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Abstract

In this article, we present a computational framework to identify “causal relationships” among 

super gene sets. For “causal relationships”, we refer to both stimulatory and inhibitory regulatory 

relationships, regardless of through direct or indirect mechanisms. For super gene sets, we refer to 

“pathways, annotated lists, and gene signatures”, or PAGs. To identify causal relationships among 

PAGs, we extend the previous work on identifying PAG-to-PAG regulatory relationships by further 

requiring them to be significantly enriched with gene-to-gene co-expression pairs across the two 

PAGs involved. This is achieved by developing a quantitative metric based on PAG-to-PAG Co-

expressions (PPC), which we use to infer the likelihood that PAG-to-PAG relationships under 

examination are causal—either stimulatory or inhibitory. Since true causal relationships are 

unknown, we approximate the overall performance of inferring causal relationships with the 

performance of recalling known r-type PAG-to-PAG relationships from causal PAG-to-PAG 

inference, using a functional genomics benchmark dataset from the GEO database. We report the 

area-under-curve (AUC) performance for both precision and recall to be 0.81. By applying our 

framework to a myeloid-derived suppressor cells (MDSC) dataset, we further demonstrate that this 

framework is effective in helping build multiscale biomolecular systems models with new insights 

on regulatory and causal links for downstream biological interpretations.

Keywords

super gene set; causal; PAG; systems biology

HHS Public Access
Author manuscript
IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2019 
November 01.

Published in final edited form as:
IEEE/ACM Trans Comput Biol Bioinform. 2018 ; 15(6): 1991–1998. doi:10.1109/TCBB.2018.2858755.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Gene-set, network, and pathway analysis (GNPA) (1) has become the first choice for gaining 

insight into the underlying biology of differentially expressed genes and proteins (2). 

Briefly, GNPA helps the biologists explain the experimental results from existing biological 

domain-knowledge and potentially discover new biological mechanisms (2-4). GNPA 

analysis could be conducted in two directions. In the first direction, from the significant gene 

list retrieved from statistical analysis on the experimental results, the biologists search for 

which biological phenomenon (also called Gene Ontology (5)) enriching in the list (6-8), or 

which well-annotated pathways being ‘similar’ to the gene list (9-12). In the second 

direction, instead of highlighting the gene list from the experimental results, the biologists 

compare the gene expression patterns between the well-annotated gene set from the 

literature and the one showed in the experimental result (4,13-15). Both of these directions 

require robust statistical methods (2) and Gene-set-network-and pathway (which is also 

called PAG (16) or super-gene-set (17)) databases (16, 18-21). The development of GNPA 

methods and GNP databases enables shifting biological analysis from individual gene level 

to the PAG level. In the other words, from the data analytical point of view, the biological 

dataset could be represented by the PAG features instead of the gene features.

In the ‘PAG paradigm’, there are still many unexplored questions on the relationship among 

the PAGs, especially on the causal relationship. It is known that one gene may participate in 

multiple biological processes, and genes in different PAGs interact. The limitation among 

most of the well-established GNPA techniques is that these techniques often return 

individual PAGs from the biological input and treats the PAGs independently (2), and ignore 

the potential relationship among the PAGs. To answer the PAGs relationship question, in 

(16), we define two types of relationships: share-gene (m-type) and regulatory (r-type) 

relationships. Compared to the shared-gene relationship, the regulatory relationship has 

better explanatory power since it is derived from gene-gene regulation datasets. However, 

due to the noisy and incomplete of domain-knowledge on gene-gene regulation datasets, the 

PAG regulatory relationship is more difficult to annotate. Here, by annotation, we refer to 

determining the directionality of the PAG-to-PAG relationship, and whether the relationship 

is stimulatory or inhibitory. Integrating the gene expression profile into domain-knowledge 

interactome and topological data is a promising solution for this question. For example. 

Martini et al show that we can discover signal paths among the pathways from the 

expression data (22). Pepe et al, while discovering the perturbation of expression in a single 

pathway, shows that there exist connections among the perturbation in multiple pathways 

(23).

In this work, we propose a framework to enrich the annotation for r-type PAG-to-PAG 

relationship by integrating the gene expression profile and the existing relationships in 

PAGER (16). Therefore, we can form two types of network (or relationship) among the 

PAGs: the regulatory network and the coexpression network. Our experiment shows that the 

coexpression relationship could be used to re-discover the regulatory relationship with high 

precision and recall. Therefore, the framework name allows annotating the PAG-to-PAG 

relationship specific to the tissues, organs and biological condition specified in the 

expression profile. By this integration, we can infer the causal relationship among the PAGs, 
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which is the major innovation in this paper. We demonstrate the framework name in 

annotating cancer-specific gene expression profile and show how we can infer the causal 

relationship among different biological phenomenon enriched in the PAGs.

2 Methods

2.1 Recall PAGs and r-type PAG-PAG relationship from PAGER

There are three types of the PAGs in PAGER (16) A P-type PAG contains a connected set of 

molecules (genes/proteins/metabolites), among which some detail of curated mechanism of 

actions, e.g., protein interactions, reactions, or gene regulations, are available (24). A-type 

PAG contains a curated list of genes/proteins identified from a specific biological context, 

e.g. a shared GO category or a shared protein family without mechanism of actions. A G-

type PAG contains a list of genes/proteins derived from any given high throughput Omics 

experiment, e.g. functional genomics, without annotation. (25) We give every PAG a 

cohesion coefficient score (CoCo score), which could be simply understood as ‘PAG 

quality’, to help assess the degree of biological relevance for each PAG. The CoCo score 

shows how single genes in a PAG connect: if genes inside a PAG strongly connect to the 

other, compared to the random connection, the PAG should have high CoCo score. The 

CoCo score shows how single genes in a PAG connect: if genes inside a PAG strongly 

connect to the other, compared to the random connection, the PAG should have high CoCo 

score.

Overall, the PAGER collects and organizes 18,607 regular PAGs using a three-letter-code 

PAG classification system. It includes 3,153 P-type PAGs, 8,117 A-type PAGs and 7,337 G-

type PAGs. We emphasize that these counts are from the 2015 version of PAGER. We only 

performed the analysis on this PAGER version. All PAGs are given a cohesion coefficient 

score (CoCo score) to help assess the degree of biological relevance for each PAG beyond 

random chance. Due to the limitation of time, we were not able to perform analysis on the 

updated PAGER version (26), published in 2017.

PAGER also contains 72,824 regulatory relationships (r-type relationships) among the PAGs. 

Two PAGs are considered having r-type relationship if the gene-gene regulations between 

two PAGs are significantly more than random (overrepresentative). In opposite, the under-

representative relationship implies that gene-gene regulations between two PAGs are 

significantly less than random. We quantified the r-type relationships by applying the 

hypergeometric distribution statistics and recorded the probability mass function (pmf) as 

the score. In this paper, we further narrow down the number of r-type relationship to 24,686, 

after setting threshold pmf <0.01.

2.2 Gene expression dataset

To construct PAG-PAG co-expression relationship from functional genomic data, we applied 

the microarray dataset GSE32474 (27,28). The dataset contains 174 tissue-specific samples 

from 59 cell-lines covering 9 types of cancer tissues: Breast, Central Nervous System, 

Colon, Leukemia, Melanoma, Non-Small Cell Lung, Ovarian, Prostate, and Renal from the 

NCI-60 panel. The dataset covers the expression of 20,638 genes.
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2.3 Apply NP-HART to increase the number of PAGs and r-type relationship

To increase the number of PAGs and regulatory PAG-to-PAG relationships, we applied NP-

HART (New PAGs Heuristic Algorithm Based on Relationship Topology) (17) to generate 

the virtual PAG (denoted as m’PAG) which have direct relationships to the regular PAGs in 

PAGER. A virtual PAG collects single genes having upstream or downstream regulations 

with genes from an existing PAGER’s PAG. The NP-HART has two steps. First, we 

heuristically group the single genes regulating or being regulated from an existing PAGER’s 

PAG as long as the group significantly connects to the existing PAG, threshold by pmf < 

0.01. Second, if the group cohesion is too low, we heuristically remove single genes from the 

group until the cohesion, marked by CoCo score, reaches 0.1 and forms the virtual m’PAG. 

The NPHART adds 87 virtual PAGs and 130 r-type PAG-PAG relationship, which increases 

these two overall statistics to 38,466 PAGs and 24,816 relationships.

2.4 Characterize causal PAG-to-PAG relationships detail by E-GGCC analysis

To annotate the r-type PAG-to-PAG relationships and further infer causal relationships 

among the PAGs, we developed enrichment of gene-gene co-expression correlation (E-

GGCC) analysis. E-CGCC analysis results show how strongly genes in two PAGs co-

express either positively or negatively. Compared to existing correlation methods, our 

analysis use discretization method, which does not require strong assumptions on the 

absolute scale of expression value (29). The detail of E-GGCC analysis is as follow.

2.4.1 Score expression correlation among genes with new GGC metric—To 

overcome the inappropriateness of the Euclidian distance in the conventional Pearson 

Correlation, when the absolute expression levels of functionally related genes are highly 

different (29), we constructed a new Gene-Gene expression Co-expression Correlation 

(GGC) metric using discretization method. We started E-GGCC analysis by computing the 

gene-gene co-expression (GCC) with discretization. In a given microarray dataset, for each 

gene, we discretized the absolute gene expression into three values: −1 for low expression, 0 

for nonnal expression and +1 for high expression. In this study, we discretized the top 1/3 

absolute gene expression values as +1, 1/3 bottom absolute expression values as −1 and the 

other values as 0. For two genes a and b, let C+(a, b) be the count of samples where a and b 

have the same nonzero discrete expressions, let C−(a, b) be the count of samples where a 

and b have the opposite nonzero discrete expressions, and C*(a, b) be the count of samples 

in other scenarios where one of a and b has zero discrete expression. We defined the positive 

GGC+ (a,b) and the negative GGC−(a,b) as follows:

GGC+(a, b) = C+(a, b)
C+(a, b) + C−(a, b) + C∗(a, b)

(1)

GGC−(a, b) = C−(a, b)
C+(a, b) + C−(a, b) + C∗(a, b)

(2)
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We united GGC+ and GGC− to calculate the final GGC as

GGC(A, B) = sign(GGC+(a, b) − GGC−(a, b)) ×
Max(GGC+(a, b), GGC−(a, b))

(3)

Here, the sign function shows the type of expression correlation between gene A and gene 

B. If GGC+(a, b) > GGC−(a, b), there is more evidence showing that A and B have positive 

expression correlation; therefore, the sign function returns positive, and vice versa. The 

maximum function (Max) shows the co-expression strength. After calculating the GGC 

scores, we removed correlation with GGC between −0.5 and 0.5 since they were 

insignificant coexpression. More explanation on this threshold option could be found in the 

results section, where we also apply network power law analysis to justify our choice of 

GGC threshold.

2.4.2 Score the co-expression between two PAGs by PPC metric.—Similar to 

the CoCo score in PAGER (16), we constructed the PAG-to-PAG Co-expression Correlation 

(PPC) to address the biological significance of r-type PAG-to-PAG relationship using 

hypergeometric distribution. Figure 1 provides one example of E-GGCC calculation. For 

two PAG i and j, let m(i) be the count of genes in i, m(j) be the count of genes in j and m(i, j) 

be the count of overlapping genes between i and j. To calculate the positive correlation (PPC

+), we used the cumulative distribution function (CDF) of four parameters N, K, n and k, 

defined as

PPC(i, j)+ = sign n
k − N

K × − log10 ∑min(n, K)
t = k

K
t

N − K
n − t
N
n

(4)

where N = (m(i)+m(j)−2m(i,j)) × (m(i)+m(j)−2m(i,j)−1) / 2 is the count of theoretical gene-

gene expression correlations in both i and j, K is the count of actual positive gene-gene 

expression correlations in both i and j, n = (m(i)−m(i,j))×(m(j)−m(i,j)) is the count of 

theoretical expression correlation between genes in i and genes in j, and k is the count of 

actual positive gene-gene expression correlations between genes in i and genes in j. To 

calculate the negative correlation (PPC−) between i and j, we applied (4) with the same 

definition for N and n, but K is the count of actual negative gene-gene expression 

correlations in both i and j, and k is the count of actual negative gene-gene expression 

correlations between genes in i and genes in j. In the right side of (4), the sum operator 

represents the definition of CDF in hypergeometric distribution as in (30). In the right side 

of (4), the sum operator represents the definition of CDF in hypergeometric distribution as in 

(30). Then, we estimated the positive or negative correlation using the final PPC(i, j) defined 

as:
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PPC(i, j) =
PPC(i, j)+ if PPC(i, j)+ > 2 ∗ PPC(i, j)−

PPC(i, j)− if PPC(i, j)− > 2 ∗ PPC(i, j)+

0 otherwise
(5)

2.4.3 Validate the PPC metric by the capability of recalling r-type PAG-PAG 
relationship.—To validate the PPC metric, we drew the receiver-operating-characteristic 

curve (ROC) when using it to separate true r-type PAG-PAG relationship from the random 

PAG-PAG relationship. Here, the positive set contains significant overrepresentative (16) r-

type PAG-to-PAG relationships in PAGER with pmf < 0.01 (refer to section 2.1). The 

negative set contains 10,000 under-representative r-type PAG-to-PAG relationships, and then 

randomly seed the false set’s sample size equal to the true set’s sample size. The positive set 

is from the causal PAG-to-PAG relationship’s randomly chosen in PAGER (10). Table 1 

shows how to setup confusion matrix when the PPC score is used to classify between the 

over-representative and the under-representative relationships. We expect that the area-

under-curve (AUC) using the real expression data (GSE32474) should be significantly 

higher than the AUC using the random expression data, which should receive values close to 

0.5. In this work, we generated random expression data by randomly set the discrete 

expression for each gene in each sample by −1, 0 or 1.

2.5 Case study: infer PAG-PAG causal relationship by applying E-GGCC to the myeloid-
derived suppressor cells expression data set

We demonstrate the capability of the E-GGCC analysis in inferring PAG-PAG causal 

relationship in myeloid-derived suppressor cells case study, as showed in Figure 2. The 

(MDSC) related PAGs were identified at Purdue University Center for Cancer Research. 

Starting with the expression data for MDSC (31), we identified 1,105 differentially 

expressed genes, which includes 576 over-expressed genes (N+) and 529 under-expressed 

genes (N−), according to the methods in (17). From these differentially expressed genes, we 

queried PAGER with NP-HART to find the N+/N− associated and the r-type relationship 

among these PAGs (17). Finally, we applied the E-GGCC algorithm to annotate these r-type 

as ‘stimulatory’ (strong PPC+ score) or ‘inhibitory’ (strong PPC− score) and inferred the 

causal relationships in the r-type PAG-to-PAG’s network.

3 Results

3.1 The gene-gene expression correlation identified from functional genomic data

In Figure 3, we show the distribution of the absolute value of GGC score for all possible 

gene-gene co-expressions, which justifies our choice of choosing −0.5 and 0.5 as the 

threshold for selecting GGC score. The distribution of the absolute value of GGC is close to 

the normal form, which implies that the distribution of all GGC is in bi-normal form. Here 

we choose GGC cutoff threshold to be 0.5, because we believe that it’s a conveniently 

applicable threshold that ensures 57,576 significant expression correlations with p-value ≤ 

5.86 ×10−5. There are 57,576 correlations satisfying this threshold condition.
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The gene degree of significant positive gene-gene correlation pairs and of negative gene-

gene correlation pairs follow the power law shown in Figure 4. The linear regression R2 of 

significant positive gene-gene expression correlation pairs is 0.93, and R2 of significant 

negative gene-gene expression correlation pairs is 0.88.

3.2 The PPC score could re-discover the r-type PAG-to-PAG relationship

In Figure 5, we show that the PPC could be applied to classify between existing r-type PAG-

PAG relationships and the under-representative relationships. With the GSE32474 dataset, 

the PPC score achieves AUC = 0.81. Meanwhile, with the random expression dataset, the 

PPC only achieves AUC = 0.50. This result implies that the PPC score is consistent with the 

real biological expression correlation patterns. We found that the optimal PPC threshold for 

the confusion matrix (table 1) is 1.0 to reach the precision of 0.60 and recall of 0.01. From 

this threshold, we were able to characterize 12,212 r-type PAG-PAG relationships as either 

‘stimulatory effect’ (PPC+ > PPC−) or ‘inhibitory effect’ (PPC+ < PPC−). The statistics of 

PAGs, PAG-PAG relationships and characterization could be found in Table 2.

We have present top 4 significantly causal PAG-to-PAG relationships (top 8% in the pair of 

two PAGs’ size ≤ 1000, and at least one is P-type PAG) in PAGER. We found several DNA 

replicate related pathways, e.g. WIG000672, WIG001985, WIG000802 have the stimulatory 

effect on the DNA binding or DNA repair-related PAGs, e.g. TAX001140, MAX001341 in 

Table 3.

3.3 PAG-PAG causal relationship in MDSC gene expression case study

In our MDSC network in Figure 6, we identify 239 PAGs and 191 PAG-PAG relationships in 

the MDSC as shown in Table 4. Similar to (17) we chose the central PAG as FEX001153 

(16). Among these PAGs these, two m’PAGs, U1′  (11 genes), U2′  (7 genes) are in the 

upstream of FEX001153 and one is a downstream m’PAG, D1′  (11 genes) is in the 

downstream of FEX001153. We found 3 causal PAG-to-PAG have stimulatory effects and 3 

causal PAG-to-PAG have inhibitory effects using E-GGCC (Table 5,6). The PAG 

MAX003319 has a stimulatory effect on the PAG FEX001153.

We found several literatures supporting the PAG-PAG causal relationship showed in Figure 

6. For the PAG MAX003319 has a stimulatory effect on the PAG FEX001153, the report 

(32) presented the same conclusion as B lymphocyte stimulator enhancement of humoral 

immune response.

There are two PAGs, MAX002771, WIG001016ve inhibitory effect on the PAG 

FEX001153. Yoneyama et al (33) reported that the cellular protein retinoic acid-inducible 

gene I (RIG-I) senses intracellular viral infection and triggers a signal for innate antiviral 

responses, which is strong evidence to support RIG-I/MDA5 signaling having a positive 

effect on immune system. Similarly, Sakaguchi et al (34) reported that FOXP3+ TReg cells 

can also suppress antitumor immune responses and favor tumor progression.
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FEX001153 has a stimulatory effect on two PAGs, MAX001758 and MAX002449. Wherry 

et al (35) indicate that lineage relationship and protective immunity of memory CD8 T cell 

subsets, which support the point of immune system stimulatory effect on CD8 T cell.

FEX001153 has inhibitory effect on a PAG MAX001454. Müller-Schmah et al (36) revealed 

the mechanism of immune response acting as long-lasting disease control in spontaneous 

remission of MLL/AF9-positive acute myeloid leukemia response acting as long-lasting 

disease control in spontaneous remission of MLL/AF9-positive acute myeloid leukemia.

4 Conclusions

In this work, we presented a new way to infer causal PAG-to-PAG regulatory relationships. 

Our approach could be adaptive to different gene expression data sources, which are varied 

by subjects, treatments and phenotypes. Compared to previous work in discovering 

relationships among the pathways (22,23), our work has two advantages. First, we are able 

to integrate domain-knowledge gene-gene relationship to reduce potential noise discovery 

from co-expression analysis (37). Second, our discretization approach in handling the 

expression data requires fewer assumptions on the scale and distribution of the data. These 

assumptions (29,38) are required in common statistical analysis but may not be satisfied in 

expression data. Our framework could reveal several causal relationships among the PAGs in 

MDSC case study.

However, the advantages our framework associate with several limitations. First, by relying 

on the existing PAG− PAG relationship, our framework has limited capability in discovering 

novel PAG-PAG relationships. Second, by relying on simple discretization approach for co-

expression analysis, our approach is less systematic and may not able to evaluate the 

statistical significance of the discovered gene-gene co-expression. In addition, the quality 

and coverage of causal relationship found in this framework depend on the 

comprehensiveness of the expression data. As shown in our case study, the MDSC case is 

independent from the GSE32474 dataset. In addition, the GSE32474 does not contain any 

cell lines for MDSC. This fact explains why we could only rediscover 6 causal relationships 

among 191 existing r-type PAG-PAG relationships. Therefore, the users should choose the 

expression dataset carefully and in accordant to the expected PAG-PAG relationships.
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Figure 1. 
An illustration showing how to determine Pi to Pj regulation details as either “positive” 

(stimulation) or “negative” (inhibition) based on PAG-to-PAG regulation relationships and 

gene-gene correlation data.
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Figure 2. 
An overview of the pipeline for constructing the MDSC causal regulatory PAG-to-PAG 

network.
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Figure 3. Distribution of GGC scores for gene expression correlation among all genes in PAGER.
The circle points stand for expression correlation calculated from the actual GSE32474 

expression dataset. The plus points stand for expression correlation calculated from the 

random expression dataset.
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Figure 4. Gene degree of significant positive gene-gene correlation pairs and of negative gene-
gene correlation pairs.
The linear regression R2 of significant positive gene-gene correlation pairs is 0.93, and R2 of 

significant negative gene-gene correlation pairs is 0.88.
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Figure 5. The receiver-operator characteristic (ROC) curve to demonstrate the prediction 
performance of identified causal PAG-to-PAG regulatory relationship details (stimulatory/
inhibitory or not).
The two curves show a comparison using the same significance tests with the use of either 

the GSE32474 real data set or a randomly reshuffled data set. The Area-under-curve (AUC) 

performances are also indicated.
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Figure 6. MDSC-specific network with causal mPAG-to-mPAG regulatory effect details.
The m’PAGs are colored in grey. Colored edges indicate either stimulatory effects (in red) or 

inhibitory effects (in green) among mPAG-to-mPAG regulatory relationships.
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Table 1.

The confusion matrix for generating the ROC curve.

PPC score as test

≥ PPC threshold < PPC threshold

Pmf as T/F criteria
pmf ≤0.01 over representation TP (12.212) FN (8.267)

pmf ≤0.01 under representation FP (1.995) TN (18.484)
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Table 2.

An overview of PAG and PAG-to-PAG identified data statistics.

Counts

Genes in PAGs 44,313

Gene-Gene Relationships 115,840

  PPI   93,713

  Gene Regulation   22,127

PAGs 38,446

  PAGER original PAGs   38,379

  NP-HART virtual PAGs   87

r-type PAG-PAG pairs 24,816

  Stimulatory effect (PPC>1)   7,618

  Inhibitory effect (PPC>1)   4,594
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Table 4.

The statistics of PAG-PAG causal relationship in MDSC case study.

Categories Count

PAGs 239

  Up-regulated (N+)   26

  Down-regulated (N−)   156

  Other   57

PAG-PAG Regulations 191

  Stimulatory effect   3

  Inhibitory effect   3

  Cannot characterize   185
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Table 5.

PAGs’ name in the MDSC network.

PAG ID PAG name

FEX001153 Comprehensive List of Immune-Related Genes

MAX003319 B lymphocyte late differentiation genes (LDG): top genes down-regulated in plasma cells from tonsils (TPC) compared to those 
from bone marrow (BPC)

MAX002771 Genes up-regulated specifically in human thymus

WIG001016 Genes involved in Negative regulators of RIGI/MDA5 signaling

MAX001758 Genes down-regulated in the influenza-specific
CD8+ T lymphocytes from bronchoalveolar lavage (BAL) compared to those from spleen

MAX002449 Genes down-regulated in T lymph

MAX001454 Myeloid leukemia model in mice with germ-line MLL-AF9 fusion knock-in [GeneID=4297;4300]: genes changed in 
comparison among the leukemic, preleukemic and wild-type animals
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Table 6.

Causal PAGs identified in the MDSC-specific network relative to the immunity PAG

Direction Effect PAG ID PPC

Upstream stimulatory MAX003319 3.4

inhibitory
MAX002771 21.2

WIG001016 2.5

Downstream
stimulatory

MAX001758 26.5

MAX002449 15.8

inhibitory MAX001454 2.6
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