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Abstract

Dempster-Shafer evidence theory is a primary methodology for multi-source information fusion 

because it is good at dealing with uncertain information. This theory provides a Dempster’s rule of 

combination to synthesize multiple evidences from various information sources. However, in some 

cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or 

improved methods have been proposed to suppress these counter-intuitive results based on 

perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game 

theory, this paper considers a biological and evolutionary perspective to study the combination of 

evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically 

supported proposition in a multi-evidence system. Within the proposed ECR, we develop a Jaccard 

matrix game (JMG) to formalize the interaction between propositions in evidences, and utilize the 

replicator dynamics to mimick the evolution of propositions. Experimental results show that the 

proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical 

paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such 

as solution’s stability and convergence, have been mathematically proved as well.
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Index Terms

Dempster-Shafer evidence theory; Belief function; Evolutionary game theory; Evolutionarily 
stable strategy; Replicator equation; Multi-source information fusion

I. Introduction

Multi-source information fusion aims to integrate multiple data and knowledge from various 

information sources into a consistent, comprehensive, and useful estimation for objects. 

Many issues in a variety of disciplines can be translated into canonical multi-source 

information fusion problems. Because of that, many fields extensively use multi-source 

information fusion [1], [2]. Yet, a crucial issue remains in multi-source information fusion 

regarding how to represent and dispose the imprecise, fuzzy, ambiguous, inconsistent and 

even incomplete information [3]–[5]. As a tool of reasoning in an uncertain environment, 

Dempter-Shafer evidence theory [6], [7] established a rounded system for uncertainty 

management [8]–[12]. In this theory, the data from each information source is represented as 

a mass function, also referred to as evidence, and Dempster’s rule of combination is 

provided to combine multiple evidences for the fusion of multi-source information. 

However, the combination rule is controversial. Even though it has many desirable 

characteristics, such as commutativity, associativity, and fast and clear convergence towards 

a solution, in some cases, especially when the evidences to be combined are highly 

conflicting, Dempster’s rule of combination may produce counter-intuitive results illustrated 

by Zadeh’s paradox [13], evidence shifting [14], [15], dictatorial power of Dempster’s rule 

[16], [17], etc.

Since Dempster’s rule can produce counter-intuitive results, much debate and effort has 

gone into developing alternatives or new methods for evidence combination, such as 

conjunctive rule [18], disjunctive rule [19], cautious conjunctive rule and bold disjunctive 

rule [20], etc [15], [21]–[27]. In the controversy of Dempster’s rule [28]–[33], some believe 

the rule is inadequate and advocate modification of the original rule or propose new rules 

entirely, whereas others defend Dempster’s rule and advocate the modification or pre-

process of original evidences [16]. Corporately, both sides are expected to draw a synthetic 

evidence that can best represent the system consisting of all original evidences, which is a 

typical information fusion process. During the process, a hidden criterion is to minimize the 

information loss or information deviation between the obtained synthetic evidence and the 

original evidences. This criterion is typically based on physical or engineering perspective, 

such as principle of conservation of information.

Inspired by evolutionary game theory, this paper uses a biological and evolutionary 

perspective to study information fusion. In order to obtain the most supported propositions, 

the process of evidence combination is compared to the evolution of species to find 

individuals with the highest fitness and survival rate in a population. During this process, 

evolutionary game theory [34], [35] provides a theoretical framework. Specifically, the 

supported propositions in evidences are treated as strategies adopted by individuals in a 

given population. First, by interacting with others, individuals receive payoff which 
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determines their fitness within the population. Then, individuals with high fitness have a 

higher probability to reproduce, thereby increasing their rate within the population. Finally, 

through the evolution of population, individuals with the highest fitness survive, and the 

strategy adopted by them succeeds in becoming the most supported or acceptable 

proposition. The proposed method is called as evolutionary combination rule (ECR). 

Although the method is referred to as a rule, the ECR is not a traditional evidence 

combination rule, which would be expected to obtain a synthetic evidence. Rather, the ECR 

aims to find the most supported proposition in a multi-evidence system. And because ECR 

can directly find the proposition(s) with the highest fitness, the proposed ECR provides fast 

decision-making support for evidence-based multi-source information fusion without relying 

on a transformation function between evidence and probability distribution.

The rest of the paper is organized as follows. Section II provides a brief introduction to 

Dempster-Shafer evidence theory and evolutionary game theory. Section III presents the 

proposed ECR, which primarily contains five parts, including evidence weighted averaging, 

construction of Jaccard matrix game, evolutionary dynamics, evolution of averaging 

evidence, and two-dimensional measure output. After that, illustrative examples are given to 

show the effectiveness of the proposed method in Section IV. Finally, Section V concludes 

this paper.

II. Preliminaries

A. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory [6], [7], also called Dempster-Shafer theory (DST) or 

evidence theory, is used to handle uncertain information. This theory requires weaker 

conditions than that of Bayesian theory of probability, so DST is often regarded as an 

extension of Bayesian theory – see discussion in [17]. Recently, different fields have 

expressed concerns over the applications of DST, such as parameter estimation [36], [37], 

classification and clustering [38]–[40], decision-making [41]–[44], etc [45]–[51]. And, as an 

extension of this theory, Dezert-Smarandache Theory (DSmT) of plausible and paradoxical 

reasoning [52]–[54] has also been given much attention [27], [55]. A few basic concepts on 

DST are introduced below.

Let Ω be a set of mutually exclusive and collectively exhaustive events, indicated by Ω = 

{E1,E2, · · ·,Ei, · · ·,EN}, where set Ω is called a frame of discernment (FOD). The power set 

of Ω is indicated by 2Ω, namely 2Ω = {∅, {E1}, · · · , {EN}, {E1,E2}, · · · , {E1,E2, · · ·,Ei}, · · 
· ,Ω}. The elements of 2Ω or subset of Ω are called propositions. For example, if A ∈ 2Ω, then 

A is a proposition.

For a FOD Ω = {E1,E2, · · ·,EN}, a mass function is a mapping of m from 2Ω to [0, 1] which 

satisfies the following condition:

(1)
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In DST, a mass function is also called a basic probability assignment (BPA), a belief 

function, or a piece of evidence. The assigned probability m(A) measures the belief exactly 

assigned to A and represents how strongly the evidence supports A. If m(A) > 0, A is called 

a focal element.

In DST, two independent evidences m1 and m2 are combined with Dempster’s rule of 

combination, denoted by m = m1 ⊕ m2, and defined as follows:

(2)

with

(3)

B. Evolutionary game theory

Developed by John Maynard Smith, evolutionary game theory (EGT) [34], [35] studies the 

interaction among different players or populations. In recent years, EGT has become a 

paradigmatic framework to understand the emergence and evolution of cooperation among 

unrelated individuals [56]–[63], and inspired wide applications in myriad disciplines [64]–

[71]. Nowak and May [72] first investigated a spatial prisoner’s dilemma to demonstrate that 

spatial structure can promote cooperation. Axelrod’s computer tournament [73] provided a 

platform to observe how cooperation evolves in a competitive environment. Santos and 

Pacheco [74] found that the cooperation can be greatly promoted in a scale-free network. 

Recent advances about the EGT can be found in [75], [76]. The main idea of the EGT is to 

track the change of each strategy’s frequency in the population during the evolutionary 

process. Two key concepts of EGT are evolutionary stable strategy (ESS) [34] and replicator 

equation (RE) [77], [78].

1) Evolutionarily stable strategy (ESS)—In a given environment, ESS is a strategy 

adopted by a population that can not be invaded by any other alternative strategy which is 

initially rare. The conditions required by an ESS are formulated as [34], [35]:

(4)

or

(5)
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for all T ≠ S, where strategy S is an ESS, T is an alternative strategy, and E(T,S) denotes the 

payoff of strategy T playing against strategy S.

Biologically, an evolutionarily stable strategy can not be successfully invaded by any mutant 

strategies. In game theory, there are two kinds of strategies: pure strategies and mixed 

strategies. A pure strategy defines an absolutely certain action or move that a player will 

play in every possible attainable situation within a game. In contrast, a mixed strategy is an 

assignment of a probability to pure strategies, allowing a player to randomly select a pure 

strategy. In other words, in a mixed strategy, there are two or more pure strategies that can be 

selected by chance. If the evolutionarily stable strategy S is a pure strategy, then S is called a 

pure ESS. Once S is a mixed strategy, S is called mixed ESS.

2) Replicator equation (RE)—In EGT, the replicator equation (RE) [77], [78] plays a 

key role in determining the evolutionary process of a population, by providing a frequency-

dependent evolutionary dynamics.

Assume there exists n strategies in a well-mixed population. A game payoff matrix A = [aij ] 

determines the payoff of a player with strategy i if he meets another player who carries out 

strategy j. The relative frequency of strategy i, denoted as xi, changes with time by the 

following differential equation:

(6)

where fi is the fitness of strategy i which is defined by , and ϕ is the average 

fitness of all strategies which is defined by .

Eq.(6) is the so called replicator equation, which implies that the change of xi depends on 

the fitness of strategy i and xi itself. By solving , i = 1, · · · , n, the fixed points of this 

evolutionary system, denoted as ( ), can be found. Regarding the stability of each 

fixed point ( ), a theorem is usually used to verify whether or not the fixed point is 

stable, which is given below.

Theorem 1: [78] Given a set of replicator equations , i= 1, · · · , n, the fixed 

point  is asymptotically stable if all eigenvalues associated with p* are 

negative numbers or have negative real parts.

For more details on the theorem, please refer to [78]. As shown in Theorem 1, the stability 

of a solution is based on the resulting sign of the real part of the eigenvalues. However, when 

the eigenvalues are pure imaginary numbers, this theorem is not capable for the stability 

analysis. In that case, the vector field method [79] can be used for the stability analysis of 

replicator equations.
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III. Evolutionary combination rule (ECR)

Traditional approaches of evidence combination aim to obtain a new evidence that best 

synthesizes all information. Then, decisions can be made based on the obtained synthetic 

evidence. In this paper, instead of seeking the best synthetic evidence, our purpose is to find 

the best supported proposition (i.e., a nonempty subset of the FOD) - analogous to finding 

the most probable element given a probability distribution. In order to achieve that purpose, 

an intuitive approach is to directly compare the mass of belief of each proposition among all 

evidences. However, the drawback of the intuitive approach is obvious because it ignores the 

interactions between propositions. Natural selection, which provides an excellent 

mechanism to find individuals with higher fitness, has inspired us to consider this problem 

from a biological and evolutionary standpoint. It is interesting to transplant the mechanism 

of natural selection to information fusion.

In this paper, we propose a new method, called evolutionary combination rule (ECR), for 

evidence combination based on evolutionary game theory. In the ECR, propositions in the 

FOD are naturally seen as strategies that can be adopted by a population in a given 

environment. Through the evolutionary process of population, the propositions with the 

higher fitness are found out to facilitate the subsequent analysis and decision. Fig. 1 gives 

the framework of proposed ECR. There are five parts, including evidence weighted 

averaging, construction of the Jaccard matrix game, evolutionary dynamics, evolution of 

averaging evidence, and two-dimensional measure output, all of which will be detailed 

further in this section. Most notably, in the proposed ECR, there are two basic problems: (i) 

what are the interactive relationships between propositions (strategies) ? (ii) how do 

propositions evolve in a population? As shown in the following content, the two questions 

are answered detailedly in part B and C, respectively.

A. Evidence weighted averaging

Given multiple evidences from different information sources, in accord with the traditional 

assumption, these evidences are mutually independent. For these independent evidences, by 

considering the difference of importance among information sources, the weighted 

averaging approach is used to integrate multiple evidences.

Given a FOD Ω, assume there are n evidences or BPAs indicated by m1, · · ·, mn, with each 

evidence having a weighting factor indicated by wi, . The averaging evidence is 

denoted as m, which is obtained by

(7)
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B. Jaccard matrix game (JMG)

In the ECR, propositions (i.e., nonempty subsets of the FOD) are treated as strategies. A key 

problem is to define the interaction rule between these propositions. Given a FOD Ω, 

suppose proposition A meets proposition B, how many payoffs will be obtained for A, and 

then for B as well? In biology, there is a so-called greenbeard effect that shows cooperative 

behaviors are more likely to appear between individuals with similar phenotypes [80]. 

Inspired by that, an individual with a proposition, say A, should obtain more payoffs if he 

interacts with another individual with a proposition similar to A. Specially, in an interaction, 

each individual obtains 1 if the two propositions are identical and 0 if the propositions are 

totally different. Here, since propositions are represented in the forms of sets, the measure of 

similarity degree between sets is considered to solve this problem. Mathematically, the 

Jaccard similarity coefficient measures the similarity degree between two sets [81]. 

Therefore, a game model, named as Jaccard matrix game (JMG), is proposed to formalize 

the interaction relationship between propositions.

Definition 1—Given a FOD Ω, a Jaccard matrix game (JMG) on Ω is defined as

(8)

where the set of strategies is composed by propositions of FOD Ω. The payoff matrix is JΩ = 

[JΩ(A,B)]A,B⊆Ω, in which JΩ(A,B) represents the payoff of proposition A playing against 

proposition B, and it is defined by the Jaccard similarity coefficient between sets A and B, 

i.e., .

Example 1—Given a FOD with two elements Ω = {a, b}, a JMG on Ω, denoted as (Ω, JΩ), 

can be constructed. In this game, the set of all potential strategies is {a, b, ab} (for the sake 

of presentation, set {x, y} is abbreviated as xy), and the payoff matrix is easily calculated

(9)

Each proposition A ⊆ Ω in FOD is equivalent to a pure strategy in the JMG, all propositions 

consist of the set of pure strategies adopted by a population. As shown in the above example, 

a JMG can be constructed if a FOD is given. Two important corollaries about the JMG are 

shown below.

Corollary 1—A JMG (Ω, JΩ) is a partnership game.

Proof: Assume a two-person game is in normal form Γ(S1, S2,E1,E2) where S1, S2 are 

players’ sets of strategies, and their payoff functions are Ei : S1×S2 → R, i = 1, 2. The game 
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Γ(S1, S2,E1,E2) is called a partnership game if S1 = S2, and E1(s1, s2) = E2(s1, s2) for all s1 ∈ 
S1, s2 ∈ S2. Due to the symmetry of strategy spaces and payoff matrices, the partnership 

game can also be written as Γ(S,E) where E is the shared payoff matrix by two players and E 
= ET. According to Definition 1, in a JMG (Ω, JΩ), the strategy sets of all players are the 

same, i.e., {A|A ⊆ Ω,A ≠ ∅}. And , then we have JΩ(A,B) 

= JΩ(B,A). So the JMG is a partnership game.

Corollary 2—Let  be the set of all ESSs (evolutionarily stable strategies) in the JMG 

(Ω, JΩ), then

Proof: First, let us prove that each pure strategy in the JMG is definitely an ESS.

Assume all propositions in Ω are indexed by 1, 2, · · · , 2|Ω|− 1. A strategy A = (p1, · · · , pk, · · 
· , p2|Ω|−1) is a pure strategy associated with proposition k if pk = 1 and ∀l ≠ k, pl = 0. The 

payoff of pure strategy A playing against itself is

For any other strategy B = (q1, q2, · · · , q2|Ω|−1) where qi ≥ 0 and , and B ≠ A (i.e., 

∃j such that qj ≠ pj ), the payoff of B playing against A is

So, E(A,A) > E(B,A). According to Eq.(4), A is an ESS.

Second, let us prove that all ESSs are pure strategies, which just needs to prove that any 

mixed strategy in the JMG is not an ESS. Assume there are two strategies, P = (p1, p2, · · · , 
p2|Ω|−1) and Q = (q1, q2, · · · , q2|Ω|−1), where P is a mixed strategy and Q can be either a 

mixed or pure strategy, and P ≠ Q. Then,
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Let , we have . Since P can only be a mixed 

strategy, i.e.,  and ∀i, pi ∈ [0, 1), it is found that: (i) E(P, P) < max[Ti], if ∃i, j, 
such that Ti ≠ Tj; (ii) E(P, P) = Ti, if ∀i, j, such that Ti = Tj.

Similarly, it is found that . Because Q can be a pure or mixed strategy, 

let qk = 1, where Tk = max[Ti], and we can obtain that E(Q, P) = max[Ti].

So, a Q always exists such that E(Q, P) ≥ E(P, P). The first alternative condition of mixed 

strategy P as an ESS, shown in Eq.(4), does not hold.

Let us check the second alternative condition shown in Eq.(5). Assume 

, we can obtain that  and . 

Similarly, E(P,Q) ≤ max[Ui] where equality holds if ∀i, j, Ui = Uj, and there always exists a 

Q such that E(Q,Q) = max[Ui]. Thus, it is found that ∃Q where Q ≠ P, such that E(Q,Q) ≥ 

E(P,Q), for each P. Hence, for mixed strategy P, the condition shown in Eq.(5) also does not 

hold. That means mixed strategies can not be ESSs in the JMG, which finishes the proof.

Corollary 2 shows a one-to-one correspondence between pure strategies and ESSs in the 

JMG. Since propositions and pure strategies are equivalent in the JMG, we also refer to the 

evolutionary stable strategy (ESS) as the evolutionary stable proposition (ESP). Therefore, 

assuming the set of ESPs in the JMG is indicated by , we have .

C. Replicator dynamics on the JMG

Once the interaction relationship between propositions has been determined, the next step is 

examining how the propositions evolve. In other words, what types of evolutionary 

dynamics is adopted by the population? To answer this problem, the replicator equation is 

considered to mimick the evolutionary process of the population because of two reasons. 

First, it accurately simulates the evolution of the population in a well-mixed environment 

where individuals can randomly interact with other members of the population. Second, the 

replicator equation is mathematically equivalent to the Lotka-Volterra equation of ecology 

[78] which describes the dynamics of species in an interactive biological system. The Lotka-

Volterra equation closely models reality because it does not rely upon the rationality 
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assumption which is fundamental but challenged in classical game theory. Therefore, the 

equivalent replicator equation eliminates the controversy of the rationality assumption. The 

replicator dynamics on a JMG is defined as follows.

Definition 2—Given evidence m on a FOD Ω, the belief or basic probability for 

proposition A, denoted as m(A), evolves in time according to the equation

(10)

where fA is the fitness of proposition A that

(11)

and ϕ is the average fitness of population

(12)

For simplification, the differential dynamic system shown in Eqs.(10)–(12) can be rewritten 

as

(13)

where mi = m(i) and i ⊆ Ω, i ≠ ∅. In regards to the convergence and stability of the system 

Eq.(13), we have two corollaries shown as follows.

Corollary 3: Convergence—Every solution trajectory of replicator dynamics system Eq.

(13) converges to a fixed point.

Proof: We define a function V by the average payoff of population

Clearly, V̇ (m) = ṁT · JΩm + mT · JΩṁ. Because JΩ is symmetric, ṁT · JΩm = mT · JΩṁ. 

Thus, we have
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and therefore, since .

Equality holds if and only if all terms (JΩm)i for which mi > 0 take the same value, i.e.,

Clearly, the above condition characterizes the fixed points of replicator dynamics system Eq.

(13) where all pure strategies that are present in the population get precisely the same 

payoff. It shows that the average payoff of population V (m) increases over time first and 

then converges until the system reaches a fixed point, which implies that every solution 

trajectory converges to a fixed point.

Corollary 4: Stability—Let  be the set of asymptotically stable points (ASPs) of 

replicator dynamics system Eq.(13), and  be the set of evolutionarily stable 

propositions (ESPs) of the corresponding JMG (Ω, JΩ), then 

.

Proof: Let us first prove “⇒”. Suppose , m is a solution of Eq.(13) in a 

neighborhood U of m*, and 0 log0 = 0 log∞ = 0. We define a Lyapunov function by the 

relative entropy:

Because logarithm is concave function and in terms of Jensen’s inequality,
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Then, we calculate the derivative of H with respect to time:

According to [78] (Theorem 6.4.1), given a payoff matrix E, a strategy p* is an ESS if and 

only if (p*)T · Eq > qT · Eq for any q in some neighborhood of p* and q ≠ p*. Here, since 

 and  (Corollary 2), we have (m*)T · JΩm > mT · JΩm. Thus, 

Ḣm* (m) < 0. Based on Lyapunov’s stability theory, m* is asymptotically stable, i.e., 

.

Second, let us prove “⇐”. Assume . According to Corollary 3, for the replicator 

dynamics system Eq.(13), the average payoff of population increases over time unless it 

reaches a fixed point. Because m* is a asymptotically stable fixed point, then

for all m ≠ m* in some neighbourhood of m*. We replace m by 2m−m*(which is also near 

m*), and can get

By expanding the right hand side and transposing, it is found

which is the condition for an ESS (Theorem 6.4.1 in [78]). Hence, we have proved 

.
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Corollary 3 ensures that a unique and convergent solution will be absolutely obtained by 

using the proposed ECR. Corollary 4 shows a one-to-one correspondence between ASPs of 

the replicator dynamics and ESPs of the JMG. According to Corollary 4, we can directly 

judge the stability of solution obtained by using the ECR, without extra calculating the 

eigenvalues of solution shown in Theorem 1.

Example 2—Given a FOD Ω = {a, b}, there is a JMG Γ = (Ω, JΩ) where its payoff matrix 

JΩ is shown in Eq.(9). In this JMG, there are three propositions as pure strategies: a, b, and 

ab. Assume m(a) = x, m(b) = y, and m(ab) = z, where x + y + z = 1. According to the 

replicator dynamics, we can write (replacing, as usual, the time derivatives of x, y, z with ẋ, 

ẏ, z˙),

(14)

where

(15)

and

(16)

The fixed points of replicator dynamic system Eqs. (14)–(16) can be obtained by ẋ = 0, ẏ = 

0, z˙ = 0. They are 

, and 

. According to Corollaries 2 and 4, fixed points  and  are 

asymptotically stable, and  are unstable.

The stability of each fixed point can also be checked through Theorem 1. First, we need 

construct a Jacobian matrix:

(17)
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For example, for fixed point ,

(18)

Then, the stability of  is determined by the eigenvalues of the following characteristic 

equation

(19)

where det is the determinant of a matrix, and I is the identity matrix. So, the eigenvalue λ 
can be calculated as λ1 = −1, λ2 = −1, and λ3 = −0.5. According to Theorem 1,  is an 

asymptotically stable fixed point since all eigenvalues are negative numbers. Through this 

approach, the stability of other fixed points can be found, as shown in TABLE I. They are 

identical with that obtained by using Corollaries 2 and 4.

Graphically, a two-dimensional space known as simplex can clearly represent the 

evolutionary dynamics of propositions a, b and ab in this example, as shown in Fig. 2. In the 

simplex, every vertex of means that there only exists a sole proposition (i.e., strategy) in the 

population, edges represent that at least a proposition is missing in the population. The 

interior of the simplex corresponds to the condition of all propositions in coexistence. At 

each point of the simplex, the sum of the belief of all propositions is 1. In addition, the 

arrows in Fig. 2 represent the directions of evolution, where black circles indicate ASPs, and 

white circles are unstable fixed points. Fig. 2 clearly shows that there are three ASPs that are 

precisely ESPs of Γ, and that there are three unstable fixed points located on the midpoints 

of each edge.

D. Evolution of averaging evidence

As previously stated, given an evidence, which is usually the average of multiple evidences 

in multi-source information fusion, the replicator dynamics determines into which 

proposition this evidence will evolve. The following example shows the evolutionary 

process.

Example 3—Given an evidence m on a FOD Ω = {a, b, c}:

We want to find which is the most possible object among a, b, c, in terms of m. However, as 

shown above, the support degrees for objects a, b and c are very similar in m. In order to 

solve the problem, let us use the proposed ECR. Let m be the initial configuration of this 
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population at time t = 0, and mt(A) be the mass value of m(A) at time t, where A ⊆ Ω. The 

evolutionary process is illustrated by

(20)

In this paper, we simulate the evolutionary process of each proposition by using the fourth-

order Runge-Kutta method, as shown in Fig. 3, where the horizontal axis “Time” indicates 

time points in the Runge-Kutta method. According to Fig. 3, given an initial configuration 

determined by evidence m, proposition ac survives and finally occupies the population at the 

end of evolution, while other propositions become extinct. For evidence m, the 

corresponding ESP is ac, denoted as ESPm = ac. Therefore, in m, the most supported object 

is either a or c. As shown in Fig. 3, by using the Runge-Kutta method, the evolutionary 

curve of each proposition can be tracked, and the time required for reaching equilibrium can 

be obtained. In this paper, we assume the replicator dynamics equation reaches equilibrium 

when the maximum increment or decrement of propositions’ mass values or beliefs between 

two adjacent time points is less than 10−3.

E. Two-dimensional measure

Within the ECR, Corollary 3 shows that an equilibrium state (ES), which is an either stable 

or unstable fixed point, will be obtained given any evidence. As proved in Corollary 4, the 

obtained ES is asymptotically stable if it is an ESP, otherwise it is an unstable ES. Yet, there 

is still another problem: If two different evidences evolve into the same ES, how can we 

distinguish them? By considering that the ECR contains a dynamic evolutionary process, we 

suggest to reflect such difference by using the time of evolution from initial state to the ES. 

Two examples are given as follows.

Example 4—Given two evidences, indicated by m1 and m2, on FOD Ω = {a, b},

The evolutionary process of propositions in m1 and m2 are shown in Fig. 4. Evidences m1 

and m2 evolve to a same ES which is ESP a, namely ESm1 = a, and ESm2 = a. But the time 

of evolving to the ES are different for the two evidences. For m1, tES = 13.0459. For m2, tES 

= 16.8553. From the viewpoint of evolution, less time of reaching the ES implies that m1 is 

much closer to ESP a, hence proposition a is better supported in m1.

Example 5—Given a FOD Ω = {a, b, c}, there is an evidence m, shown as below:
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where x ∈ [0, 0.9]. Now let us investigate the ES associated with m and the time evolving to 

that ES, with the change of x from 0 to 0.9 with an increment of 0.01.

Fig. 5 illustrates the results. From the figure, we can see that the ES of m is ESP b if x ≤ 

0.45, and ESP a if x ≥ 0.46. It is found that tES changes with the initial configuration of 

evidence m. When x ≤ 0.45, as the population evolves to ESP b, tES increases with the 

decrease of m(b); when x ≥ 0.46, as ESm = a, tES decreases with the increase of m(a). These 

results means that, if two evidences evolve to the same ES, say A, a higher m(A) leads to a 

lower tES.

Therefore, we say that tES measures the time cost of an evidence evolving to its associated 

ES. From a biology perspective, tES reflects the evolutionary distance from the given 

evidence m to its associated ES ESM. Based on this consideration, we use tES to further 

depict the relationship between m and ESM. Then, a two-dimensional measure is defined as 

the outcomes of the ECR.

Definition 3—Assume there are n evidences indicated by m1, · · ·, mn, where m is the 

average of these n evidences, the evolutionary output of the ECR is represented as

(21)

where ESm is the equilibrium state associated with m based on replicator dynamics, and tES 

is the time of m evolving to the equilibrium state.

The time of evolving to an ES provides a reference for the evolutionary distance between the 

averaging evidence m and its associated ES ESm. It is worthy to notice that the final 

equilibrium state is asymptotically stable if ESm is an ESP, otherwise the equilibrium state is 

an unstable state where two or more propositions coexist and a slight disturbance will cause 

the output deviates from such unstable equilibrium state. In this sense, the stability of ESm 

implies the robustness of the outcomes of the ECR to some degrees. If ESm is stable, the 

multi-evidence system m1, · · ·, mn has a good consistency. Conversely, if ESm is unstable, it 

means there may be highly discordant or conflicting information among evidences m1, · · ·, 

mn. In addition, the proposed ECR is with two other properties:

• The ECR is commutative, i.e., fECR(m1, m2) = fECR(m2, m1).

• The ECR is idempotent, i.e., fECR(m) = fECR(m, · · ·, m).

Proof: Within the ECR, mainly, the first is to calculate the averaging evidence m by Eq.(7), 

the second is the evolution of averaging evidence m based on replicator dynamics. Since,

and
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the ECR is commutative and idempotent.

IV. Illustrative examples and analysis

A. Combination of highly conflicting evidences

Conflicting evidence combination [82], [83] is a main concern to verify the effectiveness of 

combination rules in multi-source information fusion.

Example 6—Zadeh’s paradox [13]. Two doctors diagnose a patient, and they agree that the 

patient suffers from one of three diseases: meningitis (M), brain tumor (T), and concussion 

(C). A FOD is determined as Ω = {M, T, C}. Both of the doctors believe a tumor is unlikely, 

but they hold different opinions about the likely cause. Two diagnosis are given as follows.

It is found that these two evidences are highly conflicting. If using the classical Dempter’s 

rule of combination to combine them, as shown in Eqs.(2) and (3), the combination result is

and the conflict coefficient K = 0.99. This is an apparently counter-intuitive result. In each 

doctor’s diagnosis, the patient most likely does not suffer from a tumor, but the synthesizing 

result shows that the patient 100% suffering from a tumor. This example was first given by 

Zadeh to show the doubts on the validity of Dempster’s rule when information is highly 

conflicting [13], [84].

Now, let’s use the proposed ECR to integrate these two evidences. Assume each doctor is 

weighted the same, the averaging evidence is calculated as m(M) = 0.45, m(T) = 0.1, and 

m(C) = 0.45. Fig. 6 shows the evolutionary process of each proposition in m. In this figure, 

as evolutionary time increases, the belief of T goes to 0, and propositions M and C 
collectively average a total belief of 1. At the end of evolution, the equilibrium state is {(M,
0.5), (C, 0.5)} where M and C coexist. Moreover, we know that the equilibrium state is not 

stable resulting from highly conflicting information in m1 and m2. Through the ECR, we 

obtain a reasonable result, and Zadeh’s paradox is explained by the instability of an 

equilibrium state.

B. More illustrative examples

In the following content, we will examine the proposed ECR through more classical 

paradoxes in DST.
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Example 7—In [16], [17], the authors have presented the dictatorial power (DP) of 

Dempster’s rule. A simple version [15] of that paradox is shown below.

Given a FOD Θ = {θ1, θ2, θ3}, there are four evidences:

When using Dempster’s rule of combination, one gets:

It clearly shows that Dempster’s rule does not respond to the combination of different 

evidences. It seems that evidence m1 dominates other evidences since the combination result 

is always m1, which does not accord with people’s expectation.

Now let us reconsider this example by using the proposed ECR. Moreover, several improved 

methods for evidence combination, including Murphy’s simple average [22], Deng’s 

weighted average [23], Han’s sequential weighted combination [15], proportional conflict 

redistribution (PCR6) rule [53], have also been adopted to test the results. Because PCR6 is 

not associative, to get optimal results, the PCR6 rule is implemented by combining all 

evidences altogether at the same time. Here, assume a = 0.7, b = 0.6. The results are listed in 

TABLE II. As illustrated in that table, apart from Dempster’s rule, the counter-intuitive 

behaviors have been suppressed in all other methods. And in every case of combination, the 

most supported proposition obtained by the ECR totally accords with the results obtained by 

other improved methods. In addition, the decrease of tES shows that the evolutionary 

distance to the ESm reduces with the accumulation of evidences, which further coincides 

with people’s expectation.

Example 8—In [15], the authors constructed a fictitious example to verify the rationality of 

new evidence combination rule. In a multisensor-based automatic target recognition system, 

assume the FOD is Θ = {θ1, θ2, θ3}. In order to recognize an unknown target, the system 

has collected five evidences shown as follows.

Based on different methods, the combination results are obtained in TABLE III. From 

TABLE III, in the results of Dempter’s rule, m(θ1) always equals 0 after combining m3, yet 

regardless of m4 and m5. In contrast, if using other five methods, the counter-intuitive results 

are suppressed. In Deng’s weighted average and Han’s sequential weighted combination, the 
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most supported target is always θ1 for any cases, and m(θ1) has an increasing trend when m4 

and m5 arrives. For Murphy’s simple average, PCR6 rule, and the proposed ECR, although 

m(θ2) ever became the biggest one when combining m1, m2 and m3, the mistake is corrected 

as soon as m4 arrives. Hence, the counter-intuitive behavior is also suppressed in the three 

methods. Our proposed ECR remains effective in this example.

Example 9—Evidence shifting paradox [14], [15] describes another counter-intuitive 

behavior in Demspter-Shafer theory. Consider a case in which a target is evaluated by l 
different experts, each with the same importance. The FOD is Θ = {θ1, θ2, θ3}. Each expert 

provides an identical assessment as given below:

By using Dempster’s rule, the combination result is m⊕(θ1) = 1 – 0.94l, m⊕(Θ) = 0.94l. If l 
is a big number, such as 100, we have m⊕(θ1) = 1 – 0.94100 = 0.9979, so the combination 

result strongly supports θ1. However, in each expert’s assessment, mi(θ1) = 0.06, which is 

very small. The example show that the aggregation of a crowd’s wisdom may generate 

counter-intuitive results when using Dempster’s rule of combination.

Now, let’s study this paradox by using the proposed ECR and other improved methods. The 

results are shown in TABLE IV. Here, the PCR6 results in Table TABLE IV have been 

obtained by sequential (suboptimal) implementation of PCR6. As illustrated in TABLE IV, 

when the number of combined evidences increases, Dempster’s rule, Murphy’s simple 

average, Deng’s weighted average, and PCR6 rule all generate counter-intuitive results. For 

Han’s sequential weighted combination, although it generates reasonable results, yet m(θ1) 

has a rising trend as l increases. Han’s method will eventually produce a counter-intuitive 

result where m(θ1) > 0.5 when l becomes large enough. Conversely, only the ECR always 

gets the reasonable result that ESm = Θ, and the evolutionary time remains constant as the 

increase of l. The idempotent property of the ECR inhibits the evidence shifting paradox.

V. Conclusion

In this paper, we have proposed an evolutionary combination rule (ECR) for the evidence-

based multi-source information fusion from an evolutionary game theory perspective. Within 

the framework of ECR, original evidences are averaged by their weights, and a game model, 

called Jaccard matrix game, is proposed to formalize the interaction relationship between 

propositions. Then, we utilize the replicator dynamics equation to mimick the evolution of a 

population. And finally, an equilibrium state is obtained to express the combination results. 

According to the obtained equilibrium state, we can find the most biologically supported 

proposition for the decision-making and other purposes. Experimental results show that the 

proposed ECR has suppressed the counter-intuitive results in many paradoxes of Dempster-

Shafer theory, thereby demonstrating the rationality and effectiveness of the proposed 

method. Some mathematical properties of the ECR, such as solution’s stability and 

convergence, have also been analyzed and proved. Of course, there still remains some 

problems to be solved in future research. Below are summaries of several noticeable issues.
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First, the ECR is not associative, all evidences must be combined together at the same time. 

Two main reasons lead to the non-associativity of the ECR: average mechanism and the 

replicator dynamics equation. Arguments about the necessity of associativity were presented 

in many literatures [24], [85], [86]. For the case of requiring the associativity, as an 

alternative, we are trying to build a modified ECR which meets the quasi-associativity [86]. 

Second, the ECR does not preserve the neutrality for a vacuous evidence mv(FOD) = 1, i.e., 

m ⊕ECR mv ≠ m. Third, in some cases the ECR is sensitive to the discord of evidences but 

fails to produce a reasonable result. For example, in [28] the author presented an example 

that combines m1(A) = m1(B, C) = 0.5 and m2(C) = m2(A, B) = 0.5. Dempster’s rule gives 

m(A) = m(B) = m(C) = 1/3. As reported by Voorbraak [28], this result is counter-intuitive 

because B intuitively seems to share a probability mass of 0.5 twice, whereas both A and C 
share a probability mass of 0.5 with B only once and are once assigned 0.5 individually. 

Intuitively, B is less confirmed than A and C, but they are equally confirmed by Dempster’s 

rule. By using the proposed ECR, we obtain an unstable equilibrium state {(AB, 0.5), (BC, 

0.5)}. The ECR has detected the discord of evidences which results in an unstable solution, 

but does not give a reasonable combination result.

In summary, although there are some drawbacks at present, the proposed ECR is still a 

useful method for evidence combination. First, it imports the idea of population evolution 

into evidence combination, which is not presented in previous studies. Second, the ECR has 

a mathematical basis to ensure that the solution is with some desirable properties, such as 

convergence, stability, and idempotence. Third, compared with other methods, the ECR can 

effectively restrain the counter-intuitive behaviors appeared in many typical paradoxes of 

DST. In future research, we will continue to improve and perfect the framework of ECR.
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Fig. 1. 
Framework of the proposed evolutionary combination rule
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Fig. 2. 
Evolutionary dynamics of propositions a, b and ab in Example 2
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Fig. 3. 
The evolutionary process of propositions in Example 3
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Fig. 4. 
The evolutionary process of propositions in m1 and m2 of Example
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Fig. 5. 
Evolutionary results in Example 5
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Fig. 6. 
Evolutionary result of Zadeh’s paradox
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TABLE I

Fixed points and their stability in Example 2

Fixed points Associated eigenvalues Stablity

(1, 0, 0) −1, −1, −0.5 asymptotically stable

(0, 1, 0) −1, −1, −0.5 asymptotically stable

(0, 0, 1) −1, −0.5, −0.5 asymptotically stable

(0, 0.5, 0.5) −0.75, −0.5, 0.25 unstable

(0.5, 0.5, 0) −0.5, 0, 0.5 unstable

(0.5, 0, 0.5) −0.75, −0.5, 0.25 unstable
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TABLE II

Results for Example 7

Evidences m1, m2 m1, m2, m3 m1, m2, m3, m4

Dempster’s rule of 
combination

m(θ1) = 0.7000, m(θ1θ2) = 
0.3000.

m(θ1) = 0.7000, m(θ1θ2) = 0.3000. m(θ1) = 0.7000, m(θ1θ2) = 
0.3000.

Murphy’s simple average
m(θ1) = 0.5250, m(θ1θ2) = 
0.1179, m(θ3) = 0.3000, m(Θ) = 
0.0571.

m(θ1) = 0.3379, m(θ1θ2) = 0.0615, 
m(θ3) = 0.5622, m(Θ) = 0.0384.

m(θ1) = 0.1794, m(θ1θ2) = 
0.0292, m(θ3) = 0.7711, m(Θ) = 
0.0203.

Deng’s weighted average
m(θ1) = 0.5250, m(θ1θ2) = 
0.1179, m(θ3) = 0.3000, m(Θ) = 
0.0571.

m(θ1) = 0.1032, m(θ1θ2) = 0.0290, 
m(θ3) = 0.8122, m(Θ) = 0.0555.

m(θ1) = 0.1032, m(θ1θ2) = 
0.0093, m(θ3) = 0.9344, m(Θ) = 
0.0246.

Han’s sequential weighted 
combination

m(θ1) = 0.5250, m(θ1θ2) = 
0.1179, m(θ3) = 0.3000, m(Θ) = 
0.0571.

m(θ1) = 0.2362, m(θ1θ2) = 0.0363, 
m(θ3) = 0.6369, m(Θ) = 0.0906.

m(θ1) = 0.0676, m(θ1θ2) = 
0.0089, m(θ3) = 0.8298, m(Θ) = 
0.0937.

PCR6 rule
m(θ1) = 0.5062, m(θ1θ2) = 
0.1800, m(θ3) = 0.3138.

m(θ1) = 0.3432, m(θ1θ2) = 0.1028, 
m(θ3) = 0.4306, m(Θ) = 0.1234.

m(θ1) = 0.2464, m(θ1θ2) = 
0.0642, m(θ3) = 0.4921, m(Θ) = 
0.1973.

The proposed ECR < ESm = θ1, tES = 21.4913 > < ESm = θ3, tES = 21.6188 > < ESm = θ3, tES = 16.0809 >
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TABLE III

Results for Example 8

Evidences m1, m2 m1, m2, m3 m1, m2, m3, m4 m1, m2, m3, m4, m5

Dempster’s rule of 
combination

m(θ1) = 0.7723, m(θ2) 
= 0.0792, m(θ3) = 
0.1485.

m(θ1) = 0.0000, m(θ2) = 
0.8421, m(θ3) = 0.1579.

m(θ1) = 0.0000, m(θ2) = 
0.8727, m(θ3) = 0.1273.

m(θ1) = 0.0000, m(θ2) = 
0.8981, m(θ3) = 0.1019.

Murphy’s simple average

m(θ1) = 0.7716, m(θ2) 
= 0.0790, m(θ3) = 
0.1049, m(θ2θ3) = 
0.0444.

m(θ1) = 0.3526, m(θ2) = 
0.5978, m(θ3) = 0.0380, 
m(θ2θ3) = 0.0116.

m(θ1) = 0.5167, m(θ2) = 
0.4573, m(θ3) = 0.0189, 
m(θ2θ3) = 0.0071.

m(θ1) = 0.6706, m(θ2) = 
0.3169, m(θ3) = 0.0088, 
m(θ2θ3) = 0.0037.

Deng’s weighted average

m(θ1) = 0.7716, m(θ2) 
= 0.0790, m(θ3) = 
0.1049, m(θ2θ3) = 
0.0444.

m(θ1) = 0.6013, m(θ2) = 
0.3302, m(θ3) = 0.0532, 
m(θ2θ3) = 0.0153.

m(θ1) = 0.7987, m(θ2) = 
0.1698, m(θ3) = 0.0227, 
m(θ2θ3) = 0.0088.

m(θ1) = 0.8975, m(θ2) = 
0.0897, m(θ3) = 0.0088, 
m(θ2θ3) = 0.0040.

Han’s sequential weighted 
combination

m(θ1) = 0.7716, m(θ2) 
= 0.0790, m(θ3) = 
0.1049, m(θ2θ3) = 
0.0444.

m(θ1) = 0.5591, m(θ2) = 
0.4021, m(θ3) = 0.0297, 
m(θ2θ3) = 0.0091.

m(θ1) = 0.6781, m(θ2) = 
0.3054, m(θ3) = 0.0071, 
m(θ2θ3) = 0.0093.

m(θ1) = 0.8103, m(θ2) = 
0.1797, m(θ3) = 0.0014, 
m(θ2θ3) = 0.0086.

PCR6 rule

m(θ1) = 0.7371, m(θ2) 
= 0.0644, m(θ3) = 
0.1370, m(θ2θ3) = 
0.0615.

m(θ1) = 0.4224, m(θ2) = 
0.4729, m(θ3) = 0.0483, 
m(θ2θ3) = 0.0564.

m(θ1) = 0.4755, m(θ2) = 
0.3849, m(θ3) = 0.0351, 
m(θ2θ3) = 0.1045.

m(θ1) = 0.5111, m(θ2) = 
0.3244, m(θ3) = 0.0276, 
m(θ2θ3) = 0.1369.

The proposed ECR
< ESm = θ1, tES = 
7.5708 >

< ESm = θ2, tES = 19.3900 
>

< ESm = θ1, tES = 
11.5065 >

< ESm = θ1, tES = 
10.6493 >
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TABLE IV

Results for Example 9

The number of evidences l l = 10 l = 25 l = 50

Dempster’s rule of combination m(θ1) = 0.4614, m(Θ) = 0.5386. m(θ1) = 0.7871, m(Θ) = 0.2129. m(θ1) = 0.9547, m(Θ) = 0.0453.

Murphy’s simple average m(θ1) = 0.4614, m(Θ) = 0.5386. m(θ1) = 0.7871, m(Θ) = 0.2129. m(θ1) = 0.9547, m(Θ) = 0.0453.

Deng’s weighted average m(θ1) = 0.4614, m(Θ) = 0.5386. m(θ1) = 0.7871, m(Θ) = 0.2129. m(θ1) = 0.9547, m(Θ) = 0.0453.

Han’s sequential weighted 
combination

m(θ1) = 0.3195, m(Θ) = 0.6805. m(θ1) = 0.3684, m(Θ) = 0.6316. m(θ1) = 0.3924, m(Θ) = 0.6076.

PCR6 rule m(θ1) = 0.4614, m(Θ) = 0.5386. m(θ1) = 0.7871, m(Θ) = 0.2129. m(θ1) = 0.9547, m(Θ) = 0.0453.

The proposed ECR < ESm = Θ, tES = 6.4296 > < ESm = Θ, tES = 6.4296 > < ESm = Θ, tES = 6.4296 >
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