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Abstract—We introduce Multi-Expert Region-based Convolu-
tional Neural Network (ME R-CNN) which is equipped with
multiple experts (ME) where each expert is learned to process
a certain type of regions of interest (RoIs). This architecture
better captures the appearance variations of the RoIs caused
by different shapes, poses, and viewing angles. In order to direct
each RoI to the appropriate expert, we devise a novel “learnable”
network, which we call, expert assignment network (EAN). EAN
automatically learns the optimal RoI-expert relationship even
without any supervision of expert assignment. As the major
components of ME R-CNN, ME and EAN, are mutually affecting
each other while tied to a shared network, neither an alternating
nor a naive end-to-end optimization is likely to fail. To address
this problem, we introduce a practical training strategy which
is tailored to optimize ME, EAN, and the shared network in
an end-to-end fashion. We show that both of the architectures
provide considerable performance increase over the baselines on
PASCAL VOC 07, 12, and MS COCO datasets.

Index Terms—multiple experts, object detection, R-CNN, ex-
pert assigner

I. INTRODUCTION

IN general, object detection uses distinctive shape patterns
as evidence to find the object-of-interest in an image.

Object detection models are trained on these shape patterns
that are commonly shown within the same object categories
yet discriminative among the different categories. However, it
is quite burdensome for a single model to accurately identify
all the appearances since object appearances greatly vary
according to fundamental object shape priors (e.g., airplane vs.
person) as well as different object poses and viewing angles
(e.g., a person lying down vs. standing upright). Therefore,
conventional object detection methods often use mixture of
experts, each expert associated only with the corresponding
shape patterns, in order to better capture large variations of
object appearance [1]–[3].

In this paper, we introduce a novel convolutional neural
network (CNN)-based approach for object detection, referred
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Fig. 1: ME R-CNN. ME R-CNN adopts “multi-expert (ME)” to
allow different streamlines for processing different RoIs. The “expert
assignment network (EAN)” is built into the architecture to select
the optimal streamline for each RoI. EAN is designed to output the
probabilities for the RoI-expert relationships which guides the expert
assignment.

to as ME R-CNN, which adopts multiple experts (ME). The
ME R-CNN inherits the architecture of the region-based CNN
(R-CNN) [4]–[11] which uses a single stream pipeline for pro-
cessing each region-of-interest (RoI). However, unlike these
approaches, the ME R-CNN is equipped with multiple stream
pipelines, where one of the pipelines becomes an “expert”
for processing a certain type of RoIs. To designate incoming
RoIs to the appropriate experts, we construct a novel network
called Expert Assignment Network (EAN). Figure 1 depicts
the conceptual mechanism of the ME R-CNN which contains
ME and EAN components.

The EAN is a “learnable” network which is trained to
capture the RoI-expert relationship. It is designed to output a
vector which indicates the matching probability for selecting
one of the experts for a given RoI. The EAN consists of a
convolutional, average pooling, and a fully connected layer. In
the training scheme, the EAN is learned to choose the expert
with minimum expert loss. The expert loss is defined as the
sum of the losses for object classification and bounding box
regression. These two losses were introduced in [5], [6] to
optimize the R-CNNs.

Training ME R-CNN is very challenging because: (1) ME
and EAN components mutually affect each other (i.e., EAN
training labels are defined based on the expert loss in ME,
while EAN distributes the training samples to ME), (2) they
are both derived from a shared network. To deal with (1), it is
natural to use an alternating optimization strategy to co-train
two mutually affecting tasks. However, this approach is likely
to fail since the weights in the shared network optimized with
respect to ME would no longer be in sync with EAN, and vice
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versa because of (2). To cope with these structural issues, it
is necessary to come up with an end-to-end approach where
all three components (ME, EAN, and the shared network) are
optimized together.

However, there is a barrier which hinders the joint training
of all three components. During the joint training, the RoI-
expert relationships which are dependent upon the ME losses
will be altered continuously, thus providing inconsistent (i.e.,
severely fluctuating) expert labels for the training of EAN.
Therefore, we have devised an approach to go around this issue
by adding a step where EAN and ME are learned separately
to gain stability before proceeding into the joint learning
stage. In this step, ME weights are firstly learned along with
the shared network and then the RoI-expert relationships are
learned by the EAN based on the pre-trained ME. Adding
this ME/EAN initialization step was found to be useful in
providing relatively consistent expert labels for EAN training,
thus effectively assisting the joint optimization step which
follows the initialization step. Note that, as expert labels for
the RoIs do not exist at the time of initializing the ME, we
have provided hard-coded labels for the RoIs which will be
accounted for in the following paragraph.

On top of advancing the object detection performance via
employing multiple experts, ME R-CNN optimization can also
be viewed as investigating the RoI-expert relationships in an
unsupervised fashion (i.e., clustering) because no expert labels
are ever provided as ground truth. Generally, clustering results
highly depend on how initial cluster labels are assigned [12].
We have observed that the ME R-CNN learning is also highly
sensitive to the presetting of the initial expert labels. When
the expert labels are assigned by randomly initialized ME
weights, most RoIs resulted in having assigned to one single
expert after few training iterations, thus causing a failure in
training. To avoid such extremely biased assignment, we also
have tried forcing the RoIs to evenly be distributed to the
experts for every training iteration, which also was found to
be ineffective. Meanwhile, promising results were shown when
initial assignments for the RoIs were done according to their
aspect ratios.

We use Fast R-CNN [5] and Faster R-CNN [6] for drawing
up the baseline architecture of ME R-CNN. The Fast/Faster
R-CNN architecture is composed of a network which intakes
and processes holistic images (per-image network) which is
followed by another network responsible for processing the
RoIs (per-RoI network). For Faster R-CNN, the RoIs are
generated by the region proposal network (RPN) while Fast
R-CNN employs additional selective search process to obtain
a set of RoIs. While ME R-CNN directly inherits the per-
image network portion (and the RPN from the Faster R-CNN),
the latter portion (per-RoI network) is replaced by our novel
components: ME and EAN. We verified that ME R-CNN can
consistently provide considerable performance boost over the
baseline approaches in PASCAL VOC 07, 12, and MS COCO
datasets.

The contributions of the proposed ME R-CNN can be
summarized as follows:

1) Introduction of ME R-CNN adopting “multiple experts
(ME)” to better capture variations of the object appear-

ance.
2) Introduction of the EAN which can “learn” the RoI-

expert relationship.
3) Introduction of a practical training strategy to co-learn

ME and EAN with a shared network in an end-to-end
fashion.

4) Considerable performance boost over the baselines on
benchmark datasets.

In Section II, we list out previous relevant literature and
briefly introduce the innovative aspects of our approach. ME
R-CNN architecture and its optimization strategy are described
in Section III and IV, respectively. Evaluation results are
provided in Section V. We suggest future works in Section VI
and provide the conclusion in Section VII.

II. RELATED WORKS

A. Object Detection.

Object detection is one of the most challenging tasks in
computer vision. Prior to the introduction of CNNs, non-
CNN based object detection approaches, such as HOG-SVM
(Histogram of Oriented Gradient - Support Vector Machines),
DPM (Deformable Part Models), etc., were widely used for
classifying RoIs into corresponding object categories [1]–[3],
[13]. Within the past several years, multiple attempts have been
made to use CNNs for object detection. Prominent methods
among them are R-CNN [4] and its descendants [5], [6], [8],
[10], [14] that provided the state-of-the-art performance for
both localization accuracy and speed.

Although having achieved the top-notch performance, R-
CNNs have not yet exploited some of the effective strategies
which conventional object detection methods commonly use
for boosting the performance. While the R-CNNs rely on
heuristics to select hard negative examples, Shrivastava et
al. [15] and Wang et al. [16] used the online hard example
mining (OHEM) to automatically select hard examples with
high optimization loss in every iteration of training. These
approaches were motivated by the offline bootstrapping idea
for training a classical object detection method [13].

Motivated by their successful practice, we focus on adding
another conventional, yet effective, “multi-expert” flavor to the
R-CNN architecture. Felzenswalb et al. [3] and Malisiewicz
et al. [2] have shown that employing multiple classifiers for
the object detection task brings increase in performance.

B. Mixture-of-Experts Models.

Multiple experts embedded in the proposed ME R-CNN
is based on the concept of mixture-of-experts models. The
mixture-of-experts model is used to better estimate the prob-
ability distribution of a composite data with large variation
(e.g., Gaussian mixture model [17]). In the image domain,
object appearances can also show large variations according
to their shapes, poses, and viewing angles. Felzenswalb et
al. [3] nicely illustrates the importance of using a mixture
of models by presenting two models, each of which captures
the appearance of the front and the side view of a bicycle.
Accordingly, many approaches [3], [18], [19] have shown
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Fig. 2: Conventional way of adopting mixture-of-expert with
CNN vs. ME R-CNN. Thick lines indicate the computational flow
where one input has to go through. Only one of the three experts are
activated in (b) whereas all the experts constantly have to be active
to process one single example. I and O denote input and output,
respectively. Assigner (dashed box) in ME R-CNN is not involved in
training.

that using the mixture-of-experts model for advanced object
detection is very effective.

Recently, there have been several attempts to adopt the
mixture-of-experts model in CNN-based recognition ap-
proach [20]–[25]. Figure 2 shows how our way (ME R-
CNN) of adopting mixture-of-experts in a CNN architecture is
different from the conventional approach. In the conventional
approaches (Figure 2 (a)), all the experts are involved in pro-
cessing each input while the gating network provides different
weights to adjust the outputs of the experts. On the other hand,
with ME R-CNN (Figure 2 (b)), only one expert assigned by
the EAN is activated, which makes it more efficient in terms
of computation. Conventionally, all the experts are optimized
with a same objective loss, but each expert in the ME R-CNN
is optimized separately with its own loss in order to have
unique expertise. To ensure that the overall performance does
not suffer because of using only one expert at a time (instead
of utilizing multiple experts each time), all the experts in the
ME R-CNN architecture are trained concurrently in order to
promote having experts with complimentary roles.

C. Going Wider with CNN.

One of the major innovations introduced in ME R-CNN is
that the network has expanded in width, where the network
width refers to the number of nodes in each layer. This is
to equip the network with multiple number of specialized

experts to better capture variations of object appearance. There
have already been several attempts where the width of CNN
architecture was expanded. Krizhevsky et al. [26] splits each
layer into two parallel layers in order to fully use two GPUs
in a parallel fashion. Girshick [5] appended two parallel layers
with different functionalities at the end of the network, where
the two layers are working for object category classification
and bounding box regression, respectively. Szegedy et al. [27]
uses the inception module which employs multiple parallel
layers in order to make use of dense sets of different sized
convolutional filters. Xie et al. [28] modified the residual
network structure [29] by replacing each residual module
with multiple parallel sets of layers (i.e., branches). They
referred to the number of branches as “cardinality” and show
that increased cardinality of the network enhances the image
classification performance. Several other approaches [30]–
[38] also introduced widened networks for the task of co-
learning multiple tasks in a single framework. Wang et al. [39]
introduces the way of increasing model capacity such as depth
or width during finetuning. ME R-CNN also enhances object
detection accuracy by increasing the model width during
finetuning.

D. Unsupervised Learning (Clustering)

Training ME R-CNN can be viewed as a type of a clustering
approach because no expert labels are available at the time
of training. For the cases where labels are not provided
for a classification problem, many clustering methods are
used such as K-means clustering [12], [40], [41], mean-shift
clustering [42]–[44], density-based spatial clustering [45]–
[47], expectation-maximization (EM) clustering [48]–[50], ag-
glomerative hierarchical clustering [51], [52]. Most cluster-
ing methods start off the process with a label initialization
step (e.g., random assignment) where initial cluster labels
are assigned to each of the samples. How the labels are
assigned initially may bring a significant impact in terms
of clustering performance. For learning the ME R-CNN, we
initially assigned the RoIs to multiple experts according to
their aspect ratios. This initialization approach was found to
be effective in avoiding the optimization divergence.

III. ME R-CNN

In this section, we first introduce Faster R-CNN [6] as ME
R-CNN inherits its structural backbone. Then the architectural
components (ME and EAN) unique to ME R-CNN are elabo-
rated in the following subsections. Lastly, we briefly describe
how the network performs the task of object detection. The
overall architecture of ME R-CNN is depicted in Figure 3.

A. Faster R-CNN

Faster R-CNN consists of a Per-Image Network and a
Per-RoI Network. The Per-Image Network can be divided
into two parts: a set of convolutional layers (Conv-L) and a
region proposal network (RPN). When an input image goes
through the Conv-L, a per-image convolutional feature map is
generated which is then fed into the RPN. The RPN is used
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Fig. 3: ME R-CNN architecture. One example of a RoI-to-expert assignment is shown in red arrows.

to provide a set of hypothetical regions of interest (RoIs) for
potential object regions.

For all the RoIs from the RPN, RoI pooling layer crops
out the corresponding regions from the per-image feature map.
Each of these cropped-out feature maps (per-RoI feature maps)
are max pooled to have a fixed size output. The output size
is set to match the input size of the first fully-connected layer
of the predefined CNN (e.g., 7×7 for VGG16 [53]).

All of these per-RoI feature maps are then fed into the
Per-RoI Network. At the end of this network, two sibling
layers are present for object classification and bounding box
regression. Object classification and bounding box regression
are optimized using softmax classification loss and smooth L1

loss, respectively.

B. Per-RoI ME Network

ME R-CNN resembles the overall architecture of Faster R-
CNN as it contains both Per-Image Network and Per-RoI
Network. Per-Image Network of ME R-CNN inherits all
the components from that of the Faster R-CNN. However,
Per-RoI Network portion is redesigned to fit the need of
performing multi-expert supported object detection, and there-
fore, renamed as Per-RoI ME Network. There are multiple
stream pipelines built into the Per-RoI ME Network, and
each stream carries equivalent components in the Per-RoI
Network of Faster R-CNN. Each of the stream, known as
an “expert”, is responsible for processing a certain type of
RoIs. To guide the RoIs to their best matching experts, we
have constructed a network called Expert Assignment Network
(EAN). Each expert is connected to its two loss functions for
object classification and bounding box regression. Although
our design does not constrain the number of experts, we
have exploited three experts to be used for the following
experiments and illustrations.

C. Expert Assignment Network (EAN)

For each RoI, its associated per-RoI feature map is fed into
one of the three experts which is assigned by the EAN which
is designed to “learn” the RoI-expert relationship. The EAN
consists of two learnable layers, one convolutional and one

fully connected layer. The input to the EAN are the per-RoI
feature maps. When using VGG16 as the baseline architecture,
the size of a feature map is 7×7×512. The convolutional
layer employs 512 kernels (3×3) with 1 stride and 1 padding.
Then ReLU is applied which is followed by 7×7 max-pooling
generating a 1×1×512 output. A fully connected layer then
takes this and generates 3 dimensional output, where each bin
indicates the score for the corresponding expert. To allow the
EAN to be able to select more than one expert for training, a
binary sigmoid function is applied to the output. Architecture
of the EAN is depicted in Figure 3.

Assume that f(x,WEAN ) is the function which computes
the output of the EAN with weight WEAN when given per-
RoI feature map x. Note that we denote each entry of the EAN
output as f (e) which indicates the assignment probability for
the expert e. The expert assignment process which is being
carried out by the EAN can then be formularized as:

e∗ = arg max
e∈{E1,E2,E3}

f (e)(x,WEAN ). (1)

EAN weights are optimized by minimizing the loss
LEAN (·) which intakes the EAN output generated by f(·)
and the expert label vector y as shown below:

W ∗EAN = arg min
WEAN

LEAN (f(x,WEAN ), y) (2)

The expert label vector y is constructed by concatenating
the expert labels as y = [yE1

, yE2
, yE3

]. Since the purpose
of EAN is to find an expert which best performs in terms of
object detection, each expert label ye is defined based on the
expert loss Le as shown below:

ye =
{ 1 if Le({x, yobj},We) ≤ τ

0 otherwise, (3)

where yobj , We, and τ denote, respectively, object category
label, expert weight, and assignment threshold. Le, which
is the expert loss for expert e, is computed as the sum
of corresponding softmax classification loss and smooth L1

bounding box regression loss. The assignment threshold τ is
defined by the mean value of all the expert losses for each
per-RoI feature map x.
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D. Object Detection

In testing, a per-image convolutional map is generated by
feeding an input image through the convolutional layers. Using
this map and the RoIs provided by the RPN, per-RoI feature
maps are acquired which all are then fed into the EAN.
Each per-RoI feature map is sent to one of the experts which
corresponds to the maximum EAN score. Note that, EAN is
trained with the binary labels for each RoI-expert assignment,
which allows having each RoI being assigned to more than
one expert at a time. This training strategy eventually prevents
performance degradation even when a RoI is not assigned to
the most desirable expert in the testing phase. This can be
intuitively seen as preparing more than one experts which can
properly function with confusing RoIs. In testing, each RoI is
assigned to only one expert in order to achieve the same level
of computational complexity as single expert model.

ME R-CNN outputs three sets of detection results per im-
age, i.e., bounding boxes and their scores, from three different
experts. The bounding boxes are refined by incorporating
the output of bounding box regression layers. We combine
these three sets of detection results and apply non-maximum
suppression (NMS) with overlap criteria of 0.3 for each object
category.

Note that, computational load which is required to process
each RoI using ME R-CNN is comparable to the case when
Faster R-CNN is used because only one expert is activated for
an RoI in ME R-CNN while EAN adds negligible computa-
tional cost. Therefore, as long as the same number of RoIs
are used, computational costs for the ME R-CNN and Faster
R-CNN are highly similar.

IV. LEARNING ME R-CNN

We base our training strategy on the pragmatic “4-step
alternating optimization” devised by Ren et al. [6] but modify
it to fit the need of the components in the ME R-CNN. In the
first step, we train the RPN. As RPN takes the output of the
Conv-L, we use the ImageNet-pre-trained model to initialize
the Conv-L for this step. In the second step, we train ME,
EAN, and Conv-L using sets of region proposals generated by
the step-1 RPN. Conv-L is again initialized by the ImageNet-
pre-trained model. In the third step, we re-train the RPN to be
aligned with the newly trained Conv-L from step-2. Finally,
we update ME and EAN with step-2 Conv-L and step-3 RPN.
In this step, ME and EAN weights are initialized by step-2
ME and EAN, respectively. Note that in step-3 and step-4,
Conv-L is fixed.

Overall training strategy for the ME R-CNN is listed out
in Algorithm 1. In the following subsections, we elaborate on
step-2 and step-4 which are devised to train the components
(ME, EAN, and Conv-L) unique to the ME R-CNN. For
training the RPN in step-1 and step-3, we have followed the
procedures introduced in [6].

A. Step-1: Train RPN & Conv-L

RPN evaluates all spatial locations from the per-image con-
volutional feature map. Every location in the map is mapped
to multiple windows which are predefined in sizes (e.g., 8×16,

Algorithm 1: 4-step alternating algorithm

1 Train RPN & Conv-L

(Conv-L from 1 is no longer used hereafter.)

2 Train ME, EAN, & Conv-L

2a Initialize ME & Conv-L

2b Initialize EAN

2c Co-train ME, EAN, & Conv-L

3 Train RPN

4 Update ME & EAN

4a Update EAN

4b Update ME

16×8, 8×8, etc). Each mapping reference is referred to as an
“anchor”. For PASCAL VOC, three scales and three aspect
ratios, represented with 9 anchors, are considered to obtain
region proposals via RPN. These anchors are 16×8, 8×8,
8×16, 32×16, 16×16, 16×32, 64×32, 32×32, and 32×64.
For MS COCO, four more anchors (8×4, 4×4, and 4×8) are
added to consider objects with extremely small size.

For training RPN, positive/negative examples are chosen
from all possible windows according to the IOU (intersection-
over-union) between the window bounding boxes and the
groundtruth bounding boxes of any objects. Windows with
IOUs larger than 0.7, are treated as positive training examples.
Windows with IOUs between 0.7 and 0.3, are used as negative
examples. RPN is trained using mini-batches, where each
mini-batch consists of 128 positive and 128 negative examples.

The trained RPN is used to provide the region proposals
in training ME, EAN & Conv-L (step-2). In order to provide
more accurate region proposals, Conv-L is also trained in step-
1. However, the Conv-L weights learned in this step are no
longer used afterwards.

B. Step-2: Train ME, EAN, & Conv-L
In this subsection, we introduce a novel way to simulta-

neously train the major components (ME, EAN, and Conv-
L) in the ME R-CNN which are layed out differently when
compared with other types of multi-task learning architectures.
Many multi-task learning architectures [30]–[32] are designed
so that the tasks are independently derived from the commonly
shared network as shown in Figure 4(a). Another stream
of multi-task architectures do not require shared networks
while having mutually-affecting tasks as depicted in Figure
4(b). The Generative Adversarial Network (GAN) [54] can
be considered as a representative example of an architecture
which contains mutually-affecting multiple tasks (‘Generator’
and ‘Discriminator’). Shared network-driven multiple task ar-
chitectures can be trained by enforcing separate loss functions
in an end-to-end fashion, while the architecture with mutually-
affecting tasks are typically trained using an alternating opti-
mization strategy as the module responsible for one task needs
to be fixed to train the other.
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Unlike the two types, the architecture of ME R-CNN can be
viewed as having tasks (ME and EAN) derived from the shared
network (Conv-L), and at the same time, mutually affecting
each other. Figure 4(c) illustrates the schematic architecture
of ME, EAN, and Conv-L. This makes the training very
challenging as neither of the previously mentioned training
approaches can be applied directly.

Attempting to train these modules using an alternating
optimization strategy is far from reaching the optimal point
and likely to fail. For instance, the shared network portion
constantly changes every time task 1 is being optimized,
but at the same time loses its sync with respect to task
2. The problem is that previously optimized task 2 is no
longer optimized with respect to the shared network but still
harmfully affects task 1.

To cope with these structural issues, all three components
(Me, EAN, and Conv-L) need to be optimized together. How-
ever, when carrying out the joint learning, constantly changing
ME provides inconsistent (severely fluctuating) expert labels,
which adversely impacts EAN training. To gain stability
before proceeding into the joint learning (Step-2c), we add
an initialization step where ME weights along with Conv-L
are learned (Step-2a) which is then followed by the EAN
learning (Step-2b) in which the pre-trained ME weights are
fixed. We have observed that these initialization steps were
effective in providing relatively consistent expert labels for
the EAN training and thus accommodating better grounds for
the joint optimization as shown in Table IX.

Initialize ME & Conv-L. When initializing ME and Conv-
L independent of EAN (i.e., without any expert assignment
information from EAN), temporarily exploiting RoI shape-
based assignment criteria in place of EAN was found to
be effective. Each RoI is labeled with a shape category
chosen among horizontally elongated (H), square-like (S), or
vertically elongated (V) according to its aspect ratio.

We denote w and h as the width and the height of an RoI.
All RoIs satisfying w > h are assigned to the H category.
All RoIs satisfying w < 2h and w > 1

2h are assigned to
the S category. Lastly, RoIs with w < h are assigned to the
V category. Note that, under this RoI assignment criteria, an
RoI can be categorized into more than one category. This is
done to have multiple experts responsible for the RoIs which
can be shared across the different categories while training
the network. We trained three different experts using the RoIs
assigned to H, S, and V category, respectively.

To optimize the three experts, three batches are prepared
for every iteration. Each batch is built from two images, and
each image contributes 64 randomly chosen RoIs. For each
expert, only the RoIs that match its associated shape category
are selected for training. Each RoI is labeled as a positive or
negative example according to an IOU overlap criteria between
the RoI and the groundtruth bounding box. The RoIs having
IOU overlap equal to or bigger than 0.5 are labeled as positive
examples and the remaining ones are labeled as negative. For
each batch, the ratio between the number of positive and
negative examples is fixed as 1:3. Batch preparations for all
of the training procedures in this paper (except B in ‘Co-learn
ME, EAN & Conv-L’) are equivalently done as described in
‘Initialize ME & Conv-L’.

Conv-L and ME are each finetuned from the convolu-
tional layers and the fully connected layers of the ImageNet-
pretrained model, respectively. Three pairs of sibling layers
(classification and bounding box regression) appended at the
end of the expert streams are initialized as well. The classi-
fication layer weights are initialized by randomly selecting
them according to Gaussian distribution with the mean of
0 and the standard deviation of 0.01. For the bounding box
regression layer, we initialized the weights randomly selected
from Gaussian distribution with the mean and the standard
deviation of 0 and 0.001, respectively. When finetuning Conv-
L, we multiply 1/3 to the base learning rate because optimizing
the layers in Conv-L is affected by all three streams of ME
at each training iteration when back-propagation takes place.
This scheme of multiplying 1/3 to the base learning rate in
finetuning Conv-L is also used when we co-learn ME and
EAN.

Initialize EAN. The weights in EAN are learned according
to Equation 2 while fixing weights in Conv-L and ME. The
fixed weights for Conv-L and ME are inherited from the
results of ‘Initialize ME & Conv-L’. Note that before learning
EAN, the weights (both for convolutional and fully connected
layers) are initialized by randomly selecting them according
to Gaussian distribution with mean and standard deviation of
0 and 0.01, respectively.

Co-learn ME, EAN & Conv-L. The overall protocol of co-
training ME, EAN & Conv-L is depicted in Figure 5. Let
us assume that the weights for ME (same applies to EAN
and Conv-L) learned in the previous and current iteration are
denoted as MEt−1 and MEt, respectively. Once RPN generates
a set of region proposals, the whole set of corresponding
per-RoI feature maps (B) is forward passed into MEt−1 and
EANt−1.

Forward passed output from MEt−1 is then fed into
the EAN Batch Sampler which outputs a downsized batch
(BEAN ) which contains per-RoI feature maps selected based
on the expert loss Le. Note that Le, which is the expert loss
for expert e, is the sum of corresponding softmax classification
loss and smooth L1 bounding box regression loss. BEAN

is then used to train EANt. The ground truth labels for the
samples in the batch are defined according to Equation 3.

In a similar manner, output of EANt−1 is fed into the
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Fig. 5: Protocol of co-training ME, EAN & Conv-L. A conceptual illustration of the entire flowchart is shown below the input image.

ME Batch Sampler which generates equal-sized three sets of
batches, B1, B2, and B3 which will be used to train MEt. In
the ME Batch Sampler, each batch is generated by collecting
the per-RoI feature maps and their associated object category
labels which were tagged with 0.8 or higher EAN output
probability. EAN output is a 3-dimensional vector where each
entry indicates the matching probability for the corresponding
expert among three.

Along with the training of EANt and MEt, Conv-L is
concurrently trained via back-propagation. For the very first
iteration of training, ME0 and EAN0 are used in place of
MEt−1 and EANt−1, respectively, which are acquired by
previously mentioned ‘Initialize ME & Conv-L’ and ‘Initialize
EAN’.

C. Step-3: Train RPN

In this step, RPN is finetuned from the model trained in
step-1. Unlike step-1, conv-L weights are not updated in order
to share them among RPN, EAN, and ME. All the details
(i.e., hyper-parameters, anchors, training example labeling) are
same to those used in step-1. Updated RPN generates the
region proposals used in updating EAN and ME in step-4.

D. Step-4: Update EAN & ME

We generate the region proposals using the RPN learned in
step-3 to update the weights in EAN and ME. This is carried
out to better align EAN and ME with respect to the newly
trained RPN and maximize the performance. EAN weights
are updated first while fixing ME weights, and then ME is
updated by fixing EAN. This alternating update procedure for
EAN and ME is feasible for this step since Conv-L is fixated
with the previously learned weights.

E. Joint Training of All Components

4-step alternating optimization is a sub-optimal approach.
As Ren et al. [9] recently provided a joint training strategy for
learning the Faster R-CNN, we also have tried a single-step
joint training of all the components (ME, EAN, and Conv-L)
for our network. However, the jointly trained ME R-CNN did
not perform well in terms of detection accuracy. As previously
mentioned (Section I and Section IV-B), jointly optimizing
ME R-CNN in an end-to-end fashion is highly sensitive to the
presetting of RoI-expert assignment. As our future work, we
will seek to develop a more efficient and effective learning
strategy for ME R-CNN.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our method on VOC 2007, 2012
[55] as well as MS COCO [56] dataset.

A. Experimental Setup

We use VGG16 [53] or ResNet-101 [29] as a predefined
CNN for all experiments. We also use Fast R-CNN [5] or
Faster R-CNN [6] as our baseline architectures for the ME R-
CNN. When Faster R-CNN is chosen as the base architecture
for ME R-CNN, all 4-steps are carried out. However, when
Fast R-CNN is used, single-step end-to-end optimization (i.e.,
step 2 of ME R-CNN optimization) is carried out as RPN-
related training procedures are not required. For all the meth-
ods we have tested, we used stochastic gradient descent with
a base learning rate of 0.001 and the weight decay of 0.1. As
reported in Table I, the minibatch iterations and the step sizes
were varied according to trainsets and training steps. The mini-
batch iteration and step size of the ME R-CNN optimization
is determined according to each of its baseline architecture.
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train set
Fast R-CNN ME R-CNN Faster R-CNN ME R-CNN

2a/2b/2c 1 2 3 4 1 2a/2b/2c 3 4a/4b

07 40k/30k 40k/30k 80k/60k 40k/30k 80k/60k 40k/30k 80k/60k 40k/30k 80k/60k 40k/30k

12 40k/30k 40k/30k 80k/60k 40k/30k 80k/60k 40k/30k 80k/60k 40k/30k 80k/60k 40k/30k

07+12 100k/75k 100k/75k 200k/150k 100k/75k 200k/150k 100k/75k 200k/150k 100k/75k 200k/150k 100k/75k

07++12 120k/90k 120k/90k 240k/180k 120k/90k 240k/180k 120k/90k 240k/180k 120k/90k 240k/180k 120k/90k

coco train · · 320k/240k 320k/240k 320k/240k 320k/240k 320k/240k 160k/120k 320k/240k 160k/120k

coco trainval · · 320k/240k 320k/240k 320k/240k 320k/240k 320k/240k 160k/120k 320k/240k 160k/120k

TABLE I: Minibatch iterations and step sizes of ME R-CNNs and their baseline architectures for different trainsets and training steps.
Training set key: 07: VOC07 trainval, 12: VOC12 trainval, 07+12: union of VOC07 trainval and VOC12 trainval, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval, coco train: MS COCO train, coco trainval: MS COCO train and val.
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Fig. 6: ME R-CNN adopting ResNet-101 architecture. Per-RoI
network of ResNet-101 consists of three residual modules (Res5a,
Res5b, and Res5c). One can observe that the position of Res5a (red)
with respect to the RoI pooling has changed.

For all evaluations, we use single-scale training/testing as
in [5], by setting the shorter side of the images to be 600
pixels. We have carried out all the experiments on Caffe
framework [57] with a Titan XP GPU.

Adapting Multi-Expert into ResNet-101. To use ResNet-
101 as the backbone network for object detection, He et
al. [29] exploited the last 10 convolutional layers of ResNet-
101 to function as the per-RoI network as depicted in Figure
6(a). Denote three residual modules consisting of the last 10
convolutional layers as Res5a, Res5b, and Res5c, respectively.
In our case, as shown in Figure 6(b), the last 6 convolutional
layers (Res5b and Res5c) are used as the per-RoI multi-
expert network and the first 4 convolutional layers (Res5a) are
appended at the end of the per-image convolutional network
due to the GPU memory limitation.

In ResNet-101, RoI pooling layer takes a per-image con-
volutional feature map and outputs 14×14 per-RoI feature
maps. Per-RoI feature map resolution is halved to 7×7 during
processing in Res5a. For our architecture, in order to maintain

the resolution of the per-image feature map (i.e., an input of
RoI pooling layer as well as the output of the Res5a), we do
not use a resizing function of Res5a. Instead, we modify the
output dimension of the RoI pooling layer as 7×7 in order
to preserve the following layers (Res5b and Res5c) which are
inherited from ResNet-101.

We also reduce the batch size from 128 to 64 for training
while taking more training iterations. This change is also
considered in order to cope with the GPU memory limitation.

We have made above modifications in order to adopt our
ME component into an architecture which consists of Faster
R-CNN and ResNet-101. Note that Faster R-CNN + ResNet-
101 combination is widely used as the backbone architecture
in state-of-the-art object detection approaches. (See Table XII.)

B. VOC 2007 and 2012 Results
PASCAL VOC datasets contain 20 object categories. VOC

07 dataset consists of 5k images in trainval set and 5k images
in test set. VOC12 dataset has 10k images in trainval set
and 10k images in test set. We use the standard metric for
evaluating the detection accuracy for PASCAL VOC which is
by taking a mean of average precision (mAP) over all object
categories.

Table II shows that, on VOC07, ME R-CNN provides
improved detection accuracy in mAP than Fast/Faster RCNN
when using VOC07 trainval set for training (69.0% vs. 66.9%
and 70.6% vs. 69.9%, respectively). When using 07+12, ME
R-CNN outperforms both Fast R-CNN and Faster R-CNN by
2.2% and 2.6%, respectively (72.2% vs. 70.0% and 75.8%
vs. 73.2%). VOC12 results are shown in Table IV where we
observe consistent performance boost for ME R-CNN. In both
cases of VOC12 trainval and 07++12, ME R-CNN outperforms
both Fast/Faster R-CNN by at least 2.1% mAP (2.9% at most).

In table III and V, ME R-CNN shows a consistent perfor-
mance boost when compared with ResNet-101 with Faster R-
CNN on both VOC07 (78.7% vs. 76.4%) and VOC12 (76.1%
vs. 73.8%). For this result, ME R-CNN was built on top
of the ResNet-101 with Faster R-CNN architecture for fair
comparison, also showing that the proposed architecture can
effectively be combined with various types of object detection
CNNs.

C. MS COCO Results
We evaluate ME R-CNN on MS COCO dataset and show

the results in Table VI. The MS COCO dataset contains
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method trainset mAP (%)
category

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Fast R-CNN [5] 07 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

ME R-CNN 07 69.0 70.6 78.9 68.2 55.8 44.3 80.9 78.2 84.6 44.4 76.5 70.4 80.6 81.5 76.6 70.8 35.1 66.4 69.9 76.8 69.5

Faster R-CNN [6] 07 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

ME R-CNN 07 70.6 69.9 79.5 68.2 58.5 52.5 77.1 80.1 84.4 52.1 78.6 67.3 81.0 83.7 74.6 77.0 38.2 71.0 66.0 75.2 74.7
Fast R-CNN [5] 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

ME R-CNN 07+12 72.2 78.1 78.9 69.4 61.3 44.5 84.8 81.7 87.6 50.7 80.1 70.6 85.8 84.8 78.7 72.3 35.0 71.9 75.3 79.9 72.7

Faster R-CNN [6] 07+12 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

ME R-CNN 07+12 75.8 77.2 79.7 76.3 67.0 60.3 86.0 87.1 88.6 58.3 83.8 70.3 86.4 84.7 78.4 78.4 45.1 76.0 73.8 83.6 74.6

TABLE II: VOC 2007 detection accuracy. All methods use VGG16.

method trainset mAP (%)
category

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Faster R-CNN [6] 07+12 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

ME R-CNN 07+12 78.7 81.2 81.9 78.0 71.8 65.0 86.0 87.5 91.3 61.0 89.2 69.9 88.4 90.1 83.9 81.4 45.2 81.0 81.7 85.3 73.9

TABLE III: VOC 2007 detection accuracy. All methods use ResNet-101.

method trainset mAP (%)
category

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Fast R-CNN [5] 12 65.7 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7

ME R-CNN? 12 67.8 82.6 76.4 69.9 50.3 41.8 75.5 71.1 87.0 42.0 74.3 56.0 86.3 81.5 78.9 72.4 34.1 68.5 62.6 79.6 64.7

Faster R-CNN [6] 12 67.0 82.3 76.4 71.0 48.4 45.2 72.1 72.3 87.3 42.2 73.7 50.0 86.8 78.7 78.4 77.4 34.5 70.1 57.1 77.1 58.9

ME R-CNN† 12 69.2 81.2 75.7 71.2 51.1 47.8 73.3 74.6 88.1 46.9 76.4 52.9 87.1 81.7 81.4 78.8 38.4 72.9 60.0 78.4 66.9

Fast R-CNN [5] 07++12 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

ME R-CNN‡ 07++12 70.7 84.0 79.8 72.4 54.9 43.3 78.4 74.7 89.3 46.6 76.1 60.6 87.8 83.6 82.1 74.8 39.4 70.6 65.7 82.5 67.9

Faster R-CNN [6] 07++12 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

ME R-CNN§ 07++12 73.3 85.4 80.7 74.0 58.3 55.0 79.7 78.5 88.6 52.9 78.2 57.8 87.7 83.3 83.7 81.9 50.6 74.8 62.4 81.8 69.8

? http://host.robots.ox.ac.uk:8080/anonymous/69D0YS.html † http://host.robots.ox.ac.uk:8080/anonymous/O3RFBG.html
‡ http://host.robots.ox.ac.uk:8080/anonymous/PLPKPU.html § http://host.robots.ox.ac.uk:8080/anonymous/YTVCEH.html

TABLE IV: VOC 2012 detection accuracy. All methods use VGG16.

method trainset mAP (%)
category

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Faster R-CNN [6] 07++12 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

ME R-CNN? 07++12 76.1 87.1 82.7 76.3 62.5 62.6 81.7 80.8 90.6 54.8 79.1 63.1 89.6 84.4 85.4 84.1 55.0 77.9 67.1 84.3 71.9

? http://host.robots.ox.ac.uk:8080/anonymous/M9ZUJK.html

TABLE V: VOC 2012 detection accuracy. All methods use ResNet-101.

80k, 40k and 20k samples in train, val, and test-dev sets,
respectively. We compare ME R-CNN with the Faster R-CNN
on two different evaluation settings: i) training the network
using train set and testing on val set, and ii) training the
network on train and val set and testing on test-dev set.
We used two different standard metrics, which are mAP@.5
(PASCAL VOC metric) and mAP@[.5,.95] (MS COCO met-
ric). The MS COCO metric (mAP@[.5,.95]) indicates the
mAPs averaged for IOU∈[0.5:0.05:0.95]. Regardless of the
which metric we choose to use, the ME R-CNN achieved
consistent performance gain over the Faster R-CNN on both
evaluation settings. When trained on train set, ME R-CNN
outperforms the Faster R-CNN by 2.1 for mAP@.5 and 0.6
for mAP@[.5,.95]. When using train+val set for training, gains

achieved by ME R-CNN over Faster R-CNN are 2.6 and 4.0
for the two metrics, respectively.

D. Ablation Experiments

The ablation experiments are conducted on PASCAL
VOC07 [55]. In the ablation experiments, ME R-CNN model
with Faster R-CNN and VGG16 is used. The model was
trained on VOC07 trainval set and tested on VOC07 test set.

EAN vs. Hard-coded Assignment. We have verified the
significance of employing the ‘learnable’ EAN. Table VII
shows the detection accuracy of the ME R-CNN with and
without EAN. As the architecture still requires an expert
assigner to direct the RoIs to the experts even when EAN
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method trainset testset mAP@.5 Gain mAP@[.5,.95] Gain

Faster R-CNN [6] train val 41.5 · 21.2 ·
ME R-CNN train val 43.6 +2.1 21.8 +0.6

Faster R-CNN [6] trainval test-dev 42.7 · 21.9 ·
ME R-CNN trainval test-dev 45.3 +2.6 25.9 +4.0

TABLE VI: MS COCO detection accuracy. All methods use VGG16. Set key: train: MS COCO train set, val: MS COCO val set, trainval:
MS COCO train and val sets, test-dev: MS COCO test-dev set.

Assigner EAN Hard-coded assignment

mAP (%) 70.6 69.8

TABLE VII: Effectiveness of learning RoI-expert relationship.
RoI-expert relationship is “learned” in EAN whereas RoIs are desig-
nated to the experts based on a pre-defined criteria in the hard-coded
assignment.

is not present, we have used a ‘hard-coded assignment’ to
take its place instead. For the hard-coded assignment case,
the RoIs are assigned to the experts based on their aspect
ratios which represent one of the three shape categories:
horizontally elongated (H), square-like (S), and vertically
elongated (V). For training this model, the modified version
of the 4-step alternating algorithm is used by updating the
ME weights guided by the hard-coded assignments in step
2 and step 4. ME R-CNN with EAN module outperforms
the hard-coded assignment case by 0.8 mAP which shows
the effectiveness of having a learnable expert assigner in the
multi-expert architecture.

Functionality of Experts. Table VIII shows how the function-
ality of each expert has changed after the overall training has
been carried out. As mentioned in ‘Initialize ME & Conv-L’ in
Subsection IV-B, ME weights are initialized by directing the
RoIs to the experts by their aspect ratio-based shape categories
(H, S, or V). The table shows that the newly trained experts,
with the help of ‘learnable’ EAN, is less biased towards the
aspect ratio of the RoIs.

The detection performance of each expert on the whole
dataset (VOC07 test set) only reaches to approximately 66%
mAP which is lower than the performance of the Faster R-
CNN. However, one can notice that when these multiple
experts are exploited together, the performance can be boosted
up to 70.6% (0.7% better than Faster R-CNN).

We can also observe that the functionality change in the
ME, made possible by the co-training of ME and EAN,
eventually provided extra room for noticeable performance
increase over the hard-coded assignment case (Table VII).
Figure 7 depicts example object detection results acquired by
different experts in our final version of ME R-CNN.

Co-training of ME, EAN, & Conv-L. We have conducted
an experiment to validate the effectiveness of co-training
(simultaneous training) the three major components (ME,
EAN, and Conv-L) of ME R-CNN. These three components
affect each other which makes the training challenging as
mentioned in IV-B. We compare our training strategy tailored
for ME R-CNN (Algorithm 1) with the two baselines which

do not perform any co-training for the three components.
The first baseline (denoted as ‘Remove 2c’ in Table IX) is
implemented by simply removing step 2c from Algorithm 1. In
this scenario, ME and EAN are trained twice during the entire
training process. The second baseline (denoted as ‘Replace
2c’) is implemented by replacing step 2c by alternating update
of ME and EAN. ME and EAN are trained three times for
this baseline. For both of the baselines, the last step which
Conv-L is being optimized is step 2a in Algorithm 1. This is
because, without using the strategy of co-training of the three
components, Conv-L needs to be fixed. As can be seen in
Table IX, having the three components trained simultaneously
outperforms the baseline cases.

EAN Labels Presetting. To understand how EAN label
presetting affects object detection accuracy, we compared three
RoI-expert assignment presetting cases based on various RoI
characteristics: aspect ratio, RoI size, and object category.
In each case, three experts were employed to make a fair
comparison.

When size is used as the presetting criteria, we manually
defined three different categories: small, medium, and large.
All the RoIs bigger than 1102 are assigned as large, and the
other RoIs are assigned as small. All RoIs that fall between
552 and 2052 are assigned as medium. Similar to aspect-ratio-
based presetting criteria, one RoI can be assigned to either one
or two categories.

When the presetting criteria is defined based on object
category, the RoIs are grouped to be semantically similar as
follows:
• Vehicle: Aeroplane, Bicycle, Boat, Bus, Car, Motorbike,

Train
• Animal: Bird, Cat, Cow, Dog, Horse, Person, Sheep
• Other: Bottle, Chair, Diningtable, Pottedplant, Sofa, TV-

monitor
RoIs having less than 0.1 IOU overlap with any object
bounding box are not used in EAN training.

Table X compares the object detection accuracy of the three
presetting strategies. Presetting based on RoI’s aspect ratio
shows the highest accuracy, but the differences compared to
the other two are marginal (∼1%). We observe that the accu-
racy is not highly dependent upon the EAN label presetting
strategy.

Comparison with CNNs Adopting Mixture-of-Expert in
a Conventional Way. We compare ME R-CNN with CNNs
that adopt the mixture-of-expert in a conventional manner. This
comparison is made to verify the effectiveness of the proposed
approach which assigns each RoI into its most appropriate
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Expert #
Detection Bounding Boxes

mAP (%)
w >

√
2h

√
2h ≥ w ≥ 1√

2
h w < 1√

2
h

1 46.8% (83.8%) 24.4% (16.2%) 28.8% (0.0%) 66.1

2 33.4% (24.7%) 44.2% (50.2%) 22.4% (25.1%) 66.7

3 7.5% (0.0%) 35.6% (17.7%) 56.9% (82.3%) 66.4

TABLE VIII: The change in the functionality of the experts with EAN. Table shows the RoI-expert distribution after the overall training
along with the final detection accuracy (mAP) for each expert. Note that the final distributions have drastically changed from the aspect
ratio-based initialization (in parentheses). w and h indicate the width and the height of RoI, respectively.

Optimization Strategy Co-training? mAP (%)

Remove 2c No 68.8

Replace 2c No 69.3

Algorithm 1 Yes 70.6

TABLE IX: Effectiveness of co-training of EAN, ME, & conv-L.
‘2c’ refers to Step 2c in Algorithm 1. This is the only step where
co-training of the three components takes place.

Presetting Aspect Ratio RoI Size Object Category

mAP (%) 70.6 69.6 69.9

TABLE X: Comparison of three EAN label presetting.

expert instead of utilizing all the experts at once. Figure 2
shows the architectural differences between our approach and
the conventional approaches when adopting the mixture-of-
expert concept into a CNN architecture.

As a representative conventional architecture, we imple-
mented R-CNN with three experts and a gating network
tied in a conventional manner as shown in Figure 8. For
the gating network, we use the same architecture (single
convolutional layer, single pooling layer, and single fully-
connected layer) as the EAN in ME R-CNN so that this
conventional model has the same number of weights as ME R-
CNN. This network is also optimized using 4-step alternating
algorithm in exactly the same order. In the second step, each
expert is optimized by minimizing its own softmax loss for
classification and L1smooth loss for bounding box regression,
i.e., six losses are imposed. Accordingly, we prepare three
different training batches so that each expert is trained with
a different batch. Meanwhile, in the fourth step only one set
of losses (classification and bounding box regression) is used
to optimize all three experts. The gating network was trained
only in the fourth step.

A common goal for having multiple experts is to be able to
equip each expert module with its own unique expertise and
thus leverage such capability for overall performance increase.
However, finetuning from the same ImageNet-pretrained net-
work (i.e., same initialization) is likely to lead all experts
to have similar expertise which conflicts with the original
goal. Therefore, we have trained this conventional model in
two different ways, with and without using the pretraining
network. To observe the effectiveness of the gating network,
we compared Figure 8 with the model without the gating
network. In Table XI, four combinations of the conventional
mixture-of-expert approaches are compared with ME R-CNN
with respect to mAP and test time. We can observe that

Conventional
mAP (%) Test time (sec)

ImageNet Pretrain Gating Net

68.7 0.099
√

68.9 0.106
√

69.6 0.099
√ √

69.7 0.106

ME R-CNN 70.6 0.075

TABLE XI: Performance comparison of various models adopting
mixture-of-expert in a conventional way with respect to object
detection accuracy (mAP) and test time. We compared four
conventional approaches that differ depending on the use of finetuning
from ImageNet pretrained network and the use of the gating network.

the object detection accuracy underperforms when the fine-
tuning strategy was omitted, which shows that our original
anticipation to differentiate the experts’ expertise was not
achieved. It is also shown that the gating network improves
performance marginally. Above all, ME R-CNN provides
better mAP and speed than any of the conventional mixture-
of-expert approaches.

E. Timing

To analyze the computational overhead of exploiting “mul-
tiple experts”, we compare the train/test time of ME R-CNN
with the Faster R-CNN. This analysis was conducted using
NVidia Titan XP GPU.

Inference. While Faster R-CNN takes 0.07 sec/image, ME
R-CNN takes 0.075 sec/image. Using multiple experts brings
almost no overhead because the number of RoIs do not change
compared to the Faster R-CNN case, and only one of the
experts is being activated for each RoI.

Training. Training ME R-CNN (16.9 hrs) requires almost
twice as much time when compared to the case of Faster R-
CNN (8.15 hrs). Several recently introduced measures such
as multi-GPU parallel computing or enlarging mini-batch
size [58], [59] can be taken into consideration to reduce the
overall training time.

VI. FUTURE WORKS

In this paper, we have focused on showing that ME R-
CNN architecture can boost the object detection performance
when integrated with the baseline R-CNNs. Fast R-CNN
and Faster R-CNN, which are two of the most widely used
object detection networks, were selected to demonstrate the
effectiveness.
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Fig. 7: Example object detection results using ME R-CNN. The detection results from the experts 1, 2, and 3 are depicted in red, blue,
and green bounding boxes, respectively.

In the future, we will focus on producing the state-of-the
art performance in benchmark datasets (PASCAL VOC and
MS COCO) by incorporating additional processings (refered
to as ‘adding bells and whistles’ in [15]) such as multi-
scale training/testing (MS) [5], [14], online hard example
mining (OHEM) [15], iterative bounding box regression [60],
global context (CXT) [29], [60], [61], ensemble of classi-
fiers (ENS) [29], [62], integrating with image classification

output [63], and feature pyramid network (FPN) [64]. We
also plan to incorporate multi-expert into other CNN-based
detection architecture such as SSDs [65], [66], YOLOs [67]–
[69], R-FCN [8], and RetinaNet [70], which has recently been
introduced.

State-of-the-art Object Detection Methods. On the leader-
board of the MS COCO object detection competition [78], the
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Rank Method
Backbone Adding Bells and Whistles

Img. Classif. Obj. Det. Plug-In Boosting Strategy More Info.

1 MegDet [71] ResNeXt-152 [28] Faster FPN, GCN [72], RoI Align [10] Large Batch, OHEM, CXT, MS, ENS Segmentation [73]

2 PANet [74] ResNet-101 Faster Adaptive FeatPool, FPN, RoI Align [10] MS, ENS Pixel Label [10]

3 MSRA Xception [75] Faster Novel RoI Pool [76], FPN, SoftNMS [77] ENS ·
4 Mask R-CNN [10] ResNeXt-152 [28] Faster RoI Align, RPN MS, ENS Pixel Label [10], ImageNet-5K
...

...
...

...
...

...
...

TABLE XII: Leaderboard of MS COCO object detection competition (As of June 14, 2019). The major contribution of each method
is shown in bold. For the image classification backbone, ResNeXt and Xception were devised based on the ResNet architecture. All the
acronyms in the table have previously been defined.

Gating Net

RoI pooling layer
Expert 3

Expert 2

Expert 1

Element-wise

Multiplication

classif.

bbox regress.

Element-wise

Summation

512

3

3x3 conv

ReLU

7x7 pool fc

Sigmoid

Fig. 8: R-CNN architecture adopting mixture-of-expert in a con-
ventional manner. To provide fair grounds for comparison between
this model and ME R-CNN with respect to the network size, the
number of experts has been set to three, and the gating network is
implemented to match the EAN architecture.

top ranked methods provide much higher object detection ac-
curacy compared to the accuracy achieved with our approach.1

The top four methods [10], [71], [74], [76] achieve the
state-of-the-art accuracy by adding multiple plug-in modules,
using performance boosting strategies, and/or providing more
information to the backbone combining Faster R-CNN with
one of the ResNet variations (ResNet, ResNeXt or Xception).
Table XII shows the bells and whistles used to achieve the
state-of-the-art accuracy of each method. Following this trend,
we also experimented by adding our ME module to the
backbone combining Faster R-CNN and ResNet.

VII. CONCLUSION

We introduced ME R-CNN which uses multiple experts
(ME) in place of a conventional single classifier incorporated
in CNN-based object detection architecture. Having ME is
found to be advantageous as each expert is learned to spe-
cialize in a certain type of RoIs, considering the fact that
RoIs are manifested in various appearance caused by different
shapes, poses, and viewing angles. To optimize the ME usage,
we have introduced expert assignment network (EAN) which
automatically learns the RoI-expert relationship. We have
introduced a practical training strategy to better handle the
challenging task of optimizing the complex architecture which
contains ME, EAN, and a shared convolutional network. With
benefits of the novel components, ME R-CNN proves its
effectiveness in consistently enhancing the detection accuracy
in PASCAL VOC 07, 12, and MS COCO datasets over the
baseline methods.

1Details on the architectures used for the top ranked methods in the
PASCAL VOC Competition are unavailable.
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[25] Á. Garcı́a-Martı́n, J. C. SanMiguel, and J. M. Martı́nez, “Coarse-to-fine
adaptive people detection for video sequences by maximizing mutual
information,” Sensors, pp. 1–22, December 2018.

[26] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in NIPS, 2012.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.
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