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Back-Projection based Fidelity Term for Ill-Posed
Linear Inverse Problems

Tom Tirer and Raja Giryes

Abstract—Ill-posed linear inverse problems appear in many
image processing applications, such as deblurring, super-
resolution and compressed sensing. Many restoration strategies
involve minimizing a cost function, which is composed of fidelity
and prior terms, balanced by a regularization parameter. While
a vast amount of research has been focused on different prior
models, the fidelity term is almost always chosen to be the
least squares (LS) objective, that encourages fitting the linearly
transformed optimization variable to the observations. In this
paper, we examine a different fidelity term, which has been
implicitly used by the recently proposed iterative denoising and
backward projections (IDBP) framework. This term encourages
agreement between the projection of the optimization variable
onto the row space of the linear operator and the pseudo-
inverse of the linear operator (“’back-projection”) applied on the
observations. We analytically examine the difference between the
two fidelity terms for Tikhonov regularization and identify cases
(such as a badly conditioned linear operator) where the new
term has an advantage over the standard LS one. Moreover, we
demonstrate empirically that the behavior of the two induced cost
functions for sophisticated convex and non-convex priors, such
as total-variation, BM3D, and deep generative models, correlates
with the obtained theoretical analysis.

Index Terms—Inverse problems, image restoration, image
deblurring, image super-resolution, compressed sensing, total
variation, non-convex priors, BM3D, deep generative models.

I. INTRODUCTION

Inverse problems appear in many fields of science and
engineering, where the goal is to recover a signal from its
observations that are obtained by some acquisition process.
In image processing, the observations are usually a degraded
version of the latent image, which may be noisy, blurred,
downsampled, or all together. Such observation models, and
others, can be formulated by a linear model

y=Azxz+e, D

where € R”™ represents the unknown original image,
y € R"™ represents the observations, A is an m xn degradation
matrix (sometimes also referred to as the measurement matrix)
and e € R™ is a noise vector. For example, this model
corresponds to the problem of denoising [1]-[4] when A is
the n X n identity matrix I,,; inpainting [S]-[7] when A is
an m X n sampling matrix (i.e. a selection of m rows of I,);
deblurring [8], [9] when A is a blur operator; super-resolution
[10], [11] if A is a composite operator of blurring (e.g. anti-
aliasing filtering) and down-sampling; and compressed sensing
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when A is a (random) measurement matrix (m < n) and the
signal is sparse under some basis representation [12]-[14] or
resides in a general union of low-dimensional subspaces [15],
[16].

The inverse problems represented by (1) are usually ill-
posed, i.e. the measurements do not suffice for obtaining a
successful reconstruction. Therefore, a vast amount of research
has focused on designing good prior models for natural im-
ages. In fact, many of the methods for the problems mentioned
above differ only in their prior assumptions and not in the way
that they enforce fidelity to the observations.

To be more formal, a common strategy for recovering x
aims at minimizing a cost function of the form

f(@) = (@) + Bs(2), 2

where ((&) is a fidelity term, s(&) is a prior term (can be
also referred to as the regularizer), 5 is a positive scalar that
controls the level of regularization, and « is the optimiza-
tion variable. Many different prior functions are used in the
literature, whether explicitly, e.g. total-variation (TV) [1], or
implicitly, e.g. BM3D [4] and deep generative models [17].
Yet, most of the works use a typical least squares (LS) fidelity
term

ol N
les(@) = 5y — A3, (3)

where ||-||2 stands for the Euclidean norm. The frequent usage
of this term is probably also motivated by the fact that it can
be derived from the negative log-likelihood function, under
the assumption that the noise e is a vector of i.i.d. Gaussian
random variables e; ~ N'(0,02). However, note that, in gen-
eral, maximum likelihood estimation has optimality properties
only when the number of measurements is much larger than
the number of unknown variables, which is obviously not the
case in ill-posed problems.

In this paper, we examine a different fidelity term, which
has been implicitly used by the recently proposed iterative
denoising and backward projections (IDBP) framework [18]
(we elaborate on this method in the appendix). Under the
practical assumptions that m < n and rank(A) = m, we
examine the fidelity term

- 1 -
(pp(a) & || Aly — ATAz|3, @)

where AT £ AT(AAT)~! is the pseudoinverse of the full
row-rank matrix A. Note that P4 £ AfA is an orthogonal
projection onto the row space of A!, and that AT can be

'In row space of A, we mean the subspace spanned by the rows of A.



interpreted as a “back-projection” (BP) from AR™ back to
R™. Therefore, the fidelity (4) encourages agreement between
P, & —the projection of & onto the row space of A, and ATy
—the back-projection of the measurements. In general, this is
different than ¢, s(&) that encourages agreement between A&
and y. Note that in the noiseless case, i.e. when y = Az, the
terms in (3) and (4) are translated to fitting Ax to Ax and
Psx to Pyx, respectively.

Note that for some inverse problems ¢s(&) and {gp(Z)
may coincide. For example, in image inpainting, where A is
a selection of m rows of I,,, we have that AT = AT is an
n X m matrix that merely pads with n — m zeros the vector
on which it is applied, and so ||AT(y — A%)||3 = ||y — Az||3.
Therefore, we specifically focus on three popular inverse
problems: super-resolution, deblurring and certain compressed
sensing scenarios, where the two fidelity terms, ¢7,5(&) and
¢pp(E), are indeed very different.

Contribution. This work makes a first attempt towards
characterizing for which observation model A and prior s(&)
it is better to use each of the following objectives:

sl - .
frs(@) = Slly — AZ|3 + Bs(2), )

sl . .
fop(@) £ S|Aly — ATAR|3 +65(2).  ©

Particularly, for s() being the Tikhonov regularization (the {5
prior), where closed-form solutions exist, we derive analytical
expressions for the estimations’ mean square error (MSE)
that allow to examine which fidelity term is preferable. For
example, we show that in the noiseless case fpp(Z) yields
provably better restoration than frs(&) if the condition num-
ber of AA” (i.e. the ratio between the largest and smallest
squared singular values of A) is large, e.g. in typical super-
resolution problems.

For sophisticated convex and non-convex priors, such as
TV [1], BM3D [4], and DCGAN [19], analytical analysis
is intractable. Therefore, we perform an intensive empirical
study, where we use the same optimization method (FISTA
[20] or ADAM [21]) to minimize each of the two different
cost functions. Interestingly, we demonstrate that the behavior
for the sophisticated priors strongly correlates with properties
for which we establish concrete mathematical reasoning in the
case of {5 priors.

Another contribution of the paper that is deferred to the
appendix is showing that IDBP framework [18], which has
achieved excellent results for deblurring [18], [22] and super-
resolution [23] is in fact the proximal gradient method [20],
[24] (popularized under the name ISTA) applied on fpp(Z).
This derivation of IDBP is completely different, and arguably
simpler, than the way it is developed in [18].

The paper is organized as follows. Section II includes
mathematical analysis of the two cost functions for the case of
£o-type priors. The analytical results are verified in Section III.
In Section IV the two cost functions are empirically examined
for different sophisticated priors. Section V concludes the

paper.

II. MATHEMATICAL ANALYSIS FOR /5 PRIORS

In this section, we analyze the performance of the new
cost function (6) and compare it to (5) for a type of ¢
prior functions, for which the closed-form solutions of (5)
and (6) lead to a tractable performance analysis. We start
with specifying the required assumptions, then we derive the
estimators and expressions for their expected mean square
error. Finally, the error expressions are compared and several
observations are stated.

A. Assumptions

In order to allow a concrete mathematical comparison
between fpp(Z) and frs(&), in the theoretical analysis we
restrict our discussion to ¢ prior functions of the form
s(@) = 3||Dz[|3 = 32" DT D&, where DT D is a positive-
definite matrix. This prior is often referred to as Tikhonov
regularization and is one of the most widely used methods to
solve ill-posed inverse problems. Yet, for obtaining analytical
results, we further focus on a more specific type of this prior—
we require that both A and D have the same right singular
vectors. Let us define the singular value decomposition (SVD)
of the m x n matrix A = UAVT, where U is an m x m
orthogonal matrix whose columns are the left singular vectors,
A is an m X n rectangular diagonal matrix with nonzero
singular values {\;}7*, on the diagonal, and V' is an n xn or-
thogonal matrix whose columns are the right singular vectors.
The property that {\;}7, are strictly positive follows from
our assumptions in Section I, that m < n and rank(A) = m.
For D, essentially, we assume that DTD = vr2vT » ,
where T'? is an n x n diagonal matrix of nonzero eigenvalues
(.

The assumption above is required because, as far as we
know, currently there is no known analytical expression for
the eigen-decomposition of arbitrary matrices AT A + DT D
which is required for our analysis [25]. Yet, this assumption
holds in some practical cases, e.g. if A and D are circulant
matrices (and thus diagonalized by the discrete Fourier trans-
form), or if D = I,, (i.e. least-norm regularization).

B. Performance analysis

Let us start with obtaining closed-form expressions for
the estimators ¢ and &pp, which minimize frs(Z) and
fBp(&), respectively. Due to the convexity of the cost func-
tions, this is done simply by equating their gradients to zero

Virs(@)=—-AT(y— Az)+ DTD& =0
= &5 =(A"A+pD'D)'ATy, ()

Vigp(®) = —Pa(Aly — Paz) + D" Dz =0
= @&pp = (Ps + BDTD) 1 ATy. (8)

In (8) we use the properties Py = ATA = P! = P2 and
P,AT = AT, We turn to compute the expected mean square
errors (MSEs) of the estimators, conditioned on «, under the
assumptions that E[e] = 0 and E[ee”] = ¢2I,,. To ease
formulations, we define the n — m zero eigenvalues of A7 A
(i.e. zeros in the diagonal of ATA) by {\}}7 ..



The computation of the MSE of g is given by

MSEps =E|zrs — z||3
—E|[(ATA+B8DTD) 'A"(Az + ) — x|
—||((ATA+8D"D) ' ATA - I,,) x|,

+2E[e]" A(ATA + B8DTD)2AT Az
—2E[e]" A(ATA+ D" D) !
E[e"A(ATA+BD"D) A" €]
—|((A"A+8D"D) ' ATA - I,,) |
+Tr ((A"A+BD D) ?A"E [ee”] A)
—||((A"A+8D"D) ' ATA - I,,) [,
+0lTr (ATA+BD"D)2AT A)

— ||V (ATA + ST%)'ATA - I,) V7|

+02Tr (V(ATA + BFQ)_2ATAVT)

+U2Z )\2_|_5,YZ

n

2
3 (i) W'

)

The second equality follows from substituting (1) in (7), the
fourth equality uses EE [e] = 0 and the cyclic property of trace,
the fifth equality uses E [ee”| = 021,,,, the sixth equality is
obtained by substituting the eigen-decompositions of A7 A
and DT D, and the last equality follows from the fact that V'
is an orthogonal matrix. Therefore, by defining the (squared)
bias and variance terms as

L2 A B; T,.12 T .12
biasps = Z (W) Vil + ‘ Z [V izl
=1 ? 1 i=m-1
—bmsz( 2
o2
—_—— 10
varrs = Z )\2 +ﬂ72/)\2) ( )
\_v_./
’UCl’f’(i)
- LS
we may write the error as
MSELs = biass g + varrs. (11)

Note that the bias depends on the original image « and not on
the noise, and the opposite holds for the variance. Yet, both
terms are affected by the structure of A. The regularization pa-
rameters (3, {~;} introduce a tradeoff: increasing them reduces
the variance but increases the bias.

To ease the computation of the MSE of Zpzp, let us also
define an indicator function 1;<,, that is equal to 1 if ¢ <m
and O otherwise, and an n x n diagonal matrix I;<,, with
{li<m}?, on its diagonal. The following identities are used

Py,=VI., VT,
AT = VAT(AAT)"UT,

ATATT = VAT(AAT)2AVT, (12)

Now, we get
MSEBP = E||:f33p — a:||§
—E||(Ps+8D"D) 'Al(Az + ¢) — 2|
= |[((Pa + BD"D)"'Pa - L) 2
+2E [e]" AT (P4 4+ DT D) 2Px
—2E[e]" AT (P4 + D" D)~ !
E [e" AT (P4 + BDTD)*Ale]
—||((Pa+8D"D)"'Ps - I)) 2|
+Tr (P4 + BD"D) > A'E [ee”] ATT)
—||((Pa+8D"D)"'Ps - I,) 2|
+02Tr ((Pa + BDTD) 2 ATATT)
— ||V ((Tizm + BT Licp — L) V7|
+ 02T (V(Ti<m + BT?) 2AT(AAT)2AVT)

- z<m 2 T 12 2 - A;gligm
=X (oS ) Ve L S
13)

The second equality follows from substituting (1) in (8), the
fourth equality uses E [e] = 0 and the cyclic property of trace,
the fifth equality uses E [eeT] = 02I,,, the sixth equality
is obtained by substituting the eigen-decompositions of Py,
DT D and AT AT, and the last equality uses the orthogonality
of V. Therefore, by defining

m 2 2 n
biashp = ; (1 _’ﬁ_véﬁ) V7'a]? + Z (via]?,

1=m-+1

ébiaSQB(;.,)
Y i 04

varpp = )

2321+ 572

_’U(Z’I‘(B;)
we have that

MSEgp :bia82,3p+var3p. (15)

Comparing (10) and (14) we may notice the following. First,
the term bias% handles small {\;}™ (i.e. s1ngular values
of A that are smaller than 1) better than bias?q. However,
varpp handles such small singular values worse than varyg.
The opposite holds for singular values that are greater than 1.
This behavior can be formulated as the following observation.

Observation 1. For \; < 1 we have that bias~ B P < bias L(S)

but uar](B)P > var( i) . And, for \; > 1 we have that bms%(}) >

bzasL( D but varj(gp < var(Lg

Notice that in the noiseless case o, = 0, implying that
MSEps = bias? g and MSEgp = bias%p. This leads us to
the following observation for the noiseless case.

Observatlon 2. In a noiseless scenario, the relation between
Z biasy (Z) and Z bzasLS , dictates the relation between

MSEBP and MSELS In particular, if all the singular values



of A are smaller than 1, then MSEgp < MSEs, and
if all the singular values of A are greater than 1, then
MSEgp > MSE;s.

Note that Observation 2 holds for any given setting of (3
that is used by the two estimators. Therefore, these relations
between M SEgp and M SE s hold also when (3 is tuned for
best performance of each estimator.

In practice, a different value of 3 can be preferred for the
different cost functions. Let us denote by 5rs and Spp the
regularization parameter in ¢1,¢(&) and {pp(E), respectively,
and let the singular values of A be indexed in a descending
order, i.e. A\ > ... > \p,. Comparing M SEgp and MSELg
with Spp # [rs leads to an additional observation for the
noiseless case, which is in favor of the BP cost.

Observation 3. [n a noiseless scenario, for any Brs and
Bep = ﬁLS/)\% we have that MSEgp < MSFEpgs. If in
addition [VTx]; # 0 for some indices 2 < i < m, then
MSEgp < MSEs unless \; = Ay for all these indices.

Proof. Since Bpp = [rLs/A, we have that % -
/\ff% Therefore,
mesQ():Z(M) VT2

— 1+ Bpy? '

“ Brsv? )2 7,12

Z ()\2 + Brsv? [ |

=1

> (i)

m
T,.12 _ . 2(10)
)i = E biasyg .
i=1

(16)

1

-
Il

If [VTx]; # 0 for some indices 2 < i < m, it is easy to see
that the inequality is strict unless A; = Ay for these indices.
Finally, recall that in the noiseless case the relation between

Z bzasB(g and Z bzasL(S),
MSEBP and MSELS O

dictates the relation between

Even though Observation 2 and Observation 3 consider the
noiseless case, note that they cover events where the gap
between bias? g and bias%p may be substantial enough to
dictate the relationship between the MSEs also when the noise
level is moderate. For example, if Spp = Srs and all the sin-
gular values are much smaller than 1 then the ’in particular’-

part in Observation 2 implies that Z bias%@ is much smaller

than Z bzasL Y. Another example, if Bpp = Brs/A? and the

condltlon number of AAT,ie. the ratio )\2/ A2 is very large,

then Observation 3 implies that Z bias> B P is much smaller

i=1

- 2(i)
than 221 biasy g
1=

C. Discussion and implications for priors beyond (s

As can be seen in (10) and (14), for the discussed Tikhonov
regularization the bias term of each estimator is minimized if

B — 0, and in this case bias? ¢ tends to bias% p. This means
that the performance gap in the noiseless case, which is stated
in Observation 2 and Observation 3, tends to zero for 3 — 0.
However, note that we consider here {5 priors mainly as a
surrogate to complex priors which are hard to analyze. As we
demonstrate in Section IV, the results that are obtained for
sophisticated priors, such as TV, BM3D and DCGAN, indeed
strongly correlate with the observations above (especially with
Observation 3 that implies an advantage of BP for badly
conditioned AAT). For such priors, the optimal value of
[ for each fidelity term is significantly above O even in the
noiseless case (contrary to ¢y priors), and the gap between the
best recoveries is significant as well.

Another motivation for connecting the above analysis to
other priors comes from recognizing attributes that distinguish
between the LS and BP fidelity terms regardless of the prior
used with them. Let us focus on the noiseless case, where
y = Ax. In this case, (5) and (6) can be written as

fus(@) = 3l Az — AB|} + Bs()
1

= (@ 2)"ATA(x — )+ Bs(2), (A7)
Fop(@) = %HATA:C _ ATA|? + Bs(#)
= L@~ &) Paw — &) + fs(d). (18)
Under our SVD notations, we have AT A = i /\ZvivT and

i=1
Py = Z v;vl, where v; is the right singular vector of A

assomated with the singular value \;. Therefore, we get

frs(®) = EZA%T x—2)° + Bs(®),  (19)
i=1
Fir(@) = %Z D+ Os@). Q)

Note that fgp(Z) equally weighs all {|v] (xz — )|*}7,,
contrary to frs(&) that weighs them according to {\?}. As
in inverse problems one (typically) cares about minimizing
the MSE, an intuition that minimizing (20) may have an
advantage over minimizing (19) for general priors, comes from
the similarity between the BP fidelity term and formulating the

MSE as | [} = 3. [o] (2~

goes over all the n lb_alsis vectors in V). For ¢y priors, we
indeed have shown in Section II-B that this “equal weighting”
strategy translates to the fact that {bz’asQB(Q} do not depend
on {A\?}, contrary to {biasi(é)}, which later yields the MSE
advantage of BP over LS in Observation 3. For ¢y priors,
we have obtained analytical results and tradeoffs also for the
noisy case. For other priors, we empirically show in Section IV
correlation to the above analytical findings.

An important factor that is not taken into account in the
above analysis is optimization, since for ¢y priors there is
a closed-form solution. Yet, for sophisticated priors iterative
optimization schemes are inevitable, and the regularization
parameter has an effect which is similar to the step size

Z)|? (note that the sum here



in these schemes. In such cases, extremely low value of 3
inherently results in a massive slowdown in the convergence
for convex priors [26], [27] and/or bad local minima for non-
convex priors. Taking a numerical optimization point of view,
in the sequel we empirically show that & g p is superior to &g
even for ¢ priors with 5 — 0, if few iterations of conjugate
gradients are used instead of the closed-form expressions (7)
and (8). This implementation choice may be preferable in
high-dimensional problems when it is not possible to invert
the matrices. The advantage of BP in this case follows from
the fact that the eigenvalues of P4 are only 1 (in the row
space of A) and O (in the null space of A), while AT A
may have very different eigenvalues in general, and conjugate
gradients (among other methods) performs better when the
eigenvalues are clustered [28]. In Section IV we provide
empirical evidence that BP requires less iterations than LS
also for other optimization schemes and priors.

III. EXPERIMENTS WITH {5 PRIORS

In this section, we discuss the implications of the analytical
results from Section II and verify them for specific observation
models: super-resolution and compressed sensing. In the first,
all the singular values of A are smaller than 1 and the
condition number of AA7T is large, while in the latter it is
possible that all singular values are greater than 1 and that
the condition number is very moderate. We also discuss the
typical deblurring problem, which is highly ill-conditioned. In
this case, A! in £p has to be regularized due to the large
number of near zero singular values, and (13) needs to be
modified accordingly.

Throughout this section, we use the closed-form estimators
in (7) and (8) to restore the images. The empirical performance
of these two estimators is presented by markers, while the
analytical expressions from (11) and (15) are plotted in solid
curves. Different colors are used to distinguish between the
two fidelity terms that are used for the estimation.

A. Super-resolution

Let us consider the super-resolution (SR) task, where A is
a composite operator of blurring (e.g. anti-aliasing filtering)
followed by down-sampling. Note that the largest singular
value of a typical low-pass filtering operation is 1, and it
is associated with the DC (i.e. the magnitude of the Fourier
coefficient that is associated with zero frequency). The rest of
the singular values are smaller than 1. The subsequent operator
is subsampling, which inevitability reduces the energy of the
signal (as m < n). Therefore, essentially, all the singular
values of A are smaller than 1. Accordingly, the condition
number of AAT is large. These properties are demonstrated
in Fig. 1a for SR with scale factor 3 and Gaussian filter of size
7 x 7 and standard deviation 1.6 (used in many works, e.g.
[11], [23], [29]), which is performed on a 64 x 64 image (thus
n = 4096 and m = 484). We consider such a small image
to allow computing the SVD of A (our analytic expressions
require both {\?}™ | and V).

We verify our analytical results for the SRx3 scenario
mentioned above, and two cases: o0, = 0 and Gaussian

1000 2000 3000 4000 5000
i i

(b)

~
~

T~

500 0 500 1000 1500 2000 2500
i i

(© (@
Fig. 1: The (squared) singular values of A a})plied on a 64 x 64 image
for: (a) SRx3 with 7 x 7 Gaussian filter (;‘Tl = 2.93e3); (b) blurring

2
with 9 x 9 uniform filter (3 = 1.46e7); (¢c) CS with m = 0.1n

2
Gaussian measurements and Haar basis (;‘Tl = 3.63); (d) CS with

2
m = 0.5n Gaussian measurements and Haar basis (;.—21 = 33.36).

noise with o, = v/2. The experiments are performed on the
cameraman image, resized to 64 x 64 pixels. In the noisy
case, we average the results over 5 noise realizations. We have
observed similar results for other images as well. We use the /5
prior s(&) = 3||&||3, which satisfies the assumptions (D = I,
and v; = 1).

The PSNR? results are presented in Fig. 2 and validate the
analytical expressions. For o, = 0, &pp is better than g
for any value of the parameter 3, as implied by Observation
2 since all the singular values of A are smaller than 1
(Fig. 1a). The rather large gap in favor of BP also agrees
with Observation 3 that predicts it when the ratio A\?/)\2 is
large. The fact that BP at /)2 = 5.973 outperforms LS
at (3, further verifies Observation 3. For o, = V2, the gap
between the estimators is reduced because vargp is worse
than vary g at handling the small singular values, as mentioned
in Observation 1.

To demonstrate the numerical optimization advantage of
the BP cost over the LS cost for 5 — 0 (where the gap
between the bias terms in (10) and (14) tends to 0), we repeat
the experiments above for very small values of /3. However,
this time instead of inverting the matrices in (7) and (8) we
obtain the estimators using the conjugate gradient method. The
results are presented in Fig. 3. Remarkably, a single iteration
is enough for obtaining the exact BP estimator (for /5 prior).

B. Compressed sensing

Contrary to SR scenarios, in compressed sensing (CS) the
condition number of AAT is moderate and the singular
values of A may be larger than 1. Consider the commonly
examined scenario where A is the multiplication of an m x n

2The PSNR f(z)r a recovery & of a uint8 image € R"™ is computed as
10logq (ﬁ szj% )

—=|3 /"
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Fig. 2: Super-resolution with Gaussian filter and scale factor of
3, using {2 prior. PSNR (for cameraman) vs. [ (regularization
parameter), for (a) o = 0, and (b) o. = V2.
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Fig. 3: Super-resolution with Gaussian filter and scale factor of 3,
using ¢ prior and iterations of conjugate gradients instead of matrix
inversion. PSNR (for cameraman) vs. 8 (regularization parameter),
for (a) o = 0, and (b) 0. = v/2. Note that the LS cost requires more
CG iterations than the BP cost to attend the solution (solid line).
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Fig. 4: Compressed sensing with Gaussian measurements and Haar
basis, using fo prior. PSNR (for cameraman) vs. [ (regularization
parameter), for (a) m = 0.1n, and (b) m = 0.5n.

6.121 8.8
0o o o
6.12 ° o
86
6119 _ — Analytical LS est.
@ @ — Analytical BP est.
S — Analytical LS est. = > Empirical LS 1 CG fter.
L 6.118 [|— Analytical BP est. L84 O Empirical BP 1 CG iter.
7 O Empirical LS 1 CG iter. @ © Empirical LS 5 CG fter.
Q6117 || © Empirical BP 1 CG iter. o
O Empirical LS 5 CG iter. 8.2
611600 0 0o o o o i, 3
0 5
6.115 8
002 004 006 008 0.1 0 002 004 006 008 0.1
5 5
(@) (b)

Fig. 5: Compressed sensing with Gaussian measurements and Haar
basis, using ¢2 prior and iterations of conjugate gradients instead
of matrix inversion. PSNR (for cameraman) vs. (8 (regularization
parameter), for (a) m = 0.1n, and (b) m = 0.5n. Note that the
LS cost requires more CG iterations than the BP cost to attend the
solution (solid line).

Gaussian measurement matrix (whose i.i.d. entries are drawn
from N(0,1/m)) with an n x n Haar wavelet basis. We
have observed that for high compression, e.g. m/n = 0.1,
all the singular values are larger than 1 and the condition
number is very small, as demonstrated in Fig. 1c. However,
for lower compression, e.g. m/n = 0.5, there are also singular
values smaller than 1 and the condition number increases, as
demonstrated in Fig. 1d.

We verify our analytical results for these two compression
ratios (both with o, = 0). The experiments are performed on
the same 64 x 64 version of cameraman image, and we use
again the {5 prior s(&) = %||&||3. The results are presented in
Fig. 4 and validate the analytical expressions. For m/n = 0.1,
&g is better than & pp for any value of 3, as implied by
Observation 2 since all the singular values of A are greater
than 1 (Fig. 1c). To verify Observation 3 in this case, see that
BP at /A% = 0.0584 has (slightly) higher PSNR than LS at 3,
e.g. for § = 1. We have verified this also for very large values
of B (not presented here)—both curves decrease and reach a
similar plateau at high 3, yet BP at 3/A\? indeed has higher
PSNR than LS at f3, but the difference is extremely small.
Interestingly, for m/n = 0.5, where some singular values
of A are smaller than 1 (Fig. 1d), £pp gets better results
than & 5. Also in this scenario, it can be verified that BP at
/A2 = 0.17153 has higher PSNR than LS at 3, as implied
by Observation 3. The fact that the gap between BP and LS
for m/n = 0.1 and m/n = 0.5 has been changed in favor of
BP in the latter agrees with the derivation of Observation 3
in (16) that links the advantage of BP to an increased \3/\2,
ratio.

We demonstrate again the numerical optimization advantage
of the BP cost over the LS cost by repeating the experiments
above for very small values of /3, while using the conjugate
gradient method instead of matrix inversion. The results are
presented in Fig. 5. It can be seen again that for the /5 prior a
single iteration is enough for obtaining the exact BP estimator.

We find it necessary to emphasize that compressed sensing
scenarios require a sparsity-inducing prior, e.g. s(Z) = ||Z|1
or TV prior, rather than an ¢y prior, for which both estimators
exhibit poor results (i.e. very low PSNR). However, our
purpose here is merely to validate our analysis, which applies
only to ¢y priors, for a case in which all the singular values
are greater than 1 and/or the condition number is small.

Finally, note that for Gaussian A there is no efficient way
to implement the operators A and A” for large dimensions.
Therefore, in practice, taking A to be the subsampled Fourier
transform is more common, e.g. in sparse MRI [30]. However,
note that for this acquisition model AT is simply the Hermitian
transpose of A (this property follows from the fact that the
subsampled Fourier transform is a tight frame [31]), which
together with the unitarity of the Fourier transform leads to
|At(y — A%)||2 = ||y — AZ||2. This means that the two cost
functions coincide, which is also implied by the fact that in
this case all the singular values of A are 1 and thus (9) is
identical to (13). Therefore, we do not make a comparison for
this case.
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Fig. 6: Deblurring with uniform 9 x 9 blur kernel, using ¢2 prior.
PSNR (for cameraman) vs. B (regularization parameter), for (a) o. =

+/0.3, and (b) 0. = V2.
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Fig. 7: Deblurring with uniform 9 x 9 blur kernel and o. = /0.3,
using priors with different DT D. PSNR (for cameraman) vs. (3
(regularization parameter), for (a) circulant DT D, and (b) non-
circulant DT D. Note that DT D # VT?VT in (b).
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Fig. 8: Super-resolution with Gaussian filter and scale factor of 3 and
0. = 0, using priors with different DT D. PSNR (for cameraman)
vs. (8 (regularization parameter), for (a) circulant DT D, and (b) non-
circulant DT D. Note that DT D # VI'?VT in (a) and (b).

C. Deblurring

In the deblurring problem, A is a square (m = n) ill-
conditioned matrix that performs blurring (i.e. filtering by
a blur kernel). Typically, the blur kernel coefficients are
normalized such that their sum is 1. Thus, the largest singular
value of A is 1 (associated with the DC), and many other
singular values are near 0. Accordingly, the condition number
of AAT is extremely large. These properties are demonstrated
in Fig. 1b for uniform kernel of size 9x 9 (used in many works,
e.g. [8], [9], [18]).

Note that if one uses & pp, exactly as defined in (8), both
Observation 2 and Observation 3 imply an advantage of pp
over &g in the noiseless case due to small singular values
and a large condition number, respectively. However, since
in the deblurring problem A is not rank-deficient but rather
(very) ill-conditioned, deblurring scenarios always assume that

the measurements are noisy (typically with low noise levels).
Therefore, it is required to regularize the inversion of AA”
in AT in order to mitigate the effect of near zero {\;} on the
variance of £gp. A common regularized inversion is diagonal
loading: inverting AAT + €I, instead of AAT, where € is a
parameter. This is equivalent to replacing A\? with A? + € in
the eigen-decomposition of AAT.

For & gp with such a regularized inversion, it is not hard
to repeat the computations in (13) and obtain a very similar
result, where 1;<,, is replaced with A\?/(A? +¢) and )\i_QliSm
is replaced with A\?/(A\? + €)2. Formally, we get
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Therefore, as could be expected, increasing the amount of
regularization € reduces the variance of &pp but increases
its bias. As a sanity check, observe that for ¢ — 0 we get that
(21) coincides with (13) (recall m = n). Since in this case the
performance of &5 p depends on the couple (5, €), we cannot
obtain clear properties like the observations in Section II-B that
hold uniformly for any parameter setting. Yet, as demonstrated
below and in the sequel, we have empirically observed that it
is possible to find settings of (3, €) that balance the bias and
variance of & g p and therefore lead to very good results despite
the observed noise.

We verity (21) for the uniform blur kernel mentioned above,
and two levels of Gaussian noise: o, = v/0.3 and Oe = V2.
The experiments are performed on the 64 x 64 version of
cameraman image, and we use again the /5 prior. The results
are presented in Fig. 6. They show that & pp with good tuning
of (8, €) can outperform & s, especially when the noise level
is low. This implies that "well-tuned” &z p handles the badly
conditioned A (Fig. 1b) better than & g.

D. The effect of the joint right singular vectors assumption

In this section, we compare the empirical MSE and the
analytical formulas in (11), (15) and (21) in cases where
the condition DD = VI?V7 is violated (recall that the
columns of V are the right singular vectors of A and I'?
is a diagonal matrix, as defined in Section II-A). Since our
formulas require the diagonal of I'? (i.e. {7?}), we compute
it as the diagonal of V' DT DV, which is exact under the
analysis assumption and can be regarded as an approximation
when DD # VI?VT,

We start with examining the case of DTD =
QL - Qprr+0.011,, where Qp;r is the 2D finite difference
operator and the diagonal loading is required to make D7 D ~
0. Note that for the deblurring task we have that both A and
DT D are circulant matrices that can be diagonalized by the
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Fig. 9: Compressed sensing with m = 0.5n Gaussian measurements
and Haar basis, using ¢2 prior. PSNR (for « that is the projection of
cameraman onto W) vs. f3 (regularization parameter), for (a) W
that is spanned by the columns of V'(:,1 : m — 500), and (b) W that
is spanned by the columns of V'(:, 1000 : m).

DFT matrix. Therefore, the condition DT D = VI'2VT holds
for V' that equals the (inverse) DFT matrix. However, for the
SR task A cannot be singularly decomposed by a Fourier
basis. Therefore, the condition cannot be satisfied.

We repeat previous deblurring and SR experiments with the
examined DT D. The results are presented in Figs. 7a and 8a.
For deblurring we see perfect agreement between the empirical
results and the analytical formulas (as expected). For SR we
see that violating the condition has led to a small gap between
the empirical results and the formulas.

Now, we further increase the violation of the condition
by breaking the circularity property of DT D. We do it by
replacing Q p;r with a non-circulant operator Q that performs
finite difference only on every 8th pixel (and identity on the
rest). We repeat the previous deblurring and SR experiments
and present the results in Figs. 7b and 8b. It is easy to see
that the deviation of the empirical results from the formulas
further grows for both tasks.

The experiments demonstrate that the deviation between the
empirical MSE and the analytical expressions is proportional
to how much the condition on DT D is violated. Yet, the over-
all trend in the curves still shares similarity with the analytical
results, which motivates considering the observations obtained
by the analytical analysis for practical sophisticated priors.

E. Incorporating prior knowledge on x with the results

The analytical MSE formulas in (11) and (15) are condi-
tioned on the latent image @, as the expectations are taken
only with respect to the noise e. These expressions have led
to observations in Section II that depend only the singular
values of A (i.e. {\;}) and do not require prior knowledge on
x (recall that accurately modeling natural images is difficult).
The usefulness of these observations for preferring one fidelity
term over the other for sophisticated priors is demonstrated in
Section IV.

However, a natural question arises: How can one leverage
prior knowledge on x to improve the criterion for choosing
the fidelity term?

In this section we briefly demonstrate, using a controlled
experiment, how the observations in Section II can be polished
given a constraint that = resides in W~ the orthogonal

complement of a known subspace V. Note that for low-
dimensional W such that m < n — dim(W), we still have
an ill-posed linear inverse problem.

We consider the compressed sensing scenario from Sec-
tion III-B where n = 642, m/n = 0.5 and 0. = 0. In this
case A has (more than 1000) singular values that are larger
than 1 and (slightly more than 500) singular values that are
smaller than 1 (see Fig. 1d). Therefore, the events in the ’in
particular’-part in Observation 2 do not occur. Indeed, observe
that in Fig. 4b none of the estimators is consistently (i.e. for
any () better than the other when « is the cameraman image.

Now, let us use the notation from Section II, where the
columns of V, that is, the right singular vectors of A, are
ordered according to a descending order of the singular values
(from 1 to m), and the last n — m columns span the null
space of A. Suppose that WV is the subspace spanned by the
columns of V'(:,1: m —500), where we use Matlab notation,
and that £ € W=, Due to the orthogonality of V, we have
that [VTx]; = 0 for any 1 < i < m — 500. Substituting this
property in (10) and (14), we get

biass g = Z bz’asi(;)-i- Z VT2,
i=m—499 i=m+1

biashp= Y biasnp+ > [VIz]Z (22
i=m—499 i=m+1

Therefore, for the considered CS scenario, we have that
biashp < biasig for any B (because \; < 1 for all
m — 499 < ¢ < m). Since o, = 0, this implies that
MSEpp < MSEg for any 5.

Note that for WV that is the subspace spanned by the columns
of V(:,1000 : m) and = € W+ (i.e. x in a subspace spanned
by columns of V' that are either associated with singular values
that are greater than 1 or with the null space of A), similar
arguments lead to M SEgp > MSFEpg for any (3. Fig. 9
verifies both results for a test image x that is the projection
of the cameraman image onto W+ (i.e. x = P,y . xo, where
x( is the cameraman image).

Note that the behavior in Fig. 9 cannot be predicted by
the ’in particular’-part in Observation 2 that considers all
the singular values of A, regardless of x. We believe that
a detailed study with constraints on x that better fit images is
an interesting direction for future research.

IV. EXPERIMENTS WITH SOPHISTICATED PRIORS

In this section we empirically demonstrate that the behavior
of Zpp and &g (the minimizers of fpp(&) and frs(x))
for sophisticated convex and non-convex priors (for whom
mathematical analysis is hard or even intractable) strongly
correlates with properties for which we have established
concrete mathematical reasoning in the case of ¢y priors.
Specifically, for super-resolution and deblurring tasks (where
the condition number of AA” is very large) BP cost function
can lead to significantly improved results compared to the
LS cost function, yet, there is inverse proportion between
the performance gap and the noise level (since the singular
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Fig. 10: Super-resolution with Gaussian filter and scale factor of 3,
using TV prior and 100 iterations of FISTA. PSNR (averaged over
8 test images) vs. [ (regularization parameter), for (a) o. = 0, and
(b) Oe = \/§
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Fig. 11: Super-resolution with Gaussian filter and scale factor of 3,
using TV prior. PSNR (for best uniform setting of /3, averaged over
8 test images) vs. FISTA iteration number, for (a) c. = 0, and (b)
e =2

values of A are small in these tasks). For Gaussian compressed
sensing with low m/n ratio (where the condition number is
small and the singular values are greater than 1) pp is not
significantly better than &g, but it is quite robust to noise.
However, when the m/n ratio increases (then the condition
number increases and some singular values are smaller than
1) the advantage of BP is more significant, but inversely
proportional to the noise level.

A. TV prior

We start with the widely-used (isotropic) total-variation
(TV) prior [1], which is given by

s(#) =01 \/|5Ci+1,j = Tij? + [T 01 — Tig? (23)
0

for a two-dimensional signal . The factor 0.1 is used to
achieve good performance for 3 = o2 in case of denoising
(A = 1I,). Obviously, it does not affect the comparison
between the methods, since s(&) is multiplied by /3 that can be
set arbitrarily. Note that s(&) is convex, and thus frg(&) and
fep(Z) are also convex functions. We choose to minimize
them by the same method: 100 iterations of FISTA [20],
which is basically a variant of ISTA (see (32) in the appendix)
that is incorporated with Nesterov’s accelerated gradient [32].
The step size p is the typical 1 over the Lipschitz constant
of V{(x), which in our case can be computed as 1 over
the spectral norm of the constant Hessian matrix V?2/, i.e.
p = 1/||Pa|| = 1 for BP recovery and u = 1/||AT Al
(computed by the power method) for LS recovery. This
common choice of step size is known to ensure convergence
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Fig. 12: Deblurring with uniform 9 x 9 blur kernel, using TV prior
and 100 iterations of FISTA. PSNR (averaged over 8 test images) vs.
[ (regularization parameter), for (a) o. = /0.3, and (b) 0. = V2.
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Fig. 13: Deblurring with uniform 9 x 9 blur kernel, using TV prior.
PSNR (for best uniform setting of 3, averaged over 8 test images)
vs. FISTA iteration number, for (a) o = v/0.3, and (b) oo = V2.

in the convex setting [20]. Several methods for performing
proximal mapping of s(&) (i.e. Gaussian denoising associated
with the TV prior) exist [33], [34]. Here, we choose to apply
split Bregman method [33]. The experiments are performed on
the following eight classical test images: cameraman, house,
peppers, Lena, Barbara, boat, hill and couple.

1) Super-resolution: We compare the performance of &g
and & gp for SR with Gaussian anti-aliasing kernel (defined in
Section III-A) and scale factor of 3. We consider the noiseless
case 0. = 0, as well as the case of Gaussian noise with
. = /2. For both estimators we initialize FISTA with the
bicubic upsampling of y. For BP, the operator AT has fast
implementation using the conjugate gradient method [35]. Fig.
10 shows the PSNR of the reconstructions, averaged over all
images, for different values of the regularization parameter 3.
Fig. 11 shows the average PSNR as a function of the iteration
number, where for each estimator we use the value of 3 which
has led to its best results in Fig. 10 (0.25 for LS and 16 for BP
in Fig. 11a; 0.5 for LS and 46 for BP in Fig. 11b). It can be
seen that £ pp converges somewhat faster than & s. In Figs.
21c and 21d we also display the results for cameraman image
in the noiseless case.

Note the agreement of the obtained results with the observa-
tions from Section II, even though they have been established
for a much simpler convex prior. In the noiseless case, £pp
outperforms &g for any value of 3, while in the noisy
scenario, this does not hold. However, even in the latter case,
Zpp (with good tuning of ) outperforms &g (with good
tuning of f3). Yet, the gap between them (for optimal tuning)
is smaller than in the noiseless case.
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Fig. 14: Compressed sensing with Gaussian measurements, using
TV prior and 500 iterations of FISTA. PSNR (averaged over 8 test
images) vs. 3 (regularization parameter), for (a) oo = 0, and (b)
SNR of 20 dB.
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Fig. 15: Compressed sensing with m = 0.5n Gaussian measure-
ments, using TV prior. PSNR (for best uniform setting of /3, averaged
over 8 test images) vs. FISTA iteration number, for (a) o, = 0, and
(b) SNR of 20 dB.

(a) Original image (b) Aty (7.93 dB)

(c) LS-TV (34.12 dB)

(d) BP-TV (37.19 dB)

Fig. 16: Compressed sensing with m = 0.5n Gaussian measurements
and 0. = 0 for house image. From left to right and from top to
bottom: original image, naive A'y, reconstruction of LS fidelity with
TV prior, and reconstruction of BP fidelity with TV prior.

2) Deblurring: We compare the two estimators for the
widely examined 9 x 9 uniform blur kernel mentioned in Sec-
tion ITI-C. We make the common assumption of circular shift-
invariant blur operator, which allows very fast implementation
of the gradient steps in the optimization of both cost functions
using Fast Fourier Transform (FFT). We consider two levels of

Gaussian noise: 0, = /0.3 and Oe = \/2. For both estimators
we initialize FISTA with y, and for Zzp we use € = 0.0102.
Fig. 12 shows the average PSNR for different values of g,
and Fig. 13 shows the average PSNR as a function of the
iteration number, where each estimator uses the best 5 from
Fig. 12 (0.3 for LS and 20.5 for BP in Fig. 13a; 0.98 for LS
and 19.5 for BP in Fig. 13b). Note that & gp converges much
faster than & g. The difference here for deblurring is more
significant than for SR. Visual results for couple image in the
case of o, = /2 are presented in Figs. 22¢ and 22d.

The obtained results agree with the observations in Section
III-C, in the sense that there exist settings of (8,€) for
which &pp outperforms & g. Presumably, even for the more
complex TV prior, this is due to a better handling of A whose
condition number is very large. As expected, the performance
gap between the estimators (for optimal tuning) decreases
when the noise level is higher. However, it is still highly in
favor of & gp.

3) Compressed sensing: We compare the performance of
x5 and £ gp for CS with Gaussian measurement matrix (i.e.
A;; ~ N(0,1/m)), for which the two cost functions differ
(see the discussion in Section III-B). In these CS experiments
(only) we decrease the size of the test images to 128x128
pixels, as there is no efficient way to implement the operators
A and A7 for large dimensions. We consider compression
ratios of m/n = 0.1, m/n = 0.3, and m/n = 0.5. For
each of them we examine the noiseless case and the case of
Gaussian noise with signal-to-noise ratio (SNR) of 20 dB. For
both estimators we initialize FISTA with zero and use 500
iterations. As we compute AT in advance, both estimators
have similar computational cost per iteration. Fig. 14 shows
the average PSNR for different values of 8. For m/n = 0.5
we show in Fig. 15 the average PSNR vs. the iteration number,
where each estimator uses the best § from Fig. 14. Again, note
that & pp requires less iterations than &y g. Visual results for
house image in the noiseless case are presented in Fig. 16.

The results show correlation with the observations in Sec-
tion II. In the noiseless case, when the m/n ratio increases
(and thus the condition number of AAT increases, e.g. see
Figs. 1c and 1d) the performance gap between BP and LS
increases in favor of BP. In the noisy case, when the m/n
ratio increases the BP estimator becomes more sensitive to
noise (due to the increase in the number of singular values
that are smaller than 1, again, see Figs. lc and 1d).

B. BM3D prior

We turn to compare the performance of the two cost func-
tions for the BM3D prior [4], which is based on sparsifying a
three-dimensional transformation applied to groups of nearest-
neighbor (i.e. similar) patches. This prior is non-convex.
In fact, it is also not clear how to precisely formulate its
associated s(&). Yet, when implementing proximal algorithms
the proximal mapping of s(Z) can be replaced with applying
the BM3D denoiser as a “’black-box”. We use 200 iterations of
FISTA to minimize the cost functions with typical step sizes
as explained above, and the same eight classical test images.
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Fig. 17: Super-resolution with Gaussian filter and scale factor of 3,
using BM3D prior and 200 iterations of FISTA. PSNR (averaged over

8 test images) vs. [ (regularization parameter), for (a) o. = 0, and
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Fig. 18: Super-resolution with Gaussian filter and scale factor of 3,
using BM3D prior. PSNR (for best uniform setting of /3, averaged
over 8 test images) vs. FISTA iteration number, for (a) c. = 0, and
(b) o = \/§

1) Super-resolution: We repeat the two SR experiments of
Section IV-Al. Fig. 17 shows the average PSNR for different
values of (3, and Fig. 18 shows the average PSNR as a function
of the iteration number, where each estimator uses the best 3
from Fig. 17 (0.09 for LS and 16 for BP in Fig. 18a; 0.5 for LS
and 140 for BP in Fig. 18b). Again, note that & zp converges
much faster than & g. In Figs. 21e and 21f we display the
results for cameraman image in the noiseless case.

Note the strong correlation between the obtained results and
the observations from Section II, even though the prior is
highly non-convex. In the noiseless case, £pp outperforms
&g for a large range of (5. For very small values of [
it is inferior to &g, but with only a small gap. From a
practitioner point of view, the advantages of using the BP cost
here are still clear, since when [ is well-tuned (for each of
the cost functions) & g p is significantly better. Note that in the
examined noisy scenario, well-tuned & pp is still better than
well-tuned &g, but the gap decreases.

2) Deblurring: We repeat the two deblurring experiments
of Section IV-A2. Fig. 19 shows the average PSNR for
different values of [, and Fig. 20 shows the average PSNR
as a function of the iteration number, where each estimator
uses the best 3 from Fig. 19 (0.027 for LS and 25.5 for BP in
Fig. 20a; 0.5 for LS and 29.5 for BP in Fig. 20b). Figs. 22¢
and 22f present visual results for couple image in the case of
0. = v/2. The observations that have been made for TV prior
stay the same here for the BM3D prior: There exist settings
of (B,¢€) for which &pp significantly outperforms &g and
converges faster.
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Fig. 19: Deblurring with uniform 9 x 9 blur kernel, using BM3D prior
and 200 iterations of FISTA. PSNR (averaged over 8 test images) vs.
[ (regularization parameter), for (a) o. = /0.3, and (b) 0. = V2.
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Fig. 20: Deblurring with uniform 9 x 9 blur kernel, using BM3D prior.
PSNR (for best uniform setting of 3, averaged over 8 test images)
vs. FISTA iteration number, for (a) o = v/0.3, and (b) oo = V2.

C. DCGAN prior

The developments in deep learning [36] in the recent years
have led to significant improvement in learning generative
models. Methods like variational auto-encoders (VAEs) [37]
and generative adversarial networks (GANs) [38] have found
success at modeling data distributions. This has naturally led
to using pre-trained generative models as priors in imaging
inverse problems [17]. Since in popular generative models
[37], [38] a generator G(-) learns a mapping from a low
dimensional space z € R? to the signal space G(z) C R",
one can search for a reconstruction of & only in the range of
the generator. This can be formulated by the following non-
convex prior

- 0,
s(x) =
(@) {m
Plugging (24) into the typical cost function (5), we get the
objective

I eR:z=G(3)

) (24)
otherwise

frs(2) = ly — AG(2)]3.

Note that for this prior, a regularization parameter § is not
required. The recovery of the latent image x is given by
Zrs = G(2Ls), where 215 is a minimizer of (25), which can
be obtained by backpropagation and standard gradient based
optimizers.

The technique above has been examined recently in [17].
Here, we compare it with the one obtained by a similar
approach that uses the BP cost function (6), i.e. we plug (24)
into (6), to get the objective

fp(2) = |AT(y — AG(2))|13.

(25)

(26)
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Fig. 21: Super-resolution with Gaussian filter, scale factor of 3 and  Fig. 22: Deblurring with uniform 9 x 9 blur kernel and o, = /2
0. = 0 for cameraman image. From left to right and from top to  for couple image. From left to right and from top to bottom: original
bottom: original image, bicubic upsampling, reconstruction of LS  image, blurred and noisy image, reconstruction of LS fidelity with
fidelity with TV prior, reconstruction of BP fidelity with TV prior, TV prior, reconstruction of BP fidelity with TV prior, reconstruction
reconstruction of LS fidelity with BM3D prior, and reconstruction of  of LS fidelity with BM3D prior, and reconstruction of BP fidelity
BP fidelity with BM3D prior. with BM3D prior.



TABLE I: Reconstruction PSNR [dB] (averaged over 50 images from
CelebA) for super-resolution with Gaussian filter and scale factor of
3, using DCGAN prior and ADAM optimizer.

LS est.
23.02

BP est.
23.77

Bicubic
23.04

SR x3

and recover x by £pp = G(2pp), where Zgp is a minimizer
of (26).

We use the CelebA dataset [39] and Tensorflow package
[40] to train a generator using DCGAN architecture [19] on
the cropped version of the images (64 x64 pixels), as done
in [17]. We use the first 200,000 images (out of 202,599) for
training, and the training procedure follows the one in [17],
[19]. At test time, all the optimizations with respect to z are
performed using: ADAM [21] with learning rate of 0.1 (as
done in [17]), same 10 random initializations of Z, and 2000
iterations, which suffice for ensuring that the objectives (25)
and (26) stop decreasing. The value of 2 that gives the lowest
objective is chosen.

1) Super-resolution: We compare the performance of &g
and & pp for SR with Gaussian anti-aliasing kernel (defined in
Section III-A) and scale factor of 3. Table I shows the PSNR
results for the different cost functions, averaged over the last
50 images in CelebA (these images are not included in the
training data). Several visual results are shown in Fig. 23.

It can be seen that the BP fidelity yields higher average
PSNR and perceptually better recoveries. In fact, in each of
the 50 examined images & pp has obtained higher PSNR than
& 1s. This behavior agrees with the previous experiments that
demonstrate the advantages of the BP cost for the noiseless
SR problem. We also note that even though the results of
the simple bicubic upsampling are always perceptually worse
than the recoveries that use DCGAN, its PSNR is sometimes
higher. This drawback of GAN-based priors is due to the
limited representation capabilities of the generators (some-
times referred to as “mode collapse”). A very recent work
has suggested to mitigate this deficiency by image-adaptation
and back-projections [41].

2) Compressed sensing: Due to the small image dimen-
sions, we are able to compare the performance of Zpp
and ;g for CS with Gaussian measurement matrix (i.e.
A;j ~ N(0,1/m)), for which the two cost functions differ
(see the discussion in Section III-B). We use compression
ratios of m/n = 0.1, m/n = 0.3, and m/n = 0.5. Table
IT shows the PSNR results for the different cost functions,
averaged over the last 50 images in CelebA. Several visual
results are shown in Figs. 24 and 25.

The performance gap between pp and &g is negligible
for m/n = 0.1, and increases in favor of BP when the m/n
ratio increases. This behavior correlates with the analysis in
Section II (specifically with Observation 3), which explains
such behavior for ¢y priors by the fact that when the m/n
ratio increases the condition number of AA” increases as
well.

i |

Bicubic (23.74) LS est. (23.96) BP est. (24.47)

Bicubic (23.22) LS est. (22.88) BP est. (23.23)

Original

-
—
Original

Bicubic (21.50) LS est. (23.15) BP est. (24.11)

Original

Fig. 23: Super-resolution with Gaussian filter and scale factor of 3,
using DCGAN prior.

TABLE II: Reconstruction PSNR [dB] (averaged over 50 images from
CelebA) for compressed sensing with Gaussian measurement matrix,
using DCGAN prior and ADAM optimizer.

Naive Afy | LS est. | BP est.
CSm/n=0.1 | 12.07 22.78 22.80
CSm/n=03 | 13.22 23.55 23.62
CSm/n=0.5 | 1471 23.67 23.82

V. CONCLUSION

In this work we examined the BP fidelity term for ill-
posed linear inverse problems. This term has only been used
implicitly by the recently proposed iterative denoising and
backward projections (IDBP) framework, and is an alternative
to the least squares (LS) term, which is the common choice
in most works. We showed that IDBP is essentially a specific
optimization scheme, namely the proximal gradient method
(known also as ISTA), for minimizing the cost function
induced by the BP fidelity term. We analytically compared the
two fidelity terms—BP and LS—for the case of ¢s-type prior
functions, and obtained mathematically-backed observations in
favor of the BP term when the condition number of AA7 is
large (which is the case in many applications, such as super-
resolution and deblurring). Furthermore, we showed that it
is possible to leverage prior knowledge on x to increase the
coverage of the observations. Finally, we empirically demon-
strated that the behavior for sophisticated priors, such as TV,
BM3D and DCGAN, strongly correlates with the theoretically
backed properties that we established for /o priors. While
the mathematical performance analysis in this work is done
only for /5 priors, it provides a good characterization for the
advantages of BP and LS compared to each other. Yet, we
believe that there are other factors that should be explored
with respect to the new fidelity term, such as its behavior
with non-convex priors or its effect on the convergence speed
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Fig. 24: Compressed sensing with m = 0.1n Gaussian measure-

ments, using DCGAN prior.

LS est. (21.89) BP est. (21.80)

3

Original
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fhe
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Fig. 25: Compressed sensing with m = 0.5n Gaussian measure-
ments, using DCGAN prior.

of iterative optimization algorithms.

APPENDIX A
THE CONNECTION BETWEEN IDBP [18] AND fpp(&)

A. Background

The iterative denoising and backward projections (IDBP)
framework [18] is inspired by the plug-and-play priors concept
[42], which encourages the usage of existing Gaussian denois-
ers as “black boxes” to implicitly dictate the prior s(&Z) when
solving inverse problems. Such an approach allows one to use
sophisticated denoising methods even when it is not clear how
to formulate their associated priors, e.g. convolutional neural
network (CNN) denoisers.
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Several plug-and-play works have been published [29],
[42]-[49]. Most of them consider the typical cost function (5)
and directly minimize it using existing iterative optimization
schemes, such as FISTA [20], ADMM [50] or quadratic
penalty method [51], that include steps in which the proximal
mapping of s() is used (as explained below, this mapping is
equivalent to Gaussian denoising under the prior s()).

Recently, [18] has suggested, after several manipulations, to
solve a different optimization problem

1 S - -
s1Z2—Zl3 +s(z) st Az =y,

&2 2(0.+0) @7)

where o, is the noise level and ¢ is a design parameter.
This work has also proposed an adaptive strategy to set d,
which does not depend on the prior and, contrary to cross-
validation, does not require a set of ground truth examples.
It has been suggested in [18] to solve (27) using a simple
alternating minimization scheme that possesses the plug-and-
play property, where the prior term s(&) is handled solely
by a Gaussian denoising operation D(-;0) with noise level
0 = 0. + 0. In this iterative method, Z; is obtained by
projecting &;_; onto { AR" = y}

Zp = argmin |2 — &[5 st. AZ=1y
z

=Aly 4+ (I, - ATA)z;,_,

=ap 1+ Al(y — AZy_q). (28)
and I is obtained by
- . 1 - ~ 2 -
T = arg;nln WHZ]C — w||2 + S(CU)
£ D(Z; 0. +9). (29)

The two repeating operations lends the method its name:
Iterative Denoising and Backward Projections (IDBP). After a
stopping criterion is met, the last xj is taken as the estimate
of the latent . Note that in many cases the operation A'
can be performed efficiently (e.g. the matrix inversion can
be avoided using the conjugate gradient method [35]), and
thus IDBP is dominated by the complexity of the denoising
operation, similarly to other plug-and-play techniques. Using
sophisticated denoisers, such as BM3D and CNNs, this algo-
rithm has achieved excellent results for deblurring [18], [22]
and super-resolution [23].

B. Obtaining IDBP by applying ISTA on fpp(Z)

Interestingly, there is another way to develop the exact
algorithm, which is different from the way it is developed in
[18]. First, note that (27) can be solved directly for z. Similar
to (28), we get

2= Aly + (I, — ATA)z. (30)

Substituting (30) into (27), we reach minfpp(Z) with a spe-
x

cific value of the regularization parameter, i.e. 8 = (0. +J)2.
Therefore, IDBP is essentially a specific method to minimize
the fpp(®) cost function. Let us show that this method
coincides with applying the proximal gradient method [20],



[24], popularized under the name ISTA3, on fep(&). Let
us define the proximal mapping, which was introduced by
Moreau [53] for convex functions. Here we do not limit this
definition to convex functions, though, we emphasize that
previous results for proximal mapping of convex functions do
not apply to non-convex functions.

Definition 1. The proximal mapping of a function s(-) at the
point z is defined by
N I U -
prox,(.)(2) = argmin §||z —&||5 + s(&). (31)
&
Clearly, given the same s(-), Gaussian denoising and prox-
imal mapping are tightly connected D(2;0) = prox,24.)(Z2).
Assuming a differentiable fidelity term ¢(&) with a Lipschitz
continuous gradient V/(&), applying ISTA on (2) involves
iterations of

Ty = prox, g,y (Th—1 — UV€(Zk-1)), (32)

where p is a step-size, which ensures convergence for convex
s(+) if it is equal to (or smaller than) 1 over the Lipschitz
constant of V4(z) [20].

Proposition 1. The IDBP algorithm, given in (28) and
(29), coincides with applying ISTA (32) on the cost function

IBp(Z).

Proof. Let us compute V/pp(%). Using the properties Py =
ATA = PT = P? and PyA" = AT, we get

VeBp(j) = —PA(ATy - PA:)E)

= —Af(y — Az). (33)
The Lipschitz constant of V{pp(&) can be computed here
as the spectral norm of the constant Hessian matrix V3gp.
Therefore, p can be chosen as

1 1

M = = =
| [Pl

1 34
N2lor (@) 7 G

where we use the fact that the spectral norm of a non-
trivial orthogonal projection is 1. Now, due to the connection
D(%;0) = ProxX,2,4.)(2), (32) can be written as

&), = D(&p_1 — pVU&,_1); / 1B).

Finally, by plugging (33) and (34) into (35) and setting 8 =
(0o +6)?, we get the IDBP scheme, which is presented in (28)
and (29).

(35)

O

The connection between IDBP and ISTA, allows IDBP
to adopt the theoretical results of the latter. Yet, note that
the powerful global convergence (obtaining the optimal value
of the objective) of ISTA holds only for denoisers that are
associated with convex prior functions [20]. This limitation is
shared also with ADMM-based plug-and-play schemes [43].

3ISTA is the abbreviation of Iterative Shrinkage-Thresholding Algorithm,
initially designed for s(&) = ||Z|1 [52].
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