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha,
“Egg: Fast and extensible equality saturation,” in Proceedings of the
ACM on Principles of Programming Languages, vol. 5, no. POPL, 2021.

[29] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new
approach to optimization,” in ACM SIGPLAN Notices, vol. 44, no. 1.
Association for Computing Machinery, 2009.

[30] R. Joshi, G. Nelson, and K. Randall, “Denali: A goal-directed super-
optimizer,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). Association
for Computing Machinery, 2002.

[31] L. De Moura and N. Bjørner, “Efficient E-matching for SMT solvers,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4603
LNAI, 2007.

[32] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover for
program checking,” Journal of the ACM, vol. 52, no. 3, 2005.

[33] S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization phase-
ordering problem using machine learning,” in ACM SIGPLAN Notices,
vol. 47, no. 10, 2012.

[34] S. Coward, G. A. Constantinides, and T. Drane, “Abstract Interpretation
on E-Graphs,” 3 2022. [Online]. Available: https://arxiv.org/abs/2203.
09191

[35] O. Flatt, S. Coward, M. Willsey, Z. Tatlock, and P. Panchekha, “Small
Proofs from Congruence Closure,” in Formal Methods in Computer-
Aided Design, 9 2022.

[36] L. De Moura and N. Bjørner, “Z3: An efficient SMT Solver,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4963
LNCS. Springer, 2008.

[37] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Au-
tomatically improving accuracy for floating point expressions,” ACM
SIGPLAN Notices, vol. 50, no. 6, pp. 1–11, 2015.

[38] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova, D. Gross-
man, and Z. Tatlock, “Synthesizing structured CAD models with equality
saturation and inverse transformations,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 31–44.

[39] E. Ustun, C. Yu, and Z. Zhang, “Equality Saturation for Datapath
Synthesis: A Pathway to Pareto Optimality,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC), 2023.

[40] A. Beaumont-Smith and C.-C. Lim, “Parallel prefix adder design,” in
Proceedings - IEEE Symposium on Computer Arithmetic, 2001, pp. 218–
225.

[41] I. Koren, Computer arithmetic algorithms. AK Peters/CRC Press, 2018.
[42] D. Thomas and P. Moorby, The Verilog® hardware description lan-

guage. Springer Science & Business Media, 2008.
[43] G. Steele, Common LISP: the language. Elsevier, 1990.
[44] M. Popoloski, “Slang,” 2023. [Online]. Available: https://github.com/

MikePopoloski/slang
[45] A. Solar-Lezama, “Program Synthesis by Sketching,” Ph.D. dissertation,

2009.
[46] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4, no. 4.
[47] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES:

Sum-product optimization via relational equality saturation for large
scale linear algebra,” Proceedings of the VLDB Endowment, vol. 13,
no. 11, 2020.

[48] J. Forrest, T. Ralphs, H. G. Santos, S. Vigerske, J. Forrest,
L. Hafer, B. Kristjansson, jpfasano, EdwinStraver, M. Lubin,
Jan-Willem, rlougee, jpgoncal1, S. Brito, h-i-gassmann, Cristina,
M. Saltzman, tosttost, B. Pitrus, F. MATSUSHIMA, and to-st,
“coin-or/Cbc: Release releases/2.10.10,” 4 2023. [Online]. Available:
https://zenodo.org/record/7843975

[49] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proceedings of the Annual International Symposium on
Microarchitecture, 1997.

[50] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” 2020.

[51] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li, M. Heule, and B. Parno,
“Mariposa: Measuring SMT Instability in Automated Program Verifi-
cation,” in Proceedings of the 23rd Conference on Formal Methods in
Computer-Aided Design – FMCAD. TU Wien Academic Press, 2023,
pp. 178–188.

[52] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 375, no. 2104, 2017.

Samuel Coward received a BSc in Mathematics in
2018 and an MPhil in Scientific Computing in 2019,
from the University of Cambridge. He is currently
studying for a PhD in Electrical and Electronic
Engineering at Imperial College London, whilst also
working as a Graphics Hardware Engineer at Intel
Corporation. Samuel’s research focuses on automat-
ing RTL design and program analysis techniques to
increase chip design productivity and quality.

George A. Constantinides (S’96, M’01, SM’08)
received the Ph.D. degree from Imperial College
London in 2001. Since 2002, he has been with
the faculty at Imperial College London, where he
is currently Professor of Digital Computation and
Associate Dean of Engineering. He has served as
chair of the FPGA, FPL and FPT conferences.
He currently serves on several program commit-
tees and has published over 200 research papers in
peer refereed journals and international conferences.
Prof. Constantinides is a Senior Member of the IEEE

and a Fellow of the British Computer Society.

https://github.com/TeamVoss/VossII
https://github.com/TeamVoss/VossII
http://arxiv.org/abs/2308.00431
https://arxiv.org/abs/2203.09191
https://arxiv.org/abs/2203.09191
https://github.com/MikePopoloski/slang
https://github.com/MikePopoloski/slang
https://zenodo.org/record/7843975

15

Theo Drane started working for the Datapath con-
sultancy, Arithmatica, in 2002 after a Mathematics
degree from the University of Cambridge, UK. He
moved to Imagination Technologies in 2005, where
he subsequently founded their Datapath team while
studying for a PhD at Imperial College London’s
EEE Department. In December 2018, after a stint
within Cadence Design System’s Logic Synthesis
division, Genus, he joined Intel’s Graphics Group.
His applied research Numerical Hardware & Sys-
tem Level Design Group focuses on all aspects of

architecting, implementing, optimizing and verifying math intensive hardware.

	Introduction
	Background
	Datapath Synthesis
	E-Graphs

	Intermediate Representation
	Rewrites
	Specifying Rewrites
	Synthesizing Rewrite Conditions

	Extraction and Back-End
	Cost Model
	Common Sub-Expression Aware Extraction
	Code Generation

	Verification
	Results
	Exploiting Datapath Optimizations
	Bitwidth Dependent Architectures
	Performance

	Cost Metric Evaluation
	Conclusion
	References
	Biographies
	Samuel Coward
	George A. Constantinides
	Theo Drane

