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Analysis of Artifacts in Subpixel
Remote Sensing Image Registration

Jordi Inglada, Vincent Muron, Damien Pichard, and Thomas Feuvrier

Abstract—Subpixel accuracy image registration is needed for
applications such as digital elevation model extraction, change
detection, pan-sharpening, and data fusion. In order to achieve
this accuracy, the deformation between the two images to be
registered is usually modeled by a displacement vector field which
can be estimated by measuring rigid local shifts for each pixel in
the image. In order to measure subpixel shifts, one uses image
resampling. Sampling theory says that, if a continuous signal has
been sampled according to the Nyquist criterion, a perfect con-
tinuous reconstruction can be obtained from the sampled version.
Therefore, a shifted version of a sampled signal can be obtained
by interpolation and resampling with a shifted origin. Since only a
sampled version of the shifted signal is needed, the reconstruction
needs only to be performed for the new positions of the samples,
so the whole procedure comes to computing the value of the signal
for the new sample positions. In the case of image registration,
the similarity between the reference image and the shifted ver-
sions of the image to be registered is measured, assuming that
the maximum of similarity determines the most likely shift. The
image interpolation step is thus performed a high number of times
during the similarity optimization procedure. In order to reduce
the computation cost, approximate interpolations are performed.
Approximate interpolators will introduce errors in the resampled
image which may induce errors in the similarity measure and
therefore produce errors in the estimated shifts. In this paper, it is
shown that the interpolation has a smoothing effect which depends
of the applied shift. This means that, in the case of noisy images,
the interpolation has a denoising effect, and therefore, it increases
the quality of the similarity estimation. Since this blurring is
not the same for every shift, the similarity may be low for a null
shift (no blurring) and higher for shifts close to half a pixel (strong
blurring). This paper presents an analysis of the behavior of the
different interpolators and their effects on the similarity measures.
This analysis will be done for the two similarity measures: the cor-
relation coefficient and the mutual information. Finally, a strategy
to attenuate the interpolation artifacts is proposed.

Index Terms—Disparity map estimation, image registration,
interpolation artifacts, similarity measures.

I. INTRODUCTION

SUBPIXEL accuracy image registration is needed for ap-
plications such as change detection [1], pan-sharpening

[2], and data fusion [3]. In order to achieve this accuracy, the
deformation between the two images to be registered is usually
modeled by a displacement vector field which can be estimated
by measuring rigid local shifts for each pixel in the image.
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In order to measure subpixel shifts, image resampling is
used. Sampling theory says that, if a continuous signal has
been sampled according to the Nyquist criterion, a perfect
continuous reconstruction can be obtained from the sampled
version. Therefore, a shifted version of a sampled signal can be
obtained by interpolation and resampling with a shifted origin.

Since only a sampled version of the shifted signal is needed,
the reconstruction needs only to be performed for the new
positions of the samples, so the whole procedure comes to
computing the value of the signal for the new sample positions.

In the case of image registration, the similarity between the
reference image and the shifted versions of the image to be reg-
istered is measured, assuming that the maximum of similarity
determines the most likely shift. The image interpolation step
is thus performed a high number of times during the similarity
optimization procedure. In order to reduce the computation
cost, approximate interpolations are performed. Indeed, the
ideal interpolator is a sinus cardinal function, and therefore,
an infinite number of samples are needed for the computation
of any new sample. Several approaches exist for reducing the
computation time. For instance, a truncated sinc interpolator
needs only a few samples. Other interpolators like the linear
one can also be used.

Approximate interpolators will introduce errors in the resam-
pled image which may induce errors in the similarity measure
and therefore produce errors in the estimated shifts.

The problem of interpolation artifacts in image registra-
tion has been studied in the case of mutual-information-based
registration in the context of medical images [5]–[7]. To our
knowledge, there is no equivalent work in the field of remote
sensing image registration. In this case, simple parametric
geometrical transformations are not good candidates for defor-
mation modeling. Also, similarity measures other than mutual
information should be studied and characterized with respect to
the interpolation artifacts.

Finally, the explanations given in the literature for the ar-
tifacts observed in registration functions do not seem to be
satisfactory for all similarity measures and image modalities.
Therefore, a theoretical modeling of the artifacts is proposed
here. In this paper, we focus on the characterization of the
artifacts for different similarity measures and interpolators,
and we propose a theoretical explanation of the origin of the
artifacts. Some guidelines and recommendations in order to
attenuate these artifacts are also given.

The paper is organized as follows. In Section II, we pose the
problem of subpixel image registration. In Section III, we show
the effects of the artifacts on disparity maps with empirical
tests. Section IV gives a theoretical explanation for the origin
of the artifacts and checks its validity on test data. Section V

0196-2892/$25.00 © 2007 IEEE
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TABLE I
APPROACHES TO IMAGE REGISTRATION

proposes strategies to attenuate the effects of the artifacts; and
Section VI concludes the paper.

II. DISPARITY-MAP ESTIMATION

In this section, we recall the principle of disparity-map
estimation used in order to achieve subpixel accuracy.

A. Problem Position

The problem of disparity-map estimation has been described
in detail in [8]. We recall hereafter the main concepts involved
with it.

The estimation of a disparity map between a reference im-
age I and secondary image J can be posed as the following
optimization problem:

Arg max
T

(Sc(I, T ◦ J)) (1)

where T is a geometric transformation and Sc is a similarity
measure: a scalar strictly positive function which has an ab-
solute maximum when the two images I and J are identical in
the sense of the criterion c.

In the case of image registration, the inverse of transforma-
tion T is needed for image resampling.

Depending on the type of deformation to be corrected, the
model used for T will be different. For example, if the only
deformation to be corrected is the one introduced by the mean
attitude, a physical model for the acquisition geometry (inde-
pendent of the image contents) will be enough. If the sensor
is not well known, this deformation can be approximated by a
simple analytical model. When the deformations to be modeled
have high frequencies, analytical (parametric) models are not
suitable for a fine registration. In this case, one has to use a fine
sampling of the deformation, that means the use of deformation
grids. These grids give, for a set of pixels of the reference
image, their location in the secondary image.

We can thus conclude that the optimization of the similarity
can be either global or local with a similarity measure, which
can also be either local or global. All this is synthesized in
Table I.

The ideal approach would consist of a registration which is
locally optimized, both in similarity and deformation, in order
to have the best registration quality. This is the case when defor-
mation grids with dense sampling are used. Unfortunately, this
case is the most computationally expensive, and one often uses
either a low sampling rate of the grid or the evaluation of the

Fig. 1. Estimation of the similarity surface.

TABLE II
EXPRESSIONS OF FUNCTION f IN THE f -DIVERGENCE FAMILY

similarity in a small set of pixels for the estimation of an analyt-
ical model. Both of these choices lead to local registration errors
which, depending on the topography, can amount several pixels.

Even if this registration accuracy can be enough in many
applications (orthoregistration, import into a GIS, etc.), it may
not be acceptable in the case of data fusion, multichannel
segmentation, or change detection [1]. This is why we will
focus on the problem of deformation estimation using dense
grids.

As we have noted above, deformations due to topography can
locally have high frequencies for medium- and high-resolution
sensors (30 m and better), thus our need for fine modeling.

B. Estimation Procedure

The geometric deformation is modeled by local rigid dis-
placements [8]. One wants to estimate the coordinates of each
pixel of the reference image inside the secondary image. This
can be represented by a displacement vector associated with
every pixel of the reference image. Each of the two components
(lines and columns) of this vector field will be called deforma-
tion grid.

We use a small window taken in the reference image, and we
test the similarity for every possible shift within an exploration
area inside the secondary image (Fig. 1). That means that, for
each position, we compute the similarity measure. The result is
a similarity surface whose maximum gives the most likely local
shift between both images.

Quality criteria can be applied to the estimated maximum in
order to give a confidence factor to the estimated shift: width of
the peak, maximum value, etc. Subpixel shifts can be measured
by applying fractional shifts to the sliding window. This is done
by image interpolation.
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Fig. 2. Images and DEM for the test area. (a) Spot 4 B3. (b) ERS-2 SAR. (c) DEM.

The interesting parameters of the procedure are the
following.

1) The size of the exploration area: it determines the compu-
tational load of the algorithm (we want to reduce it), but
it has to be large enough in order to cope up with large
deformations.

2) The size of the sliding window: the robustness of the
similarity measure estimation increases with the window
size, but the hypothesis of local rigid shifts may not be
valid for large windows.

C. Similarity Measures

In this paper, we will only study two similarity measures: the
correlation coefficient and the mutual information. A detailed
discussion on similarity measures for image registration can be
found in [8].

The correlation coefficient is the most used similarity mea-
sure for image registration. We remind here its computation
for two image windows I and J . The coordinates of the pixels
inside the windows are represented by (x, y)

ρ(I, J) =
1
N

∑
x,y(I(x, y) −mI)(J(x, y) −mJ)

σIσJ
. (2)

In this expression, N is the number of pixels of the analysis
window, mI and mJ are the estimated mean values inside the
analysis window of, respectively, images I and J , and σI and
σJ are their standard deviations.

The mutual-information measure between two images can
be understood as the amount of information we have from
one image when we know the other. This is the degree of
dependence between the two images. Several approaches exist
for the computation of the mutual information. We prefer to
introduce it as a member of the f -divergence family.

An f -divergence [9] measures the expectation of the diver-
sity of the likelihood ratio between two distributions P and Q

Df (P,Q)=EQ

[
f

(
dp(x)
dq(x)

)]
=

∫
f

(
p(x)
q(x)

)
q(x)dx. (3)

EQ is the expectation with respect to Q, dp(x)/dq(x) is the
derivative with respect to a density, and f is continuous and
convex on [0,+∞). A divergence can be seen as a relative
entropy. Depending on the choice of f , different measures can
be obtained. Table II shows some interesting cases.

The mutual information between images I and J is the par-
ticular case where f(x) = x log x, p(x) = pIJ (i, j) (the joint
probability density function of the two images) and q(x) =
pI(i)pJ (j) (the product of probability density functions of
images I and J). It can therefore be computed as follows:

MI(I, J) =
∑
ij

pIJ (i, j) log
pIJ(i, j)
pI(i)pJ (j)

. (4)

The sum is computed over every couple of pixel values (i, j).

III. ASSESSMENT OF THE ARTIFACTS

In this section, we introduce the problem of subpixel shift
artifacts by analyzing the results obtained in a real case.

Our data set is consist of the following pair (a region of
2000 × 2000 pixels is used for our tests):

1) B3 channel of a SPOT 4 image (20-m pixel resolution)
acquired on June 24, 2001, over the east of the Bucharest
area [Fig. 2(a)];

2) European Remonte Sensing 2 (ERS-2) Satellite synthetic
aperture radar three-look intensity image (12.5-m pixel
size and approximately 20-m pixel resolution) acquired
on May 10, 2001, over the same area [Fig. 2(b)].

Both images were orthorectified: For the SPOT 4 image, a
digital elevation model (DEM) [Fig. 2(c)] with an altimetric
accuracy better than 10 m and a planimetric accuracy around
10 m has been used together with the acquisition model (orbits,
attitude) for the satellite; for the ERS-2 image, no DEM was
used, but a constant altitude and homologous points manually
taken on the SPOT 4 image were used in the orthorectification
process. Globally, the images show a good superposition, but
local errors exist, which can amount several pixels due to the
simple geometric modeling of the deformation of the radar
image.

If we analyze the DEM, we see that a gentle slope descending
from northwest and southeast exists and that abrupt topography
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Fig. 3. Deformation grid. Mutual information: estimation window is 51 × 51 pixels, and sampling rate is five pixels. (a) Horizontal. (b) Vertical.

Fig. 4. Histograms of the estimated subpixel shifts [(a) horizontal and (b) vertical] with inversion of the reference and the secondary images.

features appear in the northeast and southwest. The shape of the
river can also be identified in the DEM.

Fig. 3 presents the horizontal and vertical components of
the displacement vector field obtained using the mutual in-
formation similarity measure and the procedure described in
Section II-B. One observes a good correlation between the
horizontal component and the topography shown in Fig. 2(c).
As expected, the vertical (satellite along-track) direction does
not show any particular structure. When this displacement
vector field is used for the registration of the images, a good
superposition is achieved. The detailed analysis of the proce-
dure was carried out in [8].

If we analyze the distribution of the estimated shifts by
computing their histograms, we observe the following behavior
(Fig. 4). When the SPOT image is used as the reference, a high
number of estimated shifts are multiples of 0.5 pixels; if the
ERS image is used as the reference, this effect is attenuated,
and the shifts present a more uniform distribution.

Since the similarity measure is the same for both cases
and so is the optimization procedure, one can conclude that
the subpixel shifts artifacts appear when the ERS image is

Fig. 5. Interpolation of a sampled signal.

interpolated during the similarity optimization. The following
sections will study this effect in detail, and a theoretical model
for the origin of the artifacts will be presented.

IV. ORIGIN OF THE ARTIFACTS

The problem of interpolation artifacts in the similarity sur-
faces has been studied for the case of mutual-information-based
medical image registration [5]–[7]. Pluim et al. [5] show that
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Fig. 6. Evolution of the blurring effect of the interpolators as a function of the shift. (a) Linear. (b) Truncated sinc. (c) Cubic B-spline.

entropy-based registration measures, when plotted as a function
of the geometric transformation, show sudden changes. They
show that this registration function depends on the interpolation
method in the cases of similar sampling step for the two images
to be registered and propose to resample one of the images with
a slightly different sampling step. This solution can be applied
in the case of global image registration where one looks for a
parametric transformation (i.e., affine transformation). In this
case, the resampling introduces a scaling effect which can be
compensated by the geometric transformation. In the case of
disparity-map estimation, the sampling step of the images has
to be the same, in order to approximate the deformations by
local rigid shifts.

Tsao [6] also analyzes the behavior of mutual-information
surfaces for four different interpolators (nearest neighbor,
linear, cubic, and Hamming-windowed sinc). He shows the
influence of the number of bins used for the estimation of
the histograms needed for the computation of the mutual-
information measure. He proposes to blur the histograms and
to introduce some jitter in the sampling step. The jitter will pro-
duce an effect which is analogous to the resampling proposed
by Pluim et al. [5]. One has to note that the blurring of the
histograms can only be applied to histogram-based similarity
measures. Also, the jitter of the sampling step will introduce
local errors which cannot be accepted in subpixel registration.

Ji et al. [7] also analyze these effects and propose other
strategies for reducing the artifacts: image oversampling and

intensity clustering. The image oversampling produces an ef-
fect similar to blurring, and the intensity clustering produces
smoother histograms. Once again, this second solution can only
be applied to histogram-based similarity measures.

Our theoretical model will show that these interpolation
artifacts are not specific to the mutual-information measure,
and that, therefore, their origin does not reside in the histogram
estimation.

A. Theoretical Model

In this section, we show that the origin of the observed
artifacts is the interpolation procedure used for the subpixel
registration. In this procedure, we resample the local image
patches in order to measure the similarities for different shifted
positions. The resampling is performed by image interpolation.
Fig. 5 illustrates the procedure. In order to obtain a shift of
δ < 1 pixels, we have to estimate the image gray levels at
positions which lay between the samples of the image. The
image to be resampled x[n] is considered to be the sampled
version of an ideal continuous image x(t)

x[n] = x(nT )

where T is the sampling step. The shifted image y[n] will
be obtained by sampling the same original image x(t) with
a shifted sampling grid. Assuming that x(t) was correctly
sampled (with respect to the Shannon criterion), we can retrieve
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Fig. 7. Comparison of interpolators.

Fig. 8. Influence of noise level on the registration functions.

x(t) from x[n] by ideal interpolation, i.e., by using a sinc
interpolator.

The sinc interpolator has an infinite impulse response. There-
fore, approximate interpolators will be used. In order to in-
crease the computation speed, we want to use interpolation
filters with a low number of samples.

For a linear interpolator, the interpolated image y(t) for a
shift δ will take the following expression:

y(t) = (1 − δ)x(t− δ) + δx(t + 1 − δ) (5)

and its Fourier transform is

Y (f) = X(f)
[
(1 − δ)e−j2πδf + δe−j2π(δ−1)f

]
. (6)

We see that the interpolated signal y(t) is not exactly equal to
the original signal x(t) due to the fact that we are not using an
ideal interpolator. Instead, we obtain a low-pass filtered version
of the original signal. It is interesting to note that the blurring of
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Fig. 9. Influence of noise level on the estimated shifts.

the image introduced by the interpolation depends on the shift.
Fig. 6(a) shows that the blurring effect increases when the shift
comes close to half a pixel (δ = 1/2).

This means that, in the case of noisy images, the interpolation
has a denoising effect, and therefore, it increases the quality of
the similarity estimation. Since this blurring is not the same for



INGLADA et al.: ANALYSIS OF ARTIFACTS IN SUBPIXEL REMOTE SENSING IMAGE REGISTRATION 261

Fig. 10. Frequency response of the smoothing prolate filter compared to
different interpolators for δ = 1/2. The 7 × 7 boxcar filter is also shown.

every shift, the similarity surface may show low values for a
null shift (no blurring) and higher values for shifts close to half
a pixel (strong blurring). It is important to note that the artifacts
do not come from the blurring effect itself, but rather from the
difference of blurring effect for different shift values.

Its is now interesting to analyze this effect for other inter-
polators. For the case of an interpolator c(t) truncated to four
samples, the Fourier transform of the interpolated signal takes
the following expression:

Y (f) = X(f)
[
c(δ+1)e−j2π(δ+1)f +c(δ)e−j2πδf

+ c(1−δ)e−j2π(1−δ)f +c(2 − δ)e−j2π(2−δ)f
]
. (7)

For the case of a sinc interpolator, c(t) = sin(πt)/πt. The
frequency response of the interpolator as a function of the shift
δ is shown in Fig. 6(b). We see that the blurring effect is still
dependent on the shift, but also that, for such a short filter, the
continuous frequency is also filtered. This can produce effects
which are worse than the linear interpolator. We will see this in
the following sections.

Finally, we analyze the case of a cubic B-spline interpolator
[10]. In this case, the filter coefficients take the following
expression:

c(t) =




2
3 − 1

2 |x|2(2 − |x|), 0 ≤ |x| < 1
1
6 (2 − |x|)3, 1 ≤ |x| < 2
0, |x| > 2.

(8)

Fig. 6(c) shows the frequency response of the four-sample
cubic B-spline interpolator. We can see that the blurring effect
remains nearly the same for all shifts.

B. Sensitivity Analysis

We analyze here the behavior of the different interpolators
and their effects on the similarity functions. The similarity
function is defined as the value of the similarity measure as a
function of the shift. Without loss of generality, we will apply
the shifts in only one direction. In this case, the similarity
function can be plotted as a one-dimensional (1-D) function.

This analysis will be done for the two similarity measures, the
correlation coefficient and the mutual information.

The data used for these experiments are SPOT 4 images
which are compared to a noisy version of itself. This allows
us to ensure that the images are perfectly coregistered. Additive
white Gaussian noise has been added to the secondary image
with an SNR of 100 dB.

Fig. 7 shows the similarity functions for four different inter-
polators, the three studied in Section IV-A, plus a sinus cardinal
of length equal to ten samples, which is a better approximation
of the ideal one. Even if a similarity function shows only the
behavior for a particular pixel, the examples presented here can
be considered as examples of what occurs for every pixel in
the image. For the case of the correlation coefficient [Fig. 7(a)],
we obtain a behavior which could be predicted from the theory
presented above. The linear and the sinc-4 interpolators have
strong maxima close to the half-pixel shifts. We can observe
that these effects are much weaker for the B-spline interpolator
and that they are nearly inexistent for the sinc-10 one.

It is worth to notice that the erroneous maxima are not exactly
located on the half-pixel shifts and that they are not symmetrical
with respect to the null translation. This is caused by the fact
that we are measuring the similarity between an image and its
noisy shifted blurred version with a degree of blurring which
depends on the shift. The blurring is useful for denoising and
thus for increasing the similarity. On the other hand, the shift
decreases the similarity because the homologous pixels are
further away. Therefore, the combination of these two effects
may produce a similarity maximum whose location depends on
the local content of the image.

This is the case for the mutual-information plots shown
on Fig. 7(b). As discussed in [8], mutual-information peaks
have a higher slope than the correlation coefficient ones. That
means that the effect of erroneous peaks will only appear for
interpolators whose behavior is very sensitive to the shifts.
Also, one could expect that the erroneous maxima will appear
near the null shift. This is what can be observed in the plots. For
the linear interpolator, the peaks appear for about one third of a
pixel. We can also observe that, since mutual information is able
to measure the dependence in the presence of noise [11], the
global maximum is located at zero, even if its value is not much
higher that the secondary maxima. For the case of interpolators
with a more stable smoothing, one can see that there is no
clear peak, meaning that the smoothing effect produces a high
value of mutual information even for shifts larger than half a
pixel. Also, the flatness of the measure makes it unusable in an
optimization problem. Of course, the mutual-information value
is low for integer pixel shifts, since no interpolation is applied
in this case.

We can also analyze the influence of the noise level on the
similarity functions. Fig. 8 shows the behavior of the linear
and the B-spline interpolators for the correlation coefficient
and the mutual information for different SNR of the second-
ary image.

In the case of the correlation coefficient, we observe that the
relative value of the erroneous peaks with respect to the value at
zero is higher for a lower SNR. Of course, the absolute value of
the peaks is lower. We also see that the B-spline interpolator
is more robust to high noise levels. In the case of mutual
information, we observe that the similarity function becomes
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Fig. 11. Influence of low-pass filtering on the estimated pixel shifts for different noise levels.

flat when the noise increases [Fig. 8(c)]. This is coherent with
what we saw in Fig. 7(b) for the most stable interpolators and
is also coherent with Fig. 8(d).

Since the registration functions of Figs. 7 and 8 show only
the behavior of a selected pixel of the image, it is difficult to
infer the global quality of the registration from them. In order
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to study the global quality, we will analyze the histograms of
the estimated shifts. We will study the different combinations
of interpolators (linear, sinc-4, cubic B-spline, and sinc-10),
similarity measures (correlation coefficient and mutual infor-
mation), and noise level. The results are shown in Fig. 9.

As for the previous simulations, 1-D shifts have been applied.
In terms of noise influence, one observes that, the higher the
SNR, the lower the number of shifts at a multiple of 0.5 pixels.
We also observe that, when the SNR increases, the peaks move
close to the null shift.

If we compare the interpolators for a given SNR, say
15 dB, we see that the better the interpolator (linear is worst,
then sinc-4, B-spline, and sinc-10 is the best), the higher the
number of pixels for which the estimated shift is close to zero,
which is the expected value. This is true for both similarity
measures.

V. ATTENUATION OF THE ARTIFACTS

As it has been stated above, we are interested in using
short interpolating filters, since the interpolation is performed
a high number of times during the similarity optimization
procedure. As we have shown above, the interpolation artifacts
are produced by the blurring effects of the interpolators. More
precisely, the origin of the artifacts is not the blurring effect
itself but rather the difference of blurring intensity as a function
of the applied shift. We have shown, for instance, that, even if
the B-spline interpolator has a stronger blurring effect than the
linear interpolator, since its blurring remains nearly constant
for all shifts, it has better performances for the disparity-map
estimation.

The strategy proposed here for reducing the interpolation
artifacts is a very simple one. Since the interpolator is going to
introduce a blurring effect, we can smooth the secondary image
with a filter whose transfer function is identical (in modulus)
to the maximum blurring effect of the interpolator. This can be
done in a preprocessing step.

However, when observing Fig. 6, we see that the evolution
of the blurring effect may not be only related to the highest
frequencies of the signal, and therefore, selecting the transfer
function of the preprocessing filter could be tricky.

For instance, choosing a simple boxcar filter for preprocess-
ing can produce artifacts introduced by the secondary lobes of
the filter. These lobes come from the windowing used for the
truncation of the filter’s impulse response.

In order to study the improvement of the subpixel shift
estimation for the different interpolators, we choose to use the
same smoothing filter for all of them. In order to reduce the
secondary lobes of the smoothing filter and to assure a short
impulse response, we propose to use a prolate function [12],
[13]. The prolate filter is one class of the nonrecursive finite
impulse response filters. It is superior to other filters in this class
in that it has a maximum energy concentration in the frequency
passband and minimum ringing in the time domain.

A prolate filter with seven samples is shown in Fig. 10 and is
compared to the maximum smoothing for several interpolators.
The frequency response of the 7 × 7 boxcar filter, with its
secondary lobes, is also shown.

Fig. 11 shows the same kind of analysis as Fig. 9, but with the
use of the prolate filter as a preprocessing step for the secondary

image. The first remark we can make is that the peaks at multi-
ples of 0.5 pixels have vanished for both similarity measures
and for all interpolators. The behavior of the correlation is
always better than that of the mutual information.

We also see that, for the high SNR values, the best results
are obtained for the linear interpolator. However, for low SNR
values, the better the interpolator, the better are the estimated
shifts. We can also see that, for the mutual-information case,
good results are only obtained with the linear and the sinc-4
interpolators, and for the highest SNR value.

VI. CONCLUSION

This paper has presented the problem of interpolation-
induced artifacts in the procedure of disparity-map estimation
used for subpixel image registration. The problem has been
introduced with a real case, where the presence of wrongly
estimated shifts when a radar image is interpolated have been
shown.

A theoretical explanation of the origin of the artifacts has
been given, and it demonstrated that the blurring effect of
the interpolator, which is dependent on the applied shift, is
responsible for the errors observed in the registration functions.

Several interpolators have been compared under different
SNR conditions. Finally, it has been shown that a preprocessing
step which smoothes the secondary interpolated image can
solve the problem. However, attention has to be paid to the
choice of the smoothing filter. Indeed, simple filters, as the
boxcar one, have to be avoided since they present secondary
lobes for the frequencies where the interpolation artifacts occur.

Even if the solution presented here allows for an improve-
ment of the estimation of subpixel-accuracy disparity maps,
more work has to be done in order to:

1) analyze the effects of the interpolation for other image
modalities, as infrared data, for example;

2) study the influence of image resolution and type of land-
scape in the quality of the estimated shifts;

3) propose edge-preserving smoothing filters which, com-
bined with different interpolators, could help to attenuate
the interpolation artifacts at the same time that they
preserve high-frequency content which can be useful for
a precise disparity estimation.
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