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Abstract—This work addresses the challenge of adapting dy-
namic deadline requirements for LiDAR object detection deep
neural networks (DNNs). The computing latency of object detec-
tion is critically important to ensure safe and efficient navigation.
However, state-of-the-art LiDAR object detection DNNs often
exhibit significant latency, hindering their real-time performance
on resource-constrained edge platforms. Therefore, a tradeoff
between detection accuracy and latency should be dynamically
managed at runtime to achieve optimum results.

In this paper, we introduce VALO (Versatile Anytime algo-
rithm for LiDAR Object detection), a novel data-centric approach
that enables anytime computing of 3D LiDAR object detection
DNNs. VALO employs a deadline-aware scheduler to selectively
process input regions, making execution time and accuracy
tradeoffs without architectural modifications. Additionally, it
leverages efficient forecasting of past detection results to mitigate
possible loss of accuracy due to partial processing of input.
Finally, it utilizes a novel input reduction technique within
its detection heads to significantly accelerate execution without
sacrificing accuracy.

We implement VALO on state-of-the-art 3D LiDAR object
detection networks, namely CenterPoint and VoxelNext, and
demonstrate its dynamic adaptability to a wide range of time
constraints while achieving higher accuracy than the prior state-
of-the-art. Code is available at github.com/CSL-KU/VALO.

Index Terms—LiDAR, 3D object detection, Anytime computing

I. INTRODUCTION

Perception plays a vital role in autonomous vehicles. Its pri-
mary objective is to identify and categorize objects of interest
(e.g., cars, pedestrians) within the operational environment.
While humans excel at this task effortlessly, it presents a
significant challenge for computers. For object detection in
three dimensional (3D) space, LiDAR based object detection
deep neural networks (DNNs) [1]–[3] have emerged as an ef-
fective approach as they can provide highly accurate position,
orientation, size, and velocity estimates.

In autonomous vehicles, however, the object detection re-
sults must not only be accurate but also timely, as outdated
results are of little use in the path planning of a fast-moving
autonomous vehicle. Unfortunately, LiDAR object detection
DNNs are often computationally expensive and thus exhibit
significant latency, especially when running on resource-
constrained embedded computing platforms. Moreover, they
lack the ability to dynamically trade execution time and
accuracy, which makes it difficult to adapt to dynamically
changing real-time requirements in autonomous vehicles [4],
[5]. For example, when a vehicle moves at a high speed, fast

detection may be more important than high accuracy (e.g.,
correct object classification) in order to avoid collision in a
timely manner. On the other hand, when the vehicle moves
slowly in a complex urban environment, accurate detection
may be more important than fast detection for safe navigation.

To enable schedulable trade-offs between accuracy and
latency in perception, prior research efforts have focused on
vision-based DNNs [6]–[10]. Model-level innovations such
as early-exit architectures [9] have been widely adopted,
where these models incorporate additional output layers at
intermediate stages, allowing the network to make predictions
before the full depth of the model is utilized. Nonetheless,
these enhancements come with a trade-off. The repeated
activation of intermediate output layers at several phases
leads to a significant increase in computational overhead.
This issue is particularly pronounced in applications requiring
complex detection heads capable of producing granular object-
level predictions, such as LiDAR based object detection and
segmentation tasks. Recently, AnytimeLidar [11] introduced a
capability to bypass certain components and detection heads
in a LiDAR object detection DNN to enable latency and
accuracy trade-offs at runtime. However, such model-level
improvements may not work on different model architectures,
which are constantly evolving.

In this work, we present VALO (Versatile Anytime al-
gorithm for LiDAR Object detection), a novel data-centric
approach to enable anytime computing in processing LiDAR
based object detection DNNs. VALO selectively processes
subsets of periodically given input data with the aim of
maximizing detection accuracy while respecting the deadline
constraint. It implements a deadline-aware scheduler that
splits the detection area into regions and schedules them to
reduce computational costs while considering the accuracy
impacts. To minimize potential accuracy loss, VALO employs
a lightweight forecasting algorithm to predict the current poses
of previously detected objects based on a simple physics
model. The forecasted objects are merged with the DNN
detected ones through non-maximum suppression to improve
overall accuracy. In addition, VALO implements a novel input
reduction technique within its detection heads. This technique
reduces the input volume to be processed by a factor of ten for
the convolutions responsible for delivering object attributes.
Importantly, it accomplishes this without any loss in accuracy
by eliminating unnecessary computation in the areas where no
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Fig. 1: General LiDAR object detection DNN architecture.

object prediction exists.
We have implemented VALO on top of two state-of-

the-art LiDAR object detection DNNs [1], [3] and evalu-
ated them using a large-scale autonomous driving dataset,
nuScenes [12]. We utilized the Jetson AGX Xavier [13] as
the testing platform, a commercially available off-the-shelf
embedded computing platform. The results demonstrate that
VALO enables the anytime capability across a wide spectrum
of timing constraints, while achieving higher accuracy across
all deadline constraints compared to the baseline lidar object
detection DNNs [1], [3] and a prior anytime approach [11].

In summary, we make the following contributions:
• We propose a novel data scheduling framework for Li-

DAR object detection DNNs that enables latency and
accuracy tradeoffs at runtime.

• We apply our approach to two state-of-the-art LiDAR
object detection DNNs and show its effectiveness and
generality on a real platform using a representative au-
tonomous driving dataset.

The rest of the paper is organized as follows: We provide
the necessary background in Section II and present motivation
in Section III. We describe our approach in Section IV and
present the evaluation results in Section V. After discussing
related work in Section VI, we conclude in Section VII.

II. BACKGROUND

In this section, we provide the necessary background on
LiDAR object detection DNNs and anytime computing.

A. LiDAR Object Detection DNNs

The primary objective of LiDAR based object detection is
to identify objects of interest within the detection area by
processing input point clouds. Many LiDAR based object de-
tection DNNs have been proposed [1]–[3], some are optimized
for latency, while others are optimized for accuracy.

Figure 1 illustrates the general workflow of LiDAR ob-
ject detection DNNs. Their encoders are designed to extract
features from the transformed input (e.g., voxels) with their
backbone(s), typically by employing convolutional neural net-
works. An encoder can have a 3D backbone that applies sparse
convolutions on 3D data, a 2D backbone similar to those used
in vision object detection DNNs, or both. When both are used,
the sparse output of the 3D backbone is projected to a bird-eye
view (BEV) pseudo-image to turn it into a dense tensor so the
2D backbone can process it with dense convolutions.

After the encoder operation, the produced features are
further processed by the decoder, which consists of one or

more detection heads to output the 3D bounding boxes of the
identified objects. When multiple detection heads are used, the
targeted object classes are separated into groups depending
on their size, and each detection head becomes responsible
for one group [14]. Within each detection head, a series
of convolutions is applied to infer various object attributes
such as location, size, and velocity. Ultimately, non-maximum
suppression or max pooling is used to extract the final results
from predicted candidates.

B. Sparse Convolution

A point cloud P is represented as an array of 3D point
coordinates (x, y, z), each accompanied by attributes such as
LiDAR return intensity i.

P = {(x1, y1, z1, i1), . . . , (xn, yn, zn, in)} (1)

Unlike 2D images, the indexes in the array of points do
not inherently establish neighborhood relationships, creating
a challenge for processing them with commonly used dense
convolutional neural networks operating on dense tensors. To
address this issue, point clouds are transformed into alternative
representations, such as a 3D grid of fixed-size voxels created
by grouping spatially nearby points [1], [3]. These voxels
can be represented as a 3D dense tensor and processed
by 3D convolutions. However, this approach is avoided due
to the significant computational overhead it incurs. Instead,
voxels are represented as a sparse tensor and processed by
sparse convolutions [15]. A sparse tensor V can be defined
in coordinate list (COO) format, where each coordinate has
a corresponding array of values. These values represent the
features of each coordinate.

Sparse convolutions can yield the same result as dense con-
volutions while operating on sparse tensors. If the input tensor
is significantly sparse, as in LiDAR point clouds, this saves a
bulk of computational time compared to dense convolutions.
For this reason, state-of-the-art LiDAR object detection DNNs
commonly employ sparse convolutions. Sparse convolutions
apply given filters on all coordinates where an input coordinate
overlaps with any part of the filter.

It is important to note that a sparse convolution operation
can generate a differently shaped output tensor, depending on
the shape of the input tensor, as shown in Figure 2. As we
will discuss in Section IV-C, this introduces input-dependent
timing variability in processing sparse convolutions.



Fig. 2: Two sparse convolution examples applying 3x3 filters.
Blue squares indicate voxels. Red markings indicate the coor-
dinates where the filter is applied.

C. Anytime Computing

Anytime algorithms refer to a class of algorithms that can
trade deliberation time for the quality of the results [16]. An
anytime algorithm is capable of delivering a result whenever
it is requested, and the quality of the result improves as the
algorithm dedicates more time to finding the solution. For ex-
ample, a path planning algorithm that progressively enhances
its solution by continuously refining the path it has discovered
can be considered as an anytime algorithm [16]. In real-time
systems, anytime algorithms are highly valuable for meeting
dynamically changing deadlines as they can effectively trade-
off between latency and quality.

Contract algorithms are a special type of anytime algorithms
that require a predetermined time budget to be set prior to their
activation [17]. They are non-interruptible and deliver results
within the time budget, unlike arbitrarily interruptible anytime
algorithms. In deadline-driven real-time systems, such as self-
driving cars, contract algorithms can be used to effectively
trade execution time for accuracy. Providing a framework to
transform a LiDAR object detection DNN into a contract
algorithm to make it deadline-aware is the primary focus of
our work.

III. MOTIVATION

To understand the requirements of an effective latency and
accuracy trading approach, we profile two representative Li-
DAR object detection DNNs in detail on Jetson AGX Xavier.

Table I presents the execution time statistics for PointPil-
lars [2], a well-known LiDAR object detection DNN recog-
nized for its low latency. We observe that approximately 79%
of the total processing time is consumed by its 2D backbone
and detection heads. Therefore, a latency-accuracy tradeoff
approach targeting these two stages can yield satisfactory
results, as explored in a recent prior work [11].

However, when state-of-the-art LiDAR object detection
DNNs are considered, an approach that only focuses on the
2D backbone and detection heads might not be efficient.

Table II shows the execution time breakdown of Center-
Point [1], a recent 3D LiDAR object detection DNN that
achieves higher detection accuracy than PointPillars [2]. Note
that it spends significantly more time on the 3D backbone
stage, accounting for 41% of the total execution time.

TABLE I: Execution time (ms) statistics of PointPillars

Stage Min Average 99th Perc. Percentage
Load to GPU 7.99 9.59 10.96 7%
Feature Transform 5.75 6.10 6.42 4%
3D Backbone 5.80 7.07 7.75 5%
Project to BEV 3.13 3.90 4.66 3%
2D Backbone 53.50 53.73 54.15 37%
Detection Heads 56.85 61.27 64.53 44%
End-to-end 136.77 142.07 146.06 100%

TABLE II: Execution time (ms) statistics of CenterPoint.

Stage Min Average 99th Perc. Percentage
Load to GPU 8.18 9.78 11.28 3%
Feature Transform 3.62 3.83 3.94 1%
3D Backbone 53.64 93.09 134.27 41%
Project to BEV 4.20 4.37 5.60 2%
2D Backbone 70.95 71.24 71.45 21%
Detection Heads 100.91 104.69 106.63 32%
End-to-end 245.83 287.66 329.01 100%

Although adopting sparse convolutions partially alleviates
the computational burden of 3D backbone [15], [18], it still
demands significant computational resources. Thus, the 3D
backbone becomes another computational bottleneck, which
must be addressed when trading accuracy for lower latency.

One simple approach for achieving latency-accuracy trade-
off is training multiple models with varying input granularity
(i.e., resolutions) and dynamically switching between them.
However, this approach can be cumbersome during runtime
due to the overhead involved in model switching (in terms of
memory overhead and switching latency). It also necessitates
training and fine-tuning a large number of models to achieve
finely tuned tradeoffs.

Instead, we focus on developing a single model that can
deliver the highest possible accuracy when there is flexibility
with the deadline, while intelligently adjusting input data when
the deadline becomes more stringent, as will be discussed in
the next section.

IV. VALO

In this section, we introduce VALO, a scheduling frame-
work that transforms a LiDAR object detection DNN into a
non-interruptable anytime (contract) algorithm. VALO allows
detection results to be produced in time for a gamut of deadline
requirements, with a controlled tradeoff in accuracy.

A. Overview

The fundamental concept underpinning VALO’s design is
the scheduling of data to facilitate tradeoffs between time and
accuracy rather than scheduling the architectural components
of the targeted DNN. This design choice makes VALO ver-
satile, as it is not constrained by the architectural specifics
of the LiDAR object detection DNNs. Figure 3 illustrates
VALO’s three main components—scheduling, forecasting, and
detection head optimization—highlighted in green, and their
positions within the DNN pipeline. The region drop compo-
nent is considered a part of scheduling.



Fig. 3: Overview of VALO.

First, VALO’s scheduler comes into play after the DNN has
completed the feature transformation stage. This allows it to
make scheduling decisions at the voxel level instead of the
raw point clouds, enabling more accurate predictions of the
timing for the 3D backbone stage.

During the scheduling phase, VALO decides which regions
of the input data will be processed to maximize detection
accuracy within the deadline constraint. Once a decision is
made, the data outside the selected regions is filtered out,
and the remaining data is forwarded to the subsequent stage
(Section IV-B).

For effective region scheduling, VALO predicts execution
times of subsequent network stages of each possible region
selection (Section IV-C). VALO also employs a mechanism to
recover from execution time mispredictions (Section IV-D).

Next, while filtering part of the input can reduce latency,
it can also negatively impact accuracy. To mitigate potential
accuracy loss, VALO employs a forecasting mechanism that
updates the positions of previously detected objects to the
current time of execution. This operation is performed mostly
in parallel while the DNN executes. After the detection heads
generate object proposals, these proposals are combined with
the list of forecasted objects. The combined list is then
subjected to non-maximum suppression, which yields the final
detection results (Section IV-E).

Lastly, to further improve efficiency, we introduce a novel
optimization technique for efficient detection head processing.
This optimization technique eliminates the significant amount
of redundant computation in detection heads without compro-
mising detection accuracy (Section IV-F).

B. Region Scheduling

The scheduler decides which subset of input data (voxels)
should be processed to meet a given deadline while maximiz-
ing accuracy. Intuitively, the less data it selects, the less time
it takes for the DNN to process it, albeit at the expense of
reduced accuracy. To make the scheduling problem tractable,
we partition the fixed-size detection area into equally sized
chunks along the X (width) axis, which we refer to as regions.

Figure 4 illustrates two examples of partitioning a 108×108
m2 detection area into 18 vertical regions. In Figure 4a, the
input point cloud is spread to all 18 regions. In contrast,
Figure 4b shows that only a portion of the regions, 8 out
of 18, contain points due to the structure of the environment
scanned by LiDAR. In scenarios with empty regions, the
scheduler skips all empty regions located before the first non-
empty region and after the last non-empty region. As a result,

(a) Partitioning example 1 (b) Partitioning example 2

Fig. 4: Two examples of how the region scheduler partitions
the detection area into regions.

partitioning the input in the X axis for some inputs allows for
latency reduction without sacrificing accuracy in later stages.

To determine which regions to process, we employ a
greedy policy that sequentially selects the maximum number
of input regions while adhering to the deadline constraint.
Consequently, all regions are treated with equal priority. Fig-
ure 5 provides an illustrative example of the proposed region
scheduling algorithm, which selects regions for processing
over three consecutive inputs. For each input, the scheduler
decides the regions to be scheduled for processing—starting
from the next to the last of the previously scheduled regions—
which can meet the given deadline.

Algorithm 1 outlines our proposed scheduling algorithm.
Initially, the scheduler counts the number of voxels in each
region and returns the list of schedulable regions (RS), and
their voxel counts (CS) (line 8).

The scheduler then reorders the obtained list so the selec-
tions start from the first non-empty region coming after rlast
(lines 9). Subsequently, candidate region selections are iterated
from largest to smallest until one that meets the deadline is
identified (lines 10-18).

Once scheduling is completed, input voxels falling outside
the selected regions (Rsel) are filtered, and the remaining
voxels are forwarded to the 3D backbone as input. If the sub-
sequent stage employs dense convolutions, the sparse output
of the 3D backbone is then converted to a dense tensor where
the regions are placed following the order in Rsel.

Our scheduling method brings three advantages. Firstly,
selecting adjacent regions maintains spatial continuity and pro-
cesses the input with minimal fragmentation, thereby avoiding
accuracy degradation that can happen through slicing and
batching nonadjacent regions. Secondly, it ensures a consis-
tent level of “freshness” of object detection results over all



Fig. 5: An example of region scheduling on three consecutive samples over time. The regions outlined in orange represent the
selections made by the scheduler for processing. The green and purple bounding boxes indicate the objects detected as a result
of processing the selected regions and the forecasted objects, respectively. Best viewed in color.

Algorithm 1: Scheduling algorithm

1 Input:
2 Input voxels (V ),
3 Number of input regions (NR),
4 Last scheduled region (rlast),
5 Relative deadline (D),
6 Output: Selected regions to be processed
7 function schedule(V , NR, rlast, D)
8 RS , CS ← count voxels(V,NR)
9 RS , CS ← reorder(RS , CS , rlast)

10 i← length of(RS)
11 while i ≥ 1 do
12 Rsel, Csel ← RS [: i], CS [: i]
13 E ← calc wcet(Rsel, Csel)
14 rem time← D − get elapsed time()
15 if E < rem time then
16 i← 0

17 else
18 i← i− 1

19 return Rsel

regions, which is needed for effective forecasting operations
(Section IV-E). Thirdly, it incurs minimal scheduling overhead.

C. Execution Time Prediction

For effective region scheduling, the key challenge is to
determine whether a candidate list of regions can be processed
within a given deadline constraint (Line 13 in Algorithm 1).
The predicted execution time E of a candidate list of regions
can be calculated as:

E = ES + ED + ER (2)

where ES is the time to process sparse data (i.e. 3D backbone),
ED is the time to process dense data (i.e. 2D backbone and
convolutions in detection heads), and ER is the time to process
the last stage of object detection task such as non-maximum
suppression.

For ED, since the number of candidate regions (|Rsel|)
determines the size of the dense input tensor that will be passed
to the 2D backbone, it can be defined as a one-to-one function,
where each possible |Rsel| is mapped to an execution time
determined through offline profiling. This mapping is feasible
because the execution time of dense convolutions remains
largely fixed as a function of input size, and there is a small
finite number of possible regions.

On the other hand, ES , the execution time of the sparse 3D
backbone, is difficult to predict as it depends on the number
of input voxels in a highly non-linear manner, as shown in
Figure 6.
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Fig. 6: Profiled execution time CenterPoint’s 3D Backbone.

This non-linearity mainly stems from the fact that a sparse
convolution layer can generate a different number of output
voxels for the same number of input voxels depending on
their relative positions, as illustrated in Figure 2. Consequently,
the computational demand of processing a subsequent layer,
which takes the output of the previous layer as input, will
vary accordingly. To make the time prediction tractable, we
break the 3D backbone into blocks at points where the count
of forwarded voxels changes, as illustrated in Figure 7.

We then focus on separately predicting the execution time
of each block. Note that, unlike a sparse convolution layer,
batch normalization, activation functions, and submanifold
sparse convolution [19], all of which heavily used in 3D
backbones, do maintain the same input and output shapes (thus



Fig. 7: CenterPoint’s 3D backbone broken into blocks. SM:
Submanifold sparse convolution. SP: Sparse convolution.

voxel counts), and thus can be safely grouped within a block.
Denoting Vi as the input voxels of a layer Li, we define a
block B as:

B = {Lk, . . . , Ll | ∀i, k ≤ i ≤ l, |Vk| = |Vi|} (3)

where Vk is the input voxels of the first layer Lk. The input
of a block B denoted as VB is the same as Vk.
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Fig. 8: Profiled execution time of the blocks of CenterPoint’s
3D backbone, and the quadratic models regressed from their
execution times data.

Figure 8 shows the execution time profiles of all four blocks
of the CenterPoint’s 3D backbone. As can be seen in the figure,
each block’s execution time, as a function of the number of
input voxels of the block, is more predictable using a simple
quadratic prediction model.

EBi
(|VBi

|) = α|VBi
|2 + β|VBi

|+ γ (4)

where the coefficients α, β, and γ are determined by regression
against the profiling data collected offline. Then, the execution
time of the 3D backbone can be predicted as follows:

ES =

n∑
i=1

EBi
(|VBi

|). (5)

However, a major challenge is that, except for the first block,
the number of input voxels of the rest of the blocks, Crest,
are not known until the execution of the preceding blocks is
completed.

Crest = {|VB2 |, . . . , |VBn |} (6)

To predict Crest for any given list of candidate input
regions, we use a history-based approach, leveraging the fact
that there is a strong similarity between consecutive LiDAR
scans, as the movements of objects between scans are limited.
Specifically, for block B2 to Bn, we keep track of each block’s
most recent input voxel counts of all input regions, which are
updated whenever they are selected by the region scheduler
and processed. Assuming voxel counts would be similar over
time, we then aggregate the latest voxel counts of the current
candidate regions to obtain Crest.

Lastly, for ER, the execution time to perform non-maximum
suppression and other operations can vary depending on the
number of object proposals in the detection pipeline. How-
ever, because it is relatively small compared to the rest of
the pipeline, namely ED and ES , we simply use the 99th
percentile of the measured execution time through offline pro-
filing, which provides a safe upper bound without significantly
affecting time prediction accuracy.

D. Region Drop

The aforementioned execution time prediction method for
the 3D backbone can inevitably introduce some inaccuracy.
For LiDAR object detection models with 2D backbones, such
as CenterPoint [1], after the execution of the 3D backbone, we
additionally check if it will be possible to meet the deadline
(see Figure 3), considering the predicted execution time of
the rest of the pipeline. If deemed not possible, we further
reduce the number of input regions so that the deadline can
be met. Note, however, that some recently proposed LiDAR
object detection models such as VoxelNext [3] do not employ
a 2D backbone as they are fully sparse. For such networks,
the region dropping does not apply.

E. Forecasting

Forecasting estimates the present pose of the objects iden-
tified in the past invocations of the object detector. Because
our region scheduling method (Section IV-B) can skip part of
the input LiDAR scan due to deadline constraints, forecasting
plays a critical role in mitigating the potential accuracy loss.

We define a pose P of an object at time t as:

Pt = {T, S, α, v, c, l} (7)

where T is the 3D coordinate of the object expressed in the
LiDAR coordinate frame, S is the bounding box, α is the
heading angle, v is the velocity vector, c is the confidence
score, and l is the label (e.g., car or pedestrian). In this work,
we focus on estimating T and α and assume others to stay
consistent over time.

The first part of forecasting involves maintaining a queue
of previously detected object poses. For all processed input
regions of an input frame, VALO removes the old objects cor-
responding to processed regions from the queue and appends
the freshly detected objects in these regions to the queue. Thus,
the queue maintains the latest detected objects of all regions.

The second part of forecasting involves performing math-
ematical calculations to estimate Ptcur

for all objects in the



pose queue. For each pose of an object in the pose queue, we
first rotate and translate the object pose to be expressed in the
global coordinate frame using the ego-vehicle pose. We then
add the distance traveled by the object (v×(tcur−tdet)) to the
translation component (T ) of the pose. Finally, we translate
and rotate the pose to be expressed in the current LiDAR
coordinate frame.

At runtime, we update the queue on the CPU and perform
actual pose updates on the GPU. We have developed a custom
GPU kernel to update the poses of all objects in parallel. The
forecasting GPU kernel is executed in a separate CUDA stream
to maximize parallelism.

F. Detection Head Optimization

LiDAR object detection DNNs include detection heads that
are designed to extract specific attributes of objects, such as
position, size, and orientation. Surprisingly, we discovered
that a significant amount of redundant computations occur
in processing the detection heads of state-of-the-art LiDAR
object detection DNNs [20].

Fig. 9: General detection head architecture.

Figure 9 illustrates the general architecture of a detection
head, which performs a series of convolutions to infer at-
tributes of the objects. The width and height dimensions of the
output tensors from these convolutions correspond to the width
and height of the detection area in the bird’s-eye view (BEV).
Among the inferred attributes, the heatmap plays the most
important role, as it holds the confidence scores of the objects
used for classifying and locating them. In a heatmap tensor,
any score value above a predefined score threshold indicates
an object proposal. The list of object proposals, R, extracted
from the heatmap, can be expressed as:

R = {(c1, x1, y1), . . . , (cn, xn, yn)} (8)

where c is the confidence score and x, y are a position in
the detection area. Once R is generated, remaining object
attributes (e.g., orientation, velocity, size, etc.) are obtained

from their corresponding output tensors at the x, y positions
in R, and combined into object poses (Eq. 7).

The problem with this approach is that it performs con-
volutions on all parts of the input while only the output
locations that correspond to the object proposals (R) are
utilized. As a result, the convolutions inferring object attributes
except the heatmap involve a significant amount of redundant
computation.

To improve efficiency, we propose to optimize the detection
head processing as follows: (1) First, the heatmap is computed
in the same manner as in the baseline approach; (2) Then
the detected object list R from the heatmap is utilized to
selectively gather and batch small patches from the input
tensor; (3) Finally, convolutions are applied to this batch of
patches to derive the object attributes.

Fig. 10: Optimized detection head architecture.

Figure 10 provides a visual representation of the proposed
approach. Note that the proposed optimization ensures that
convolutions are applied only to the data that is needed for
producing the desired output corresponding to the locations
in R. This approach significantly reduces the number of
Multiply-Accumulate operations (MACs) without any loss of
detection accuracy.

However, due to the reduction in the input size, there is
a potential issue of GPU underutilization if we execute the
attribute-inferring convolutions one by one as in the baseline.
To maximize GPU utilization, we concatenate them into a
single convolution operation followed by a group convolution.
This improves GPU utilization and reduces the GPU kernel
invocation overhead.

Note that some recent LiDAR object detection networks
such as VoxelNext [3] employ sparse convolutions in detection
heads instead of dense convolutions. For such a model, we
replace the slice & batch part of detection head optimization
with filtering all sparse tensor coordinates that do not con-
tribute to the output, and do not group the convolutions as they
are sparse. In this way, we significantly reduce computational



overhead without losing detection accuracy and allow utilizing
of the model trained for the baseline.

V. EVALUATION

For evaluation, we implemented VALO as an extension
to OpenPCDet [20], an open-source framework for LiDAR
3D object detection DNNs, which supports state-of-the-art
methods. For this study, we mainly target CenterPoint [1] as a
baseline and apply VALO to demonstrate its effectiveness. In
addition, we also apply VALO on a more recently proposed
VoxelNext [3], a fully sparse DNN, to demonstrate the versa-
tility of our approach.

As for the dataset, we utilize nuScenes [12], a large-scale
autonomous driving dataset, and use nuScenes detection score
(NDS) [12] as the detection accuracy metric since it was
reported to correlate with the driving performance better than
the classic average precision (AP) metric [21]. In the rest
of the evaluation, unless noted otherwise, we normalize the
NDS score with respect to the maximum NDS score we
observed among the all compared methods. We utilize 30
distinct scenes from the nuScenes evaluation dataset, with each
scene containing annotated LiDAR scans spanning 20 seconds,
sampled at intervals of 350 milliseconds. The sample period is
chosen to match the worst-case execution time of the slowest
baseline method on our evaluation platform.

To capture the timeliness aspect of the detection perfor-
mance, we evaluated the methods under a range of deadline
constraints, from 350 to 90 milliseconds. The deadline range
is chosen to be between the best-case execution time of the
fastest baseline method and the worst-case execution time of
the slowest baseline model. During each test, we kept a buffer
holding the latest detection results and updated this buffer
every time the method being tested met the deadline. In case of
a deadline miss, we considered the buffered detection results
as the output and ignored the produced ones by assuming the
job was aborted.

As for the hardware platform, we used an NVIDIA Jetson
AGX Xavier [13], equipped with 16 GiBs of RAM, for runtime
performance evaluation. We maximized all hardware clocks
and allocated the GPU resources only for the method being
tested. For software, we used Jetson JetPack 5.1 and Ubuntu
20.04. Training of the models was done on a separate desktop
machine with an NVIDIA RTX 4090 GPU.

We present the evaluation results in the following three
subsections. First, we compare VALO with a set of baselines
to evaluate its performance. Second, we perform an ablation
study to demonstrate the benefits of VALO’s components.
Lastly, we shift our focus to the intrinsic details of VALO
and analyze the execution time behavior of its components.

A. Comparison With the Baselines

Below is the list of methods we compared in this section:
• CenterPoint [1]: This is a representative state-of-the-

art LiDAR object detection network architecture that
employs a voxel encoder as its 3D backbone, followed by
a region-proposal-based 2D backbone and six detection

heads, each of which focuses on a subset of the object
classes [14]. Before being forwarded to the 3D backbone,
the input point cloud is transformed into fixed-sized
voxels. The size of a voxel is a design parameter of the
network, which should stay consistent during training and
testing. In this work, we consider three voxel configura-
tions 75 × 75 × 200 mm3, 100 × 100 × 200 mm3, and
200× 200× 200 mm3, which are called CenterPoint75,
CenterPoint100, and CenterPoint200, respectively. Em-
ploying bigger voxels reduces the computing cost at the
expense of accuracy.

• VoxelNext [3]: A recently proposed LiDAR object detec-
tion network, featuring a voxel encoder as its 3D back-
bone deeper than CenterPoint’s followed by six detection
heads. Unlike CenterPoint, all convolutions in its detec-
tion heads operate on sparse tensors. Like CenterPoint,
VoxelNext also can be configured to have a different
voxel size. We focus on only the setting that employs
voxels of size 75× 75× 200 mm3 (i.e. VoxelNext75).

• AnytimeLidar [11]: To the best of our knowledge, this
is the only work that can provide runtime latency and
accuracy trade-off (i.e. anytime computing) for LiDAR
object detection DNNs in literature. It achieves the any-
time capability by utilizing early exits in processing the
2D backbone and skipping a subset of detection heads
dynamically. While AnytimeLidar is originally based
on PointPillars [2], we ported it to the CenterPoint75
baseline to make a fair comparison, which we call
AnytimeLidar-CP75. Note that AnytimeLidar cannot be
applied to VoxelNext since it lacks a 2D backbone.

• VALO: The proposed method in this work. VALO can be
applied to CenterPoint and VoxelNext baselines. We call
VALO-CP75 and VALO-VN75 when it is applied to the
CenterPoint75 and VoxelNext75 baselines, respectively.

1) VALO vs. AnytimeLidar: In this experiment, we com-
pare the performance of VALO and AnytimeLidar with the
CenterPoint75 baseline from which they are applied.

Figure 11 shows the results. Figure 11a compare how
detection accuracy changes in relation to the varying deadline
constraints. Figure 11b, on the other hand, compare the
corresponding deadline miss rates of the tested methods under
the deadline constraints.

Note first that, under the 350 milliseconds deadline con-
straint, all methods can meet the deadline without a need
for tradeoffs and demonstrate their maximum accuracy. When
the deadline tightens, however, the CenterPoint baseline im-
mediately begins to miss deadlines as it cannot adjust its
computing demand according to the given deadline, resulting
in a significant drop in accuracy. AnytimeLidar and VALO,
on the other hand, can trade accuracy for lower latency (i.e.,
anytime capable), and thus achieve improved performance as
they can meet the deadlines better. However, when the deadline
is 155 milliseconds, AnytimeLidar starts to miss deadlines
due to its limited anytime computing capability. But VALO
respects the deadline constraints down to 90 milliseconds and
achieves higher accuracy.
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Fig. 11: VALO vs. AnytimeLidar on CenterPoint

AnytimeLidar falls short of matching the effectiveness of
VALO primarily due to dismissing the contribution of the
3D backbone on the total latency. Moreover, AnytimeLidar’s
effectiveness will be further reduced if a single detection head
architecture, instead of multi-head detection architecture in this
work, is used because its ability to make a trade-off is in large
part enabled by skipping a subset of the detection heads, which
is possible only in multi-head architecture.

In contrast, VALO can make fine-grained execution time
and accuracy tradeoffs, primarily due to its ability to schedule
a portion of data to process, independent of the neural network
architectural specifics, such as 3D/2D backbone or the number
of detection heads. This distinct focus on data makes VALO
a more versatile framework that can be applied in any LiDAR
object detection DNN.

2) VALO vs. other non-anytime baselines: Figure 12 shows
the detection performance of VALO-CP75 and three other
CenterPoint baselines. All baselines have distinct execution
time demands and accuracy they can deliver. For example,
when the deadline is 350ms, CenterPoint75 achieves the best
accuracy among the three baselines. But when the deadline is
220ms, CenterPoint75’s accuracy falls down to zero because
it no longer is able to meet the deadline. On the other hand,
CenterPoint200’s accuracy does not change all the way down
to the deadline of 155ms as it can still meet the deadline
albeit at a somewhat lower accuracy. Note, however, that
these baseline models are fixed and cannot make accuracy vs.
latency trade-offs on the fly at runtime. VALO, on the other
hand, can adapt itself to a wide range of deadline constraints—
from 90 to 350ms—on the fly while providing the best possible
accuracy for a given deadline constraint.

As an alternative way to adapt to the varying deadline
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Fig. 12: VALO vs. CenterPoint variants.

constraints on the fly, one can consider using multiple DNN
models of differing latency-accuracy tradeoffs (like Center-
Point75, 100, and 200 in this experiment) and switch between
them depending on a given deadline constraint at runtime
as done in [4]. However, the problems of such an approach
are that it needs to train, fine-tune, and manage all these
models separately. Furthermore, these models need to be
loaded into the precious (GPU) memory all the time for real-
time operations, even when only one of them is actually used at
a time. In contrast, VALO can make such trade-offs at runtime
from a single model without requiring any additional memory
overhead.

3) VALO on VoxelNext: To demonstrate VALO’s versatility,
we applied it to VoxelNext [3], which has a significantly
different architecture than CenterPoint. Unlike CenterPoint,
VoxelNext does not use a 2D backbone and instead relies
solely on 3D sparse convolution layers.

Figure 13 shows the result. As in the CenterPoint case,
VALO-VN75 performs better than the baselines in all dead-
line constraints. The region scheduling (Section IV-B) allows
VALO-VN75 to dynamically adjust the time spent on the
3D backbone and the detection heads effectively, effectively
making it anytime capable.
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Fig. 13: VALO on VoxelNext.

4) Effectiveness of Time Prediction: The effectiveness of
VALO’s region scheduling critically depends on the accu-
racy of its time prediction (Section IV-C). To evaluate the
effectiveness of the proposed history-based time prediction
method, we compare its accuracy with a simple quadratic
prediction model that directly predicts the execution time of
the entire 3D backbone from the number of input voxels
(as opposed to predicting per-block based prediction in our
proposed history-based time prediction approach). We denote



this baseline method as quadratic whereas our history-based
approach as history.

Figure 14 compares the accuracy of both time prediction
methods in predicting 3D backbone execution time against the
evaluation dataset. As can be seen in the figure, our history-
based prediction method significantly outperforms the baseline
quadratic method, which helps reduce deadline violations and
improve detection accuracy.
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Fig. 14: Cumulative distribution function of time prediction
error for history-based and baseline methods.

B. Ablation Study

In this experiment, we investigate the contribution of region
scheduling and forecasting by comparing VALO with its two
variants explained below. We also include the CenterPoint75
baseline for comparison.

• VALO-NSNF-CP75: This variant of VALO operates
without scheduling (Section IV-B) and forecasting (Sec-
tion IV-E), hence denoted as ‘No Scheduling No Fore-
casting’ (NSNF). However, it does perform detection
head optimization (Section IV-F).

• VALO-NF-CP75: This variant of VALO performs region
scheduling (Section IV-B) and detection head optimiza-
tion (Section IV-F), but not forecasting (Section IV-E).

Figure 15 presents the experimental results where we ob-
serve improved performance as additional VALO components
are introduced to the baseline CenterPoint75. First, VALO-
NSNF-CP75 achieves a higher accuracy over the baseline
CenterPoint75 when the deadline is tighter than 350 millisec-
onds. For instance, at the 285 milliseconds deadline, VALO-
NSNF-CP75 matches the accuracy of CenterPoint75 at 350
milliseconds. This underscores the effectiveness of detection
head optimization in reducing execution time without compro-
mising accuracy. Next, VALO-NF further improves accuracy
across a wider range of deadline constraints by enabling region
scheduling because it can make execution time and accuracy
tradeoffs, preventing deadline misses and boosting accuracy
over VALO-NSNF. Lastly, VALO achieves the highest accu-
racy across all deadline constraints by additionally utilizing
forecasting, which is particularly effective on tight deadlines.
This is because forecasting plays a more crucial role when the
number of scheduled regions reduces as the deadline tightens.
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Fig. 15: Detection accuracy achieved by the variants of VALO.
C. Component-level Timing Analysis

In this experiment, we delve into the execution timing
characteristics of the components of VALO when it is applied
to the CenterPoint75.

Figure 16 shows the execution timing of the 3D backbone,
2D backbone, and detection heads. For each component, we
consider five different cases. The first two involve using
CenterPoint75 and VALO-CP75, where there is no deadline.
The rest are the results of VALO-CP75 executed with 220,
115, and 90-millisecond deadline constraints, respectively.

1) 3D Backbone: Figure 16a shows the execution time
profile of the 3D backbone portion of the network. Note
first that the CenterPoint75 baseline shows a high degree of
variations, influenced by the varying count and positioning of
input voxels. When there is no deadline, the time spent on
the 3D backbone of VALO-CP75 is about the same as Cen-
terPoint75 as expected. As the deadline gets tighter, however,
VALO’s execution time of the 3D backbone is progressively
reduced because its region scheduler dynamically selects a
subset of input regions that can be executed within the given
time budget.

2) 2D Backbone: Figure 16b shows the execution time
profile of processing the 2D backbone, where convolutions on
dense tensors take place. Unlike the 3D backbone processing,
even when there is no deadline, we can observe a notable
decrease in the execution time in VALO compared to the
CenterPoint75 baseline. This is because our data partitioning
scheme (Section IV-B), which exploits the sparsity of LiDAR
data, can skip empty input regions in the 2D backbone, thus
reducing latency. As the deadline get tighter, we also observe
a further reduction in the execution time of the 2D backbone
as a result of reduced input data selected by the scheduler.

3) Detection Heads: Figure 16c shows the execution time
profile of processing the detection head. Note first that we
observe more than 50% reduction in detection head process-
ing latency on VALO-CP75 compared to the CenterPoint75
baseline even when there is no deadline constraint. This is
due to the proposed detection head optimization described in
Section IV-F, which significantly reduce the amount of data to
be processed by eliminating redundant data. In addition, as the
deadline get tighter, we again observe progressive reduction in
execution time in VALO due to further reduction in the input
data to the detection head thanks to its scheduler.
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Fig. 16: Component-level execution time profile of the baseline and VALO on Centerpoint75 under different deadline constraints

4) Overhead: We measured 3 milliseconds of scheduling
overhead in the worst case, including the input filtering time.
There is also 3 milliseconds overhead due to the voxel
counting operations as a part of history-based time prediction.
We did not observe any overhead incurred by the forecasting
operation when end-to-end latency is considered, as it is
efficiently executed in parallel with the backbones. Note that
the total overhead of VALO on CenterPoint75 is only about 6
milliseconds, which is less than 2% of the average execution
time of CenterPoint75.

VI. RELATED WORK

Timely execution of autonomous driving software is essen-
tial to ensure safe and efficient navigation. Traditionally, the
timing requirements (i.e. deadlines) of the autonomous driving
tasks are often fixed at the design time [22], [23], which is not
adaptable to the highly varying execution time demands [24].
Recently, Gog et al. [4] have highlighted the potential benefits
of adopting a flexible approach, which can dynamically change
deadlines in the autonomous driving software based on the
specific driving situation, such as the speed of the vehicle or
sudden pedestrian appearance, to improve performance and
safety of the vehicle.

LiDAR object detection is a critical component in many au-
tonomous driving systems [25]. With the release of large-scale
autonomous driving datasets [12], [26], researchers have devel-
oped deep learning-based object detection models that achieve
state-of-the-art performance. Besides aiming to achieve high
accuracy, recent work has also considered reducing latency as
an objective [1]–[3], [27]–[30] for real-time operation. These
works can achieve remarkable accuracy in real-time when
executed on high-end GPUs and accelerators. However, their
deployment on edge computing platforms such as Jetson AGX
Xavier [13] still poses a challenge due to their significant
computational overhead and latency. More importantly, they
lack the capability to dynamically adapt their execution time
in a deadline-aware manner, which is needed for real-time
cyber-physical systems.

Recent studies have explored the concept of “anytime per-
ception” for neural networks, which enables them to execute
within defined deadlines while making tradeoffs between exe-
cution time and accuracy. For example, Kim et al. [6] achieved

this by iteratively adding layers to an image classification
network and retraining it to incorporate “early exits.” Lee et al.
[31] focused on the neuron level, prioritizing critical neurons
for accuracy while deactivating others to save time. Bateni
et al. [7] used per-layer approximation instead of early exits
and presented a scheduling solution for multiple deep neural
network tasks. Yao et al. [8] also dealt with the scheduling
of multiple deep neural network tasks, utilizing imprecise
computation alongside early exits. While these works primar-
ily targeted image classification tasks, object detection tasks
present unique challenges.

Heo et al. [32] introduced a multi-path deep neural network
architecture designed for anytime perception in vision-based
object detection. Another work by the same authors [33]
designed an adaptive image scaling method that respects the
deadline constraints for the multi-camera object detection task.
Gog et al. [34] proposed to switch between DNNs to make
latency and accuracy tradeoffs dynamically at runtime. Hu et
al. [35] suggested reducing the resolution of less critical parts
of the scene to lower computational costs. Lie et al. [9], [36]
divided individual image frames into smaller sub-regions with
varying levels of criticality, using LiDAR data to batch-process
essential sub-regions to meet deadlines. However, these prior
efforts mainly focus on 2D vision and do not account for the
unique characteristics of 3D point cloud processing.

Recently, Soyyigit et al. [11] proposed a set of techniques
that enable anytime capability for LiDAR object detection
DNNs. They focused on object detection models where the
bulk of the computation is performed on the 2D backbone
and detection heads, such as PointPillar [2] and Pillarnet [27].
However, the effectiveness of their approach diminishes on
recent state-of-the-art object detection models where the bulk
of time is spent on 3D backbone [1], [3]. Fundamentally, such
effort that focuses on model-level improvements may fail to
work when the architecture of the model changes. In contrast,
our work focuses on data-level scheduling, independent of the
architectural details of the backbones and detection heads, and
thus can be seamlessly applied to any state-of-the-art LiDAR
object detection DNNs.



VII. CONCLUSION

In this work, we presented VALO, a versatile anytime com-
puting framework for LiDAR object detection DNNs. VALO’s
superior performance compared to the prior state-of-the-art
comes from three major contributions: (i) partitioning the input
data into regions and efficiently scheduling them with the goal
of maximizing accuracy while respecting the deadlines, (ii)
lightweight forecasting of the previously detected objects to
mitigate potential accuracy loss due to partially processing the
input, (iii) and intelligently reducing redundant computations
in processing the detection heads of the object detection
neural network with no loss of accuracy. Evaluation results
have shown that our approach can adapt to a wide-range
of deadline constraints in processing LiDAR object detection
DNNs, and enables a fine-grained and effective execution time
and accuracy tradeoff.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants CNS-
1815959, CPS-2038923, III-2107200, and CPS-2038658.

REFERENCES
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