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Rate allocation in predictive video coding using a
convex optimization framework

Aniello Fiengo, Student Member, IEEE, Giovanni Chierchia, Member, IEEE,
Marco Cagnazzo, Senior Member, IEEE, Béatrice Pesquet-Popescu, Fellow, IEEE

Abstract— Optimal rate allocation is among the most challeng-
ing tasks to perform in the context of predictive video coding,
because of the dependencies between frames induced by motion
compensation. In this paper, using a recursive rate-distortion
model that explicitly takes into account these dependencies, we
approach the frame-level rate allocation as a convex optimization
problem. This technique is integrated into the recent HEVC
encoder, and tested on several standard sequences. Experiments
indicate that the proposed rate allocation ensures a better
performance (in the rate-distortion sense) than the standard
HEVC rate control, and with a little loss w.r.t. an optimal
exhaustive research which is largely compensated by a much
shorter execution time.

Index Terms—Video coding, rate distortion, convex optimiza-
tion, bit allocation.

I. INTRODUCTION

D IGITAL video technology has recently experienced a
proliferation of new applications, such as video con-

ferencing, ultra high-definition television broadcasting, and
cinema/large-screen digital imagery. In order to respond to
the increasing requirement for an efficient video coding, the
new standard H.265/High Efficiency Video Coding (HEVC)
[1] has been formally established to substitute its predecessor
H.264/MPEG4 Advanced Video Coding (AVC) [2]. In these
standards, a key role in improving the visual quality of
encoded videos over capacity varying channels is played by the
rate allocation, which is responsible to efficiently distribute the
bit budget among frames and coding blocks. More specifically
it represents an important part of the rate control module
of a video encoder, which involves two steps: bit allocation
(BA), where the total bit budget is actually allocated to
frames and coding units, and quantization selection, where
the quantization parameter (QP) is adjusted in function of the
allocated bits.

The goal of rate allocation is to achieve an optimal trade-
off between rate and distortion, under a time-varying constraint
imposed to one of such variables. To this end, a large panel
of techniques have been proposed in the literature to select
the coding parameters. Many conventional coding schemes
tend to make these choices frame by frame [3]. However,
it is widely recognized that, from a rate-distortion (R-D)
standpoint, the optimal choice for a single frame may be

Aniello Fiengo, Marco Cagnazzo (corresponding author), and
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potentially suboptimal for encoding the remaining frames.
This is due to the motion compensation, which carries the
quantization error of a coded frame into the prediction of
successive ones, resulting in quantization error drifting when
the latter are coded. Consequently, an allocation scheme that
takes into account the dependency between frames yields a
significant bit reduction [4], [5].

The focus of this paper is on optimal rate allocation in pre-
dictive video coding, for which it is of paramount importance
to exploit the dependency between frames induced by motion
compensation. To this end, we propose a convex optimization
approach for exactly and efficiently solving the frame-level
rate allocation problem (within the limit of the accuracy of
our model). In addition to more detailed developments, this
paper extends our preliminary work [6] by integrating our
method into the HEVC encoder, and providing a large number
comparisons with state-of-the-art methods.

A. Related work

The optimal rate allocation is a non-trivial problem, because
of the frame-level dependency induced by motion compensa-
tion. In order to circumvent this difficulty, one can allocate
the bit budget independently for each frame, yielding a sim-
pler formulation that can be tackled with standard numerical
methods, such as Lagrangian optimization [7] or dynamic
programming [8]–[10]. This approach can be improved by
using a more accurate R-D model involving polynomials [11],
logarithms [12], [13], splines [14]–[16], or ρ-domains [17],
[18].

Given the suboptimal nature of frame-by-frame approaches,
a substantial research effort has been made in the last decade to
enlarge the optimization scope from a single frame to a group
of frames (GOP). One of the first attempts in this sense was
made by Ramchandran et al. [4], who used an operational R-D
framework to search the optimal combination of quantization
parameters (QP) for the whole GOP: once evaluated all the
couples (Rn(Q1, Q2, · · · , Qi), Dn(Q1, Q2, · · · , Qi)), where
{Qn, Dn(Qn), Rn(Qn)} refer to QP, distortion, and bit rate
for frame n, the method performs an exhaustive search of
the R-D point with the minimum Lagrangian cost under a
total bit rate constraint. Although it was conceived for the
allocation at frame level, this method has been extended to
different coding levels, such as blocks within the same frame
[19], [20]. While this methods guarantees the R-D optimality,
it requires to evaluate a huge set of points for each frame,
making the computational burden very high.
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The obstacle encountered by search-based techniques is
that the R-D behavior of a residual frame is unknown before
encoding the frames from which it was predicted. A possible
approach to circumvent this difficulty amounts to estimating
the distortion of such residuals on the basis of the encoded
version of their reference frames [21]–[24]. Although the
optimality is not guaranteed (due to the inaccuracy of the
model), these methods can greatly decrease the computational
complexity and yield promising results.

Within this context, a more theoretical approach dates back
to Uz et al. [25], who proposed a recursive R-D model to
describe the dependency between frames, and approached the
frame-level rate allocation from a Lagrangian perspective. This
recursive model was later extended at pixel level for heuristi-
cally selecting the optimal quantization parameters [26]. More
recently, a similar approach was used to formulate the rate al-
location as a non-convex optimization problem, thus requiring
a sequence of approximations to be solved [27]. The principle
behind the recursive approach was also used in distributed
video coding (DVC) to analyze the R-D performance of new
schemes for multi-view DVC [28].

Some other works focus on minimizing the maximum
distortion of encoded frames (MINMAX), instead of the usual
average of distortions (MINAVE), as the former criterion
might lead to some benefits to the visual perception [29].
The MINMAX criterion can be optimized through dynamic
programming [30], multi-pass approaches [31], [32], or ad-
hoc iterative methods with lower encoding complexity [33].
However, it is not clear whether the MINMAX is always a
better criterion than the more classical one.

B. Contributions

The methods proposed in the literature to deal with the
frame-level rate allocation are either theoretical in nature [25],
computationally demanding [4], approximated [27], or based
on the MINMAX criterion [33]. In this paper, we propose
an efficient solution to exactly solve the frame-level rate
allocation problem formulated with the MINAVE criterion.
Our approach is based on a recursive R-D model in which the
error variance of a residual frame is decoupled in two terms:
the distortion of the frame used to build the prediction, and the
inaccuracy of motion estimation. Although being slightly simi-
lar to [25], the proposed technique presents three contributions.
Firstly, we formulate a more general R-D model which allows
us to better represent the intrinsic non-stationarity in a GOP.
Secondly, we present an efficient algorithm based on modern
convex optimization [34]–[39], in order to find the optimal
solution in limited time even for hundreds of frames. Third,
we integrate the proposed algorithm in the H.265/HEVC
encoder, and finally we compare the R-D performance of our
approach with the rate-control module of H.265/HEVC and
the Ramchandran method [4].

C. Organization

The paper is organized as follows. In Section II, we illustrate
the proposed R-D model, after briefly reviewing the hybrid
video encoder and the HEVC rate control. In Section III,
we formulate the frame-level rate allocation problem, and
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Figure 1. Predictive video encoder.

we propose an efficient algorithm to solve it. In Section IV,
we compare the performance of the proposed approach to
the standard H.265/HEVC rate control, and the Ramchandran
method [4]. Finally, the conclusion is drawn in Section V.

II. RATE-DISTORTION MODEL

The generic architecture of a hybrid video encoder is
synthetically presented in Fig. 1. To take into account the
temporal dependency between frames, the video sequence is
organized in a group of pictures (GOP), which we denote by
I0, . . . , IN−1. The first frame I0 is independently coded while
the remaining frames I1, . . . , IN−1 are jointly coded through
a motion-compensated prediction scheme.

In the IPP. . . P setting, the frame In (with n = 1, . . . , N−1)
is subtracted from a prediction Pn, yielding a residual frame
En = In−Pn that is sent to the quantizer. The latter, besides
the quantization indexes Qn, produces the encoded residual
Ẽn that serves to compute the encoded frame Ĩn = Ẽn +Pn,
which will contribute to the prediction of the next frame.

The temporal prediction is based on motion estimation (ME)
and compensation (MC). The ME consists of estimating the
motion occurred between the input frame In and the previous
encoded frame Ĩn−1. The result is a motion vector field vn that
servers to generate the prediction, yielding Pn = f(Ĩn−1,vn)
where f is MC function that, in its simplest form, translates
the blocks of Ĩn−1 according to the motion vectors in vn.

A. Rate allocation in HEVC

In order to effectively reduce the spatial and temporal
redundancy of a video sequence, it is crucial to optimally
distribute the bit budget within the sequence, because this
directly affects the visual distortion of encoded frames. In this
regard, the rate control of H.265/HEVC allocates the bit budget
at three different levels: GOP level, frame level, and coding
unit (CU) level, as depicted in Fig. 2.

For the GOP level, the bit allocation (BA) consists in a uni-
form assignment of the total bit budget for the sequence over
the GOPs, with a possible fluctuation related to the number
of the remaining frame to encode and the bits still available.
The frame level BA works in a similar way, with a weighting
mechanism to vary the bit assignment for each frame in the
current GOP according to their different hierarchical position.

Our work aims to replace the frame level BA (which does
not take into account the temporal redundancy for the bit
assignment), without modifying the units responsible for the
QP determination (which is performed with the R–λ model
[40]), or the overlaying coding tree unit (CTU) level.
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Figure 2. Rate control in HEVC.

B. Recursive R-D model

We propose to allocate the bit budget by resorting to a
parametric R-D model. According to the R-D theory [41], the
distortion of the frame Ĩn encoded at a high rate rn reads

Dn = E
{

(In − Ĩn)2
}

= αn σ
2
n 2−2 rn , (1)

where αn > 0 is a free parameter, and σ2
n is the variance

of the frame I0 when n = 0 or the residual En for n ≥ 1.
Unfortunately, the above R-D model is proven to be inaccurate
in the context of predictive video coding [42], because the
distortion Dn also depends on the frame Ĩn−1 used to build
the motion-compensated prediction, as shown in Fig. 3.

The behavior in Fig. 3 can be explained by the fact that the
residual frame is factorisable in two terms, namely

En = In − Pn
=
[
In − f(In−1,vn)

]︸ ︷︷ ︸
zn

−
[
f(Ĩn−1,vn)− f(In−1,vn)

]︸ ︷︷ ︸
qn

,

(2)
where zn is the prediction error of the original frame In−1,
and qn is the quantization error of the encoded frame Ĩn−1.
By assuming that zn and qn are uncorrelated, and E{En} = 0,
the variance of the residual can be decomposed as

σ2
n = E

{
z2n
}︸ ︷︷ ︸

Mn

+E
{
q2n
}
, (3)

where Mn is the mean square error of the motion estimation.
The second term is exactly the distortion of Ĩn−1, since

E
{
q2n
}

= E
{[
f(Ĩn−1,vn)− f(In−1,vn)

]2}
= E

{[
Ĩn−1 − In−1

]2}
= Dn−1,

(4)

under the hypothesis of wide-sense stationarity. Consequently,
the R-D behavior of a frame In can be modeled as [24], [25]

Dn = αn (Mn +Dn−1) 2−2 rn , (5)

where, for n = 0, M0 denotes the variance of I0 and D−1 = 0.
Hence, for n ≥ 1, the distortion Dn is controlled by two terms:
the rate rn used to encode Ĩn, and the distortion Dn−1 of its
encoded reference Ĩn−1, leading to a recursive R-D model.

C. Proposed approach

In this work, we extend the recursive R-D model in (5)
by parameterizing the exponential decay, in order to better

Figure 3. In dependent bit allocation the R-D point of frame n is not only
controlled by its own QP but also affected by the QPs of the references [20].

represent the fact that the R-D behavior within a GOP can
change from a frame to another. This allows us to model the
R-D function of a frame In as follows

Dn = αn (Mn +Dn−1) e−βn rn , (6)

where (αn, βn) are parameters to be estimated within the GOP.
The key point of the above model is that the distortion Dn

actually depends on all the frames involved in the chain of
predictions leading to In. This can be demonstrated by the
induction principle (See Appendix A), leading to

Dn =

n∑
`=0

α(`,n)M` e
−

∑n
j=` βj rj , (7)

where α(`,n) =
∏n
j=` αj . Since we have a sum of exponentials

composed with a linear transformation, we can conclude that
the distortion Dn is a convex function of rates r0, . . . , rn. This
property will be of crucial importance for designing the rate
allocation algorithm proposed in Section III.

D. Estimation of model parameters

The parameter Mn can be obtained directly from the
encoder by using a QP equal to 1 for each frame in the
GOP. Conversely, the estimation of parameters (αn, βn) is
performed by encoding the GOP with different QPs. For every
QP, we record the values of D and R produced at the encoder
output, obtaining a set of R-D points for each frame:

Sn =
{(
r(s)n , log(D(s)

n )
)
| s = 1, . . . , S

}
. (8)

Hereabove, we take the logarithm of D(s)
n so as to convert the

R-D model in (6) into a linear relationship

log(Dn) = log
(
αn (Mn +Dn−1)

)
− βn rn. (9)

This allows us to estimate the parameter βn and the quantity
log
(
αn (Mn + Dn−1)

)
through a simple linear regression.

Then, we obtain the parameter αn with simple algebra, as we
have already estimated Mn and Dn−1 (for the latter, we use
the lowest distortion recorded in Sn−1).

In order to assess the above estimation procedure, we
compared the R-D model proposed in (6) to the classical
R-D model (5), and to the model proposed in [27]. Table I
collects the R2 indexes [43] for the various models fitted to
different sequences. As observed from the table, for all the
test sequences, the proposed model gives higher R2 values,
which indicates higher accuracy.
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Table I
DISTORTION ESTIMATION ACCURACY FOR DIFFERENT SEQUENCES

Sequence R2 with (6) R2 with (5) R2 with [27]

BasketballDrive 0.992 0.986 0.937
BQTerrace 0.998 0.921 0.727
Cactus 0.999 0.922 0.913
Kimono1 0.999 0.941 0.972
ParkScene 0.999 0.947 0.963
BasketballDrill 0.974 0.940 0.970
BQMall 0.999 0.916 0.975
RaceHorses (832x480) 0.998 0.952 0.934
BlowingBubbles 0.999 0.937 0.916
BQSquare 0.997 0.903 0.925
RaceHorses(416x240) 0.991 0.963 0.893

III. FRAME-LEVEL RATE ALLOCATION

Optimal rate allocation consists of finding the rate vector
r = (r0, . . . , rN−1) that minimizes the global distortion while
keeping the total rate under a given budget η > 0, that is

minimize
r∈[0,+∞[N

N−1∑
n=0

Dn(r0, . . . , rn) s. t.

N−1∑
n=0

rn ≤ η. (10)

By using the distortion function proposed in (7), the above
formulation boils down to a convex optimization problem that
can be efficiently and exactly solved by recent primal-dual
proximal algorithms [38], as detailed in the following.

A. Optimization problem

To gain some insight into the solution of Problem (10), we
can introduce a vector u = (un`)0≤n≤N−1,0≤`≤n defined as

un` = −
n∑
j=`

βjrj , (11)

which allows us to express the global distortion as a separable
sum of exponentials

ϕ(u) =

N−1∑
n=0

n∑
`=0

α(n,`)M` e
un` . (12)

Therefore, Problem (10) can be reformulated as follows

minimize
r∈RN

ϕ(Lr) + ιC , (13)

where L : RN 7→ R
N(N+1)

2 is the linear operator that maps the
vector r ∈ RN into the vector u ∈ R

N(N+1)
2 defined in (11),

C ⊂ RN is the nonempty closed convex set defined as

C = {r ∈ [0,+∞[
N ∣∣ N−1∑

n=0

rn ≤ η}, (14)

and ιC denotes the indicator function of C, equal to 0 if r ∈ C
and +∞ otherwise, so as to enforce the bit budget constraint.

Among the many approaches proposed in the literature
to solve the above optimization problem, we resort here
to proximal algorithms [34]–[39], because they allow us to
enforce the bit budget as a hard constraint, instead of resorting
to a Lagrangian formulation that would require us to determine
the corresponding Lagrangian multiplier.

Algorithm 1 FBPD [35] for solving Problem (13)

Inputs⌊
model parameters: (αn, βn,Mn)0≤n≤N−1

budget: η

Output⌊
rate vector: r

Initialization⌊
select r[0] ∈ RN and u[0] ∈ R

N(N+1)
2

set τ > 0 and γ > 0 such that τγ‖L‖2 ≤ 1

For i = 0, 1, . . . r[i+1] = PC
(
r[i] − τ L>u[i]

)
u[i+1] = proxγϕ∗

(
u[i] + γ L

(
2r[i+1] − r[i]

))

B. Primal-dual proximal algorithm

The cornerstone of proximal algorithms is the proximity
operator of a convex function f from an Hilbert space H
to ]−∞,+∞], defined as

(∀x ∈ H) proxf (x) = argmin
y∈H

1

2
‖y − x‖2 + f(y). (15)

The proximity operator can be interpreted as a sort of gradient
descent step for the function f , since

p = proxf (x) ⇔ p ∈ x− ∂f(p), (16)

where ∂f(p) ⊂ H denotes the subdifferential of f at p.1

For the resolution of Problem (13), we employ the Forward-
Backward Primal-Dual algorithm [35], which consists of iter-
ating the following steps for a given initialization (r[0], u[0]):

(∀i ∈ N)

 r[i+1] = proxτιC

(
r[i] − τL>u[i]

)
u[i+1] = proxγϕ∗

(
u[i] + γ L

(
2r[i+1] − r[i]

))
(17)

where τ > 0 and γ > 0 are two algorithmic parameters,
whereas ϕ∗ denotes the convex conjugate of the function ϕ.

The main advantage of proximity operators is that the
functions to be optimized do not need to be differentiable.
This allows us to enforce the constraint C defined in (14)
through its indicator function, as the proximity operator of ιC
coincides to the orthogonal projection onto C, yielding

proxιC (x) = PC(x) = argmin
y∈C

‖y − x‖2. (18)

Consequently, the iterations in (17) lead to Algorithm 1, which
is guaranteed to converge to a solution to Problem (13) for
a suitable choice of τ and γ [35], and can be efficiently
implemented on both multicore and GPGPU architectures [44].

1∂f(p) = {t ∈ H
∣∣ (∀y ∈ H) 〈y − p | t〉+ f(p) ≤ f(y)}, which

reduces to the singleton ∂f(p) = {∇f(p)} when f is differentiable.
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C. Implementation details

Algorithm 1 has the ability to decompose the optimization
process into elementary steps, such as PC , proxϕ∗ , L and L>.
For what concerns the linear operator L defined in (11), its
adjoint L>u yields a vector r ∈ RN such that

rn = −βn
N−1∑
j=n

n∑
`=0

uj`. (19)

In order to set the parameters τ and γ in Algorithm 1, one
needs to compute the spectral norm of L, which is equal to
the largest eigenvalue of the positive-semidefinite matrix L>L.
This quantity can be estimated with Gelfand’s Formula [45].

Moreover, the projection onto the set C can be efficiently
computed with the linear-time algorithm proposed in [46],
while the proximity operator of ϕ∗ reads

proxγϕ∗(u) =

[
γW

(
α(n,`)M` e

un`/γ

γ

)]
0≤n≤N−1,0≤`≤n

(20)
where W denotes the Lambert W function.

IV. EXPERIMENTAL RESULTS

In this section, experimental results are presented to validate
our convex optimization algorithm for frame level bit alloca-
tion on the HEVC platform. We embedded our method into
a standard version of the HEVC encoder (HM.13 RExt-6.0),2

which is able to encode only the Luma component of a video
sequence, in order to better evaluate the validity of our R-D
model and easily evaluate the overall performances.

In our experiments, we used several sequences of class A,
B, C, D, and E from HEVC common test conditions [47],
each with 150 or 200 frames, presenting significantly different
video characteristics in terms of smooth and complex scenes,
and slow and fast motion. The configuration of the encoder
is set as follows: GOP structure of I-P-P-P with a single
reference frame (each P frame in a GOP only depends on
the previous one), in order to have the best correspondence
with the proposed R-D model; the maximum search range for
motion estimation is set to 64. Four different target bit rates
are selected for each sequence, in order to cover a PSNR range
from 35 dB to 42 dB, as reported in Table II.

We compared our method to the standard R-λ rate control
scheme of HEVC, and the bit allocation method in [4]. We
used the latter as an optimal benchmark, as it performs an
exhaustive research among all the possible R-D operating
points, in order to find the one with the minimum Lagrangian
cost for a constant λ under a total bit rate constraint.

A. Implementation

The experimental framework is composed of three steps, as
showed in Fig. 4 and explained in the following.
• Parameter estimation (S). A standard version of HEVC

reference software HM.13 RExt-6.0 is used to encode
the sequences at different QPs: 10, 12, 14, 16, 18, 20,

2Source code available at https://hevc.hhi.fraunhofer.de/svn/ under the
branch svn HEVCSoftware/tags/HM-13.0+RExt-6.0/

Table II
SEQUENCES USED IN OUR TESTS. VALUES OF TARGET BIT RARE ARE SET

ACCORDING TO THE RESOLUTION, FRAME RATE AND MOVEMENT
CHARACTERISTICS OF EACH SEQUENCE IN ORDER TO COVER A PSNR

RANGE FROM 35 DB TO 42 DB

Sequence Resolution Frame Rate Target Bit Rates
[fps] [Mbps]

SteamLocomotive (10 bit)

2560 x 1600

60 10 25 70 140
NebutaFestival (10 bit) 60 100 200 250 300
PeopleOnStreet 30 15 25 45 80
Traffic 30 15 30 40 50

BasketballDrive

1920 x 1080

50 30 35 40 45
BQTerrace 60 30 35 40 45
Cactus 50 10 15 20 30
Kimono1 24 10 15 20 25
ParkScene 24 10 15 20 25

BasketballDrill

832 x 480

50 2 3 4 5
BQMall 60 2 3 4 5
PartyScene 50 2 3 4 5
RaceHorses 30 1 2 3 4

BasketballPass

416 x 240

50 1 1.5 2 2.5
BlowingBubbles 50 1 1.5 2 2.5
BQSquare 60 1 1.5 2 2.5
RaceHorses 30 0.5 1 1.5 2

FourPeople

1280 x 720

60 2 3 4 5
KristenAndSara 60 2 3 4 5
vidyo1 60 2 3 4 5
vidyo3 60 2 3 4 5
vidyo4 60 2 3 4 5

Video 
Sequence

S BA E
Offline

Target Bitrate

Figure 4. Flowchart of the proposed method: parameter estimation (block S),
bit allocation (block BA), and video encoding (block E).

22, 24, 26, 28, 30, 32, 34, 36, 38, 40. The corresponding
R-D points recorded at the encoder output are then used
to estimate the parameters (αn, βn) for each frame, as
explained in Section II-D. Furthermore, the parameters
Mn are obtained by encoding the sequences with a
modified version of HM.13 RExt-6.0 that extrapolates
Mn for each frame, using a QP equal to 1.

• Bit allocation (BA). The estimated parameters are used
in Algorithm 1 to optimally allocate the rates under
a bit budget constraint. The different target bit rates
used for each sequence are reported in Table II. For a
fixed target bit rate, the algorithm allocates the bits to
each frame of a GOP by minimizing the global distortion.

• Encoding (E). The encoder is a modified version of
HM.13 RExt-6.0, where the rate control module accepts
the rates computed in the previous step.
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B. Comparison with R-λ rate control

To assess the validity of our bit rate allocation method,
we compared it with the standard rate control algorithm of
HEVC. Bjontegaard bitrate (BDBR) and Bjontegaard PSNR
(BDPSNR) [48] are deployed to measure the average perfor-
mance over the four target bitrates for each sequence. For
BDPSNR, a positive number indicates a PSNR gain achieved
by our method at the same bit rate; for BDBR, a negative
number in the table indicates a rate reduction achieved at the
same PSNR quality. Table III shows the the rate-distortion
performance of HM R-λ and our scheme for each sequence,
and the average results for each class. As shown in the table,
our method outperforms the conventional encoder in terms
of average PSNR for all video sequences at different bitrate;
in particular, we have a consistent gain for all the Class B
sequences with a maximum of 1.2 dB in terms of ∆ PSNR
and a bit rate reduction of 34.3 %.

Table III also reports the execution times of the compared
methods. For our method, we show the times relative to
the parameter estimation (block S in Fig. 4), the convex
optimization algorithm (block BA in Fig. 4), and the video
encoding (block E in Fig. 4). The parameter estimation takes
the 90% of the total time (but is executed only once for each
sequence), whereas the convex optimization algorithm takes a
negligible fraction of the total time.

Another advantage of the proposed method over HM R-λ
is a better stability in terms of bit rate. As shown in Fig. 5,
HM produces strong fluctuations around the target bit rate over
the GOPs, while our method is much more stable, reaching
the target bit rate for every GOP. Those fluctuations have a
strong impact on the subjective quality of the video sequences,
which dramatically decrease for the last GOPs, as shown in
the right plot of Fig. 5. Moreover, Fig. 6 and Fig. 7 illustrate
some subjective quality results of the proposed method and
the rate control of HEVC. For both figures the left pictures
correspond to our method, whereas the right ones correspond
to HM R-λ. The above two pictures of Fig. 6 are the frame
No. 90 in BasketballDrive sequence at 30 Mbps and the below
two pictures are the frame No. 198 in the same sequence at
the same bit rate; the above two pictures of Fig. 7 are the
frame No. 90 in Kimono sequence at 10 Mbps and the below
two pictures are the frame No. 198 in the same sequence at
the same bit rate. The two figure give a visual example of the
quality fluctuations pointed out in Fig. 5, showing a constant
visual quality for our method over the whole sequence, while
the quality loss of HM results in severe blocking artifacts.

C. Comparison with an exhaustive search method

In order to evaluate the performance of our method, we de-
cided to compare it with the bit allocation technique proposed
by Ramchandran et al. [4]; the optimality of this method is
guaranteed by the fact that it chooses the quantizers combina-
tion with the minimum Lagrangian cost among all the possible
combinations. In [4], two pruning condition implied by the
monotonicity property of the R-D curves, which are proven
to not affect the optimality of the solution, are introduced
in order to ease the computational burden, and suboptimal
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Figure 5. Bit rate vs. GOP number (left) and PSNR vs. GOP number (right)
for the sequence Cactus at 10 Mbps. The proposed method, guarantees a
uniform visual quality over the whole sequence.

heuristics are proposed to obtain an additional reduction of
the complexity in exchange to performance lost. We compared
our method to this suboptimal, but feasible, solution in terms
of R-D performance and execution time.

The first step to implement [4] was the data generation
phase: in order to generate the R-D, we encoded each sequence
with all the possible QP combinations along the frames.
The complexity of this phase is clearly exponential with the
number of frames, and it is possible to calculate the number
of encoding operations per sequence as

∑N
n=1 q

n, where N is
the number of encoded frames, and q is the number of used
QP. In order to have a reasonable encoding time, we choose
N = 4 and q = 9, using the QPs 20, 22, 25, 27, 30, 32,
35, 37, 40; again, we used as encoder HM.13 RExt-6.0 with
the rate control disabled, and an I-P-P-P configuration. We
implemented in Matlab:
• a tree where the nodes of level n contain the R-D data

of the n-th encoded frame for each quantization choice,
• the Lagrangian cost functions for a fixed value λ,
• the tree pruning conditions implied by the monotonicity

of R-D curves [4] to eliminate suboptimal points.
For each sequence, we defined a set of λ values, and for each

of them we selected the optimal path, that is the combination
of QPs, with the minimum Lagrangian cost; among all the
optimal R-D points, we selected four with a PSNR inside the
range of 35 dB ∼ 42 dB, and used the relative bit rate values
as target bit rates for our method. Fig. 8 shows an example
of full constellation of R-D points evaluated for the sequence
Cactus without applying the pruning conditions, and presents
the four optimal points associated to the selected λ values,
which are situated on the convex hull of the constellation;
by applying the pruning conditions, the number of points in
the constellation are cut in a percentage dependent to λ, with
higher quality target (smaller λ) achieving a better reduction.
Table IV presents the R-D performance of the suboptimal
heuristics of [4] and our method in terms of BDBR and
BDPSNR, showing that our method performs slightly worse
than [4], with a difference in terms of bit rate smaller than 7%
for several sequences, and an average difference of 9%.

Moreover, we compared the execution times of these meth-
ods. Table V shows the setup time of [4], that is the total en-
coding time to fully populate the dependency tree, obtained by
summing the encoding time of the 7380 encoding operations.
The cost of encoding just 4 frames using 9 QPs is measured in
hundreds of hours for most of the sequences, and makes [4]
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Table III
COMPARISON WITH THE HM R-λ. FOR OUR METHOD, THE TIME VALUES CONCERN THE PARAMETER ESTIMATION (S), THE CONVEX OPTIMIZATION
ALGORITHM (BA), AND THE VIDEO ENCODING (E); EACH VALUE IS AN AVERAGE OF THE TIMES OBTAINED WITH FOUR FIXED TARGET BIT RATES.

R-D Performance Time Comparison (s)

Sequence BDPSNR (dB) BDBR (%) av. BDPSNR (dB) av. BDBR (%) Proposed HM R-λS BA E

SteamLocomotiveTrain 0.62 -18.62

0.41 -8.68

288470 0.03 15652 21494
NebutaFestival 0.50 -5.97 480322 0.03 35806 55445
PeopleOnStreet 0.45 -8.74 333428 0.03 23474 19575
Traffic 0.10 -1.41 249457 0.05 17155 14536

BasketballDrive 1.02 -28.00

0.93 -24.85

312915 0.05 18192 13197
BQTerrace 1.01 -26.47 344397 0.03 18323 10135
Cactus 0.89 -30.73 332231 0.03 20409 12355
Kimono1 0.82 -21.21 261911 0.04 17601 13892
ParkScene 0.93 -17.84 309619 0.03 19889 12300

BasketballDrill 0.41 -9.06

0.49 -10.77

55801 0.04 2187 1548
BQMall 0.59 -12.06 60668 0.04 1864 1357
PartyScene 0.43 -9.54 78543 0.04 1963 1435
RaceHorses (832x480) 0.55 -12.41 26410 0.03 2759 1908

BasketballPass 0.12 -1.89

0.74 -11.32

11466 0.03 649 468
BlowingBubbles 0.99 -15.25 17305 0.03 756 455
BQSquare 1.32 -19.80 17673 0.03 701 385
RaceHorses (416x240) 0.52 -8.35 16571 0.03 932 646

FourPeople 0.43 -6.87

0.23 -5.86

93957 0.03 3224 2279
KristenAndSara 0.22 -6.79 89341 0.03 3409 2286
vidyo1 0.17 -6.34 87383 0.04 3411 2344
vidyo3 0.23 -4.83 73906 0.03 3320 2242
vidyo4 0.12 -4.48 82536 0.04 3383 2334

Figure 6. Subjective quality of sequence BasketballDrive at 30 Mbps for two different frames (Left: Proposed, Right: HM R-λ)
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Figure 7. Subjective quality of sequence Kimono at 10 Mbps for two different frames (Left: Proposed, Right: HM R-λ)

Table IV
COMPARISON IN PERFORMANCE OF [4] AND OUR METHOD USING THE BJONTEGAARD METRICS.

Sequence BDPSNR (dB) BDBR (%) av. BDPSNR (dB) av. BDBR (%)

SteamLocomotiveTrain -0.38 7.49

-0.19 6.10NebutaFestival 0.51 -5.41
PeopleOnStreet -0.17 3.35
Traffic -0.72 18.96

BasketballDrive -0.01 0.16

-0.18 5.01
BQTerrace -0.30 6.44
Cactus -0.16 6.01
Kimono1 -0.03 0.77
ParkScene -0.40 12.00

BasketballDrill -0.79 18.96
-0.55 12.86BQMall -0.74 17.75

RaceHorses (832x480) -0.10 1.88

BasketballPass -0.68 12.36

-0.66 11.13BlowingBubbles -0.61 11.54
BQSquare -0.97 14.81
RaceHorses (416x240) -0.40 5.79

Table V
TOTAL ENCODING TIME FOR A FULL

POPULATION OF THE DEPENDENCY TREE.

Sequence Setup Time (h)

SteamLocomotiveTrain 955
NebutaFestival 1577
PeopleOnStreet 798
Traffic 615

BasketballDrive 412
BQTerrace 474
Cactus 402
Kimono1 293
ParkScene 353

BasketballDrill 71
BQMall 78
RaceHorses (832x480) 100

BasketballPass 17
BlowingBubbles 31
BQSquare 26
RaceHorses (416x240) 28

impossible to use in practical applications. More reasonable
times are obtained when [4] uses a tree pruning strategy, as it
leads to a smaller number of encoding operations.

Table VI presents a comparison of execution times between
our method and the one in [4]. The global time of our method
is given by the sum of three contributions: the parameters
estimation (90% of the global time), the convex optimization
algorithm (a small fraction of the global time), and the video
encoding (about the 10% of the global time). The global time
of [4] is given by the sum of two contributions: the dataset
generation (99% of the total time), and the search for the

best R-D point. These times depend on the chosen λ value:
a smaller λ implies the pruning of a higher number of R-D
points (less encoding operations to perform), resulting in a
smaller time. Table VI shows that the method in [4] requires
at least four times the time required by our method, with a
difference of two magnitude orders in the worst case.

In summary, our method presents a strong gain over the
standard HM R-λ rate control scheme with a better stability
in terms of bit rate, whereas the small loss w.r.t. the method in
[4] is largely compensated by a much faster execution time.
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Table VI
COMPARISON OF GLOBAL TIMES. FOR OUR METHOD, THE TIME VALUES CONCERN THE PARAMETER ESTIMATION (S), THE CONVEX OPTIMIZATION

ALGORITHM (BA), AND THE VIDEO ENCODING (E). FOR THE METHOD IN [4], THE TIMES CONCERN A LARGE λ (MAX) AND A SMALL λ (MIN).

Setup Time (s) Execution Time (s) Global Time (s)

Sequence Proposed Method in [4] Proposed Method in [4] Proposed Method in [4]
S Max Min BA + E Max Min S+BA+E Max Min

SteamLocomotiveTrain 9579 1470060 37355 0.03 193.518 61.631 1.511 9773 1470122 37356
NebutaFestival 14359 2051171 52867 0.04 1198.331 63.194 1.628 15557 2051234 52869
PeopleOnStreet 8643 1462725 27515 0.03 387.052 106.361 1.566 9030 1462831 27516
Traffic 6897 1225989 22674 0.04 289.185 110.398 1.939 7186 1226099 22676
BasketballDrive 4424 968370 12904 0.12 286.642 150.672 3.921 4711 968521 12908
BQTerrace 4830 941150 18827 0.05 350.262 125.125 1.408 5180 941275 18828
Cactus 4759 932963 17079 0.05 358.504 158.755 1.359 5118 933122 17080
Kimono1 3652 600207 10151 0.03 359.219 132.866 1.183 4011 600340 10152
ParkScene 4318 822478 14018 0.05 462.142 170.827 1.430 4780 822649 14019
BasketballDrill 785 103651 2276 0.04 48.079 86.823 1.516 833 103738 2278
BQMall 886 178867 2893 0.05 54.164 220.521 1.525 940 179088 2895
RaceHorses (832x480) 1008 149803 1858 0.04 91.317 105.121 1.530 1099 149908 1860
BasketballPass 149 38520 578 0.04 15.412 191.807 1.597 164 38712 580
BlowingBubbles 248 69695 994 0.04 24.602 180.332 1.676 273 69875 996
BQSquare 251 55029 962 0.05 22.731 169.733 1.718 274 55199 964
RaceHorses (416x240) 241 58712 972 0.05 28.290 161.830 1.780 269 58874 974
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Figure 8. R-D operating points for sequence Cactus. Each point represents
a QP combination. The points used in the comparisons are marked in red.

V. CONCLUSIONS

We have proposed a new frame level rate allocation scheme
based on modern convex optimization. Firstly, an analytical
rate-distortion model that explicitly takes into account the
dependencies between frames was derived, for the purpose of
formulating frame-level optimal rate allocation as a convex
optimization problem. Then, an efficient solution based on
proximal tools was provided, in order to find the exact solution
of the R-D problem.

Our experiments indicate that the optimal rate allocation,
when supported by an accurate R-D model, attains better
results (in terms of ∆ PSNR and % bit rate) than the standard
rate control in HEVC. Moreover, the comparison with the
exhaustive search method in [4] showed an average loss of
9% in terms of bit rate, which is widely compensated by an
execution time that is two hundred times faster.

A more general model for for multiple reference frames
and B-predictive frames, based on the introduction of a weight
ωn,n−1 which takes into consideration the percentage of blocks
of frame n predicted from frame n − 1, is currently under
development and is considered for our future work.

APPENDIX A
PROOF OF EQUATION (7)

For n = 0, . . . , N − 1, the distortion of the frame In reads

Dn = αn (Mn +Dn−1) e−βn rn , (21)

where D−1 = 0. We aim at demonstrating that

Dn =

n∑
`=0

α(`,n)M` e
∑n

j=`−βj rj , (22)

where α(`,n) =
∏n
j=` αj .

Firstly, let us observe that, when n = 0, (22) reduces to

D0 = α0M0e
−β0 r0 . (23)

Now, let us assume that (22) holds for Dn−1, with n ≥ 1. By
replacing this expression of Dn−1 into (21), we get

Dn = αn(Mn +Dn−1)e−βn rn

= αn

(
Mn +

n−1∑
`=0

α(`,n−1)M` e
−

∑n−1
j=` βjrj

)
e−βn rn

= αnMne
−βn rn +

n−1∑
`=0

α(`,n)M` e
−

∑n
j=` βjrj

=

n∑
`=0

α(`,n)M` e
−

∑n
j=` βjrj .

(24)

This proves that (22) holds for every n ∈ N.
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[14] T. André, M. Cagnazzo, M. Antonini, and M. Barlaud, “A jpeg2000-
compatible full scalable video coder,” EURASIP Journal of Image and
Video Processing, vol. 2007, pp. 11, 2007.
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