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Robust Network Coding in the Presence of
Untrusted Nodes

Da Wang, Danilo Silva and Frank R. Kschischang

Abstract—While network coding can be an efficient means of
information dissemination in networks, it is highly susceptible to
“pollution attacks,” as the injection of even a single erroneous
packet has the potential to corrupt each and every packet
received by a given destination. Even when suitable error-
control coding is applied, an adversary can, in many interesting
practical situations, overwhelm the error-correcting capability
of the code. To limit the power of potential adversaries, a
broadcast transformation is introduced, in which nodes are
limited to just a single (broadcast) transmission per generation.
Under this broadcast transformation, the multicast capacity of
a network is changed (in general reduced) from the number
of edge-disjoint paths between source and sink to the number
of internally-disjoint paths. Exploiting this fact, a fami ly of
networks is proposed whose capacity is largely unaffected by a
broadcast transformation. This results in a significant achievable
transmission rate for such networks, even in the presence of
adversaries.

Index Terms—adversarial nodes, broadcast transformation,
error correction, JLC networks, multicast capacity, network
coding.

I. I NTRODUCTION

Network coding [1] is a promising approach for efficient
information dissemination in packet networks. Network coding
generalizes routing, allowing nodes in the network not onlyto
switch packets from input ports to output ports, but also to
combine incoming packets in some manner to form outgoing
packets. For example, inlinear network coding, fixed-length
packets are regarded as vectors over a finite fieldFq, and
nodes in the network form outgoing packets asFq-linear com-
binations of incoming packets. For the single-source multicast
problem, it is known that linear network coding suffices to
achieve the network capacity [2], [3].

Recently the problem of error correction in network coding
has received significant attention due to the fact that pollution
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attacks can be catastrophic. Indeed, the injection of even a
single erroneous packet somewhere in the network has the
potential to corrupt each and every packet received by a given
sink node. This problem was first investigated from an edge-
centric perspective [4], where a number of packet errors could
arise in any of the links in the network. Alternatively, under a
node-centric perspective, it is assumed that an adversarial node
may join the network and transmit corrupt packets on all its
outgoing links, but the other links in the network remain free
of error.

One approach, investigated in [5], [6], for dealing with
the pollution problem is to apply cryptographic techniquesto
ensure the validity of received packets, permitting corrupted
packets to be discarded by each node, and therefore preventing
the contamination of other packets. This approach typically
requires the use of large field and packet sizes, which leads
to computationally expensive operations at the nodes and
possibly to significant transmission delay. These requirements
may be acceptable in the large-file-downloading scenario, but
may be incompatible with delay-constrained applications such
as streaming-media distribution.

Another approach (and the one followed in this paper) is to
look for end-to-end coding techniques that require little or no
intelligence at the internal nodes. Jaggiet al. [7] show that, if
C is the network capacity (per transmission-generation) andz
is the min-cut from the adversary to a destination, then a rate
of C− 2z packets per generation is achievable. The same rate
can also be achieved using the subspace approach introduced
by Kötter and Kschischang [8], [9]. A higher rateC − z can
be achieved using a scheme proposed in [7] (see also [10]) if
the source and sink nodes are allowed to share a secret (i.e.,if
they have common information not available to the adversary).

In all of the end-to-end techniques mentioned above, we
observe that the min-cut from the adversary to a sink node has
a significant impact on the achievable rates. Ifz is large—for
instance, ifz = C—then the adversary can jam the network
with no hope of recovery. It is important, therefore, to conceive
of protocols that induce per-generation network topologies that
can perform well, even in the presence of adversaries.

The central question of this paper is the following:

What simple changes to a protocol (and hence to
the induced network topology) might be effective in
reducing the influence of an adversary, while not
(greatly) affecting the rate of reliable communication?

We show that in some important special cases it is indeed
possible to constrict potential adversaries, without any sacrifice
of network capacity.
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In this paper, we introduce the concept of abroadcast
transformation, which essentially constrains potential adver-
saries to sending the same packet on all its outgoing links. In
the case of a single malicious node, this effectively enforces
z = 1. In order for such a transformation to be possible, we
introduce the concept of atrusted nodethat performs the role
of broadcasting traffic. A beneficial side-effect of a broadcast
transformation is to lower the encoding complexity, since each
node only needs to compute a single outgoing packet in each
round of communication.

In practice, such a broadcasting feature could be imple-
mented at trusted network gateways. For example, in overlay
network applications, it could be implemented by ISPs at their
gateways, through the use of deep packet inspection or similar
technologies. Note that the broadcast constraint is effectively
enforced if all packets in the same generation1 from the same
user have identical payload (although with different headers
corresponding to different destination addresses). Thus,for
each user/generation pair, the network gateway could simply
store the payload of the first packet it receives and drop any
subsequent packets that have different payloads (while also
flagging such a user as “suspicious”). It is worth mentioning
that, for wireless networks, this constraint is automatically
satisfied due to the broadcast nature of wireless communi-
cation [12], so the results of this paper are also naturally
applicable in this case.

In general, a broadcast transformation can reduce capacity
(significantly, in some cases), unless the network has special
connectivity properties. We will show that the maximum
number ofinternally-disjoint pathsbetween source and sink,
rather than edge-disjoint paths, becomes the key parameter.
This result implies that robustness to node failures and ro-
bustness to adversarial attacks are closely related concepts.
We then examine a class of networks, which we calld-diverse
networks, that have excellent robustness properties. Thisclass
of networks is strongly inspired by the work of Jain, Lovász
and Chou in [13] on robust and scalable network topologies.
We show that, under certain conditions, no loss in capacity
is incurred when performing broadcast conversion in suchd-
diverse networks.

The remainder of this paper is organized as follows. In
Sec. II we review some basic concepts of graph theory and
network coding. In Sec. III we introduce an adversarial model
for communication over untrusted networks. In Sec. IV we
introduce the broadcast transformation and characterize the
achievable rates of broadcast-constrained networks by relating
it to parameters of the original network. In Sec. V we introduce
d-diverse networks and study their robustness properties. In
Sec. VI we present our conclusions.

II. PRELIMINARIES

A. Graph Theory

In this paper, agraph always means a directed multigraph,
i.e., all edges are directed and multiple edges between nodes2

1Here we assume the use of generation-based network coding, as proposed
in [11].

2We will use “vertex” and “node” interchangeably in this paper.

are allowed. IfG is a graph, thenV(G) andE(G) denote its
vertex set and edge set, respectively. LetZ+ = {1, 2, 3, . . .}.
We assume thatE(G) ⊆ V(G) × V(G) × Z+, where the
third component is used to distinguish among multiple edges
between the same nodes.

For A,B ⊆ V(G), let [A,B] denote the set of all edges
(a, b, i) in G such thata ∈ A andb ∈ B. We may also denote
[a,B] , [{a},B], [A, b] , [A, {b}] and [a, b] , [{a}, {b}].
For [A,B] and any other concept that implicitly depends on
G, we will use a subscript such as[A,B]G if the graph is not
clear from the context.

If S ⊆ V(G), then G − S is the graph consisting of the
vertex setV(G) \ S and edge setE(G) \ [V ,S] ∪ [S,V ].

Let |S| denote the cardinality of a setS. For nodesu andv,
if |[u, v]| > 0, thenu is called aparentof v, while v is called
a child of u. We useΓ−(v) andΓ+(v) to denote, respectively,
the set of all parents and the set of all children of a nodev.

Let indegree(v) = |[V(G), v]| and outdegree(v) =
|[v,V(G)]|.

For e ∈ [u, v], let tail(e) = u and head(e) = v. Also,
for E ⊆ E(G), let tail(E) , ∪e∈E tail(e) and, similarly, let
head(E) , ∪e∈E head(e).

For S ⊆ V(G), let S̄ , V(G) \ S. For distinct nodess and
t, if s ∈ S and t ∈ S̄, then [S, S̄] is called ans, t-edge cut.
Let

mincut(s, t) , min
S⊆V(G):
s∈S6∋t

|[S, S̄]|

denote the minimum size of ans, t-edge cut. Note that
mincut(s, t) is often denoted byκ′(s, t). For convenience,
define also

mincut(A, t) , min
S⊆V(G):
A⊆S6∋t

|[S, S̄]|.

A path is a sequence of vertices such that from each vertex
there is an edge to the next vertex in the sequence. The first
and last vertices in a finite path are calledend vertices, and
the other vertices are calledinternal vertices.

For distinct nodess andt, a setS ⊆ V(G) \ {s, t} is called
an s, t-vertex cutif G − S has no path connectings and t.
Note that for ans, t-vertex cut to exist,t cannot be a child of
s. In that condition, letκ(s, t) denote the minimum size of an
s, t-vertex cut.

Two paths are callededge-disjointif they have no edges
in common, and are calledinternally-disjoint if they have no
internal nodes in common. Letλ′(s, t) denote the maximum
number of pairwise edge-disjoint paths from a nodes to a
nodet and letλ(s, t) denote the maximum number of pairwise
internally-disjoint paths froms to t.

We will frequently refer to the edge and vertex versions of
Menger’s Theorem on directed graphs [14] (the former is also
known as the Max-flow Min-cut Theorem).

Theorem 1 (Menger’s Theorem, edge version):For any
verticess and t, λ′(s, t) = mincut(s, t).

Theorem 2 (Menger’s Theorem, vertex version):For any
verticess and t, if |[s, t]| = 0, thenλ(s, t) = κ(s, t).
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B. Network Coding

A (single-source) multicast networkN = (G, s, T ) consists
of a (directed multi)graphG with a distinguishedsource nodes
and a set ofsink nodesT 6∋ s. In a multicast problem, each
sink node requests the same message that is observed at the
source node.

Each link in the network is assumed to transport, free of
errors, a packet of a certain fixed size. A packet in a link
entering a node is said to be an incoming packet to that node,
and similarly a packet in a link leaving a node is said to be
an outgoing packet from that node.

When network coding is used, the source node produces
each of its outgoing packets as an arbitrary function of the
message it observes. Also, each non-source node produces
each of its outgoing packets as an arbitrary function of its
incoming packets. The set of functions applied by all nodes
in the network specifies anetwork code. If each sink node, by
observing its incoming packets, is able to correctly identify the
source message, then we say that the decoding is successful.

Let q be the size of the set from which packets are selected
and letΩ be the set from which the source message is selected.
The rate of communication is defined as

R(Ω, q) , logq |Ω|

which is the amount of information, measured in packets, that
can be conveyed by the source message.

A rate R is said to beachievablefor a networkN if, for
any ǫ > 0, there existq and Ω with R(Ω, q) ≥ R, along
with a corresponding network code, such that the probability
of unsuccessful decoding is smaller thanǫ.

For a multicast networkN = (G, s, T ), define

C(N ) , min
t∈T

mincutG(s, t).

A key result in [1] is that a rateR is achievable forN if and
only if

R ≤ C(N ).

For this reason,C(N ) is referred to as thecapacity of a
multicast networkN .

III. U NTRUSTEDMULTICAST NETWORKS

In this section we describe a node-centric adversarial model
for networks that can be subject to pollution attacks. This
model will be used in the remainder of the paper for the
computation of achievable rates.

We start with the definition of an untrusted multicast net-
work. Consider a multicast network. A node is said to be
trusted if it is guaranteed to behave according to a specified
network coding protocol; otherwise, it is said to beuntrusted.
In particular, a trusted node cannot be controlled by an
adversary, while an untrusted node may (or may not) be
so. An untrusted multicast networkN = (G, s, T ,U) is a
multicast network(G, s, T ) with a specified set of untrusted
nodesU ⊆ V(G) \ {s} such that all nodes inV(G) \ U are
trusted.

An adversarial model for communication over an untrusted
multicast network may be specified as follows. The adversary

chooses a set of adversarial nodesA ⊆ U with |A| ≤ w prior
to the beginning of the session. The setA is unknown to source
and sink nodes, but remains fixed during the whole session.
The adversary controls the nodes inA, which are allowed to
transmit any arbitrary packets on their outgoing links and also
to cooperate with each other. Since an adversarial node cannot
be counted as a sink node, we say that decoding is successful
if each node inT \A can correctly recover the source message.

Several end-to-end error control schemes have been pro-
posed to ensure reliable communication over an untrusted
network [7]–[10], [15]. The rates achievable by these schemes
depend on further assumptions on the system model. In this
paper, we focus on the two most basic of these models. The
omniscient adversary(OA) model refers to the case where no
constraints are imposed on the knowledge or computational
power of the adversary. If an additional assumption is made
that common randomness is available between the source and
sink nodes, then resulting scenario is called theshared secret
(SS) model.

Achievable rates under these models are often stated from
an edge-centric perspective, i.e., assuming that the adversary
controls a certain number of edges. Below we restate these
results from a node-centric perspective.

Theorem 3 ( [7], [9]): Let N = (G, s, T ,U) be an un-
trusted multicast network with at mostw adversarial nodes.
Under the shared secret model, it is possible to achieve the
rate

ROA(N , w) , min
A⊆U :
|A|≤w

min
t∈T \A

ROA(s, t,A) (1)

where

ROA(s, t,A) , [mincut(s, t)− 2mincut(A, t)]
+
.

Theorem 4 ( [7], [10], [15]): Let N = (G, s, T ,U) be an
untrusted multicast network with at mostw adversarial nodes.
Under the omniscient adversary model, it is possible to achieve
the rate

RSS(N , w) , min
A⊆U :
|A|≤w

min
t∈T \A

RSS(s, t,A) (2)

where

RSS(s, t,A) , [mincut(s, t)−mincut(A, t)]
+
.

We will use (1) and (2) as benchmarks to evaluate the
effective throughput of a multicast network in the presence
of adversaries.

Note that when there is no adversary, both expressions
reduce to the capacity of the underlying network, i.e.,

ROA(N , 0) = RSS(N , 0) = C(N ).

From Theorems 3 and 4 we observe that, for an adversarial
setA and a sink nodet, the quantitymincut(A, t) can have a
severe impact on the achievable rate of the untrusted network.
If mincut(A, t) is large compared tomincut(s, t), then the
adversary can overwhelm the system with corrupt packets,
preventing successful decoding.
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Fig. 1. Broadcast transformation.

IV. B ROADCAST TRANSFORMATION

In this section, we propose an approach to restrict the
min-cut between adversarial nodes and sink nodes, which
can lead to potentially higher achievable rates over untrusted
networks. The idea is to force each adversarial node to transmit
only copies of the same packet, effectively constraining its
outdegree to be at most 1. As we do not know beforehand
which nodes are adversarial, the constraint must be enforced
on everyuntrustednode. This operation can be represented
graphically by introducing a new nodeu+, as described in
Fig. 1. Here,u+ is a trusted nodethat only replicates the
packet received. The overall operation, which we refer to asa
broadcast transformation, is formally defined below.

Definition 1: Let N = (G, s, T ,U) be an untrusted multi-
cast network withG = (V , E). The broadcast transformation
of N , denoted byβ(N ), is an untrusted multicast network
(Ĝ, s, T ,U) with Ĝ = (V̂ , Ê) given by

V̂ = V ∪ {u+ : u ∈ U}

Ê = (E \ [U ,V ]) ∪ {(u, u+, 1): u ∈ U} ∪ [U ,V ]+

where[U ,V ]+ = {(u+, v, i) : (u, v, i) ∈ [U ,V ]}.

After a broadcast transformation, adversarial nodes can only
do limited harm, as shown in the following simple result.

Proposition 5: Let β(N ) be the broadcast transformation
of an untrusted multicast networkN = (G, s, T ,U). For 0 ≤
w ≤ C(β(N )), we have

ROA(β(N ), w) ≥ [C(β(N )) − 2w]
+

RSS(β(N ), w) ≥ [C(β(N )) − w]
+

with equality if U = V(G) \ {s}.
Proof: Let (Ĝ, s, T ,U) = β(N ). The pair of inequalities

follows immediately from Definition 1 and Theorems 3 and 4
by noticing thatmincutĜ(A, t) ≤ |A| for anyA ⊆ U and any
t ∈ T \ A.

For the caseU = V(G) \ {s}, let t ∈ T be any node
satisfyingmincutĜ(s, t) = C(β(N )). Note thatt must have
at leastC(β(N )) distinct parents inG, all of which are
untrusted. Take anyw of such parents to form a setA. Then
mincutĜ(A, t) = w, which shows that both inequalities can
be met with equality.

In general, applying a broadcast transformation may reduce
C(β(N )), the multicast capacity of the resulting network.

Still, the reduction in the jamming capability of the adversary
may compensate for this loss and yield a higher achievable
rate. This trade-off, which is captured by Proposition 5, will be
shown to be indeed favorable in certain meaningful situations.
More specifically, we are interested in studying networks for
which C(β(N )) is equal or approximately equal toC(N ). If
this is the case, we will say thatN is a robustnetwork.

In the remainder of the paper, we restrict attention to the
caseU = V(G)\{s}, where all non-source nodes are untrusted.
This case not only has analytical advantages, but also seems
to be the case of most practical relevance.

For a multicast networkN = (G, s, T ), define

Λ(N ) , min
t∈T

λG(s, t).

The following theorem shows that the multicast capacity of
a broadcast-transformed network has a nice graph-theoretical
characterization in terms of the original network.

Theorem 6:Let N = (G, s, T ,U) be an untrusted multicast
network withU = V(G) \ {s}. Then

C(β(N )) = Λ(N ).

Proof: The proof is closely related to the standard argu-
ment used to derive Theorem 2 from the Max-flow Min-cut
Theorem.

Let β(N ) = (Ĝ, s, T ,U). Since U = V(G) \ {s}, the
broadcast transformation replaces each non-source node bya
node followed by an edge followed by a node, as illustrated
in Fig 1. Thus, if two paths inG are internally-disjoint, then
they will also be internally- (and therefore edge-) disjoint in Ĝ.
Conversely, if two paths inG are not internally-disjoint, i.e.,
they share a nodev, then they will also share the two nodesv
andv+ and the edge(v, v+, 1) in Ĝ, and therefore will not be
edge-disjoint inĜ. Thus, for anyt ∈ T , the maximum number
of internally-disjoint paths froms to t in G must be equal to
the maximum number of edge-disjoint paths froms to t in
Ĝ, i.e., λG(s, t) = λ′

Ĝ
(s, t) = mincutĜ(s, t). The result now

follows from the definitions ofΛ(N ) andC(β(N )).

We now give some examples of robust and non-robust
networks.

Example 1:Consider the networkN in Fig. 2, wheres is
the source node and all other nodesv1, . . . , v9 are untrusted
sink nodes. Note that, for anyvi, we havemincut(s, vi) =
3, and thereforeC(N ) = 3. Meanwhile,λ(s, v5) = 1, so
C(β(N )) = Λ(N ) = 1. Thus,N is not a robust network.

Example 2:To make the network in Fig. 2 robust, we can
increase the diversity of internally-disjoint paths tov5 andv6
by letting v5 and v6 have multiple parents. This may result
in a networkN as shown in Fig. 3. Now, for alli, we have
mincut(s, vi) = 3 and λ(s, vi) = 3. Thus C(N ) = 3 and
C(β(N )) = Λ(N ) = 3. Therefore,N is a robust network.

V. d-DIVERSE NETWORKS

In this section, we study a special class of networks, which
we call d-diverse networks, that have simultaneously good
capacity and robustness properties. This class of networks
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Fig. 2. A non-robust network withC(N ) = 3 andC(β(N )) = 1.
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Fig. 3. A robust network withC(β(N )) = C(N ) = 3.

is motivated by the notion of parent diversity illustrated in
Example 2.

Definition 2: Let N = (G, s, T ) be an acyclic multicast
network. The(parent) diversityof a non-source nodev ∈
V(G) \ {s} is defined as

d(v) , |Γ−(v) \ {s}|+ |[s, v]|.

The (parent) diversityof N is defined as

d(N ) , min
v∈V(G)\{s}

d(v).

If d(N ) = d, thenN is called ad-diverse network.

For any node that is nonadjacent to the source node, the
parent diversity is exactly the cardinality of its parent set. For
a node that is adjacent to the source node, this interpretation
remains true if we replace each edge coming from the source
node by an edge followed by a node followed by an edge.
This slight twist in the definition is required due to the special
role that a source node has in a network problem.

The following is the main result of this section.

Theorem 7:LetN = (G, s, T ) be an acyclic network. Then

Λ(N ) ≥ d(N ).

In particular, if indegree(t) = d(N ) for somet ∈ T , then

C(N ) = Λ(N ) = d(N ).

Theorem 7 shows that, for large enoughd, a d-diverse
network not only has good multicast capacity but is also
robust. In particular, when designing a network, one might
focus solely on achieving high parent diversity, obtaining
good capacity and robustness as natural consequences. It is
important to note that, whileC(N ) and Λ(N ) are global
parameters of the network, the diversityd(N ) (or rather
d(v) for each nodev) is a parameter that depends only on
local information available at a node. Therefore, it shouldbe
relatively easy to construct ad-diverse network by enforcing
d(v) ≥ d at each node. This is indeed the case for the class
of JLC networks, as discussed later in Example 3.

In order to prove Theorem 7, we start with a lemma that
characterizes minimal vertex cuts in a graph.

Lemma 8:Consider a graphG = (V , E) with nonadjacent
nodess andt. Then every minimals, t-vertex cut is given by
tail([S, S̄ ]) for somes, t-edge cut[S, S̄]. In particular,

λG(s, t) = min
[S,S̄]

| tail([S, S̄])| (3)

where the minimization is taken over alls, t-edge cuts[S, S̄]
such thats 6∈ tail([S, S̄]).

Proof: First, note that if[S, S̄] is an s, t-edge cut such
that s 6∈ tail([S, S̄]), then tail([S, S̄]) is indeed ans, t-vertex
cut. This follows from the fact that removingtail([S, S̄]) from
G also removes all the edges in[S, S̄].

We now show that ifA is a minimals, t-vertex cut, then
there exists somes, t-edge cut[S, S̄] with s 6∈ tail([S, S̄ ])
such thatA = tail([S, S̄]). For this, consider the graphG −
A. SinceA is an s, t-vertex cut, the graphG − A has two
components. LetAs andAt be the components that contain
s and t, respectively. LetS = As ∪ A; then S̄ = At. Note
that [S, S̄] is an s, t-edge cut. Moreover,tail([S, S̄]) ⊆ A,
otherwiseA would not separates and t. Since tail([S, S̄ ])
is also ans, t-vertex cut andA is minimal, we conclude that
tail([S, S̄ ]) = A. In addition, we must have[S, S̄]∩[s,V ] = ∅,
otherwises ∈ A, which is impossible by the definition of an
s, t-vertex cut.

Now the result follows immediately from Theorem 2.

We can now give a proof of Theorem 7.

Proof of Theorem 7:Let t ∈ T . First, supposet is not
adjacent tos. Let [S, S̄] be somes, t-edge cut achieving the
minimization in (3). Since the graphG is directed acyclic, it
has at least one topological ordering. Letu be the first node
in S̄ according to some topological ordering, i.e.,u ∈ S̄ is a
node whose parents are all inS. We have

λG(s, t) = | tail([S, S̄])|

≥ |Γ−(u)|

≥ d(N ) (4)

where (4) follows from the fact that|[s, u]| = 0, sinces 6∈
tail([S, S̄ ]).

Now, supposet is adjacent tos. Let m = |[s, t]|. Consider
a new networkN ′ = (G′, s, T ), whereG′ = G − [s, t]. Note
that d(N ′) ≥ d(N ) −m. Using the argument above onN ′,
we obtain that

λG′ (s, t) ≥ d(N ′) ≥ d(N )−m.
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Fig. 4. A d-diverse JLC network withk = 12 andd = 3.

Returning to the original network, we have

λG(s, t) = λG′(s, t) +m ≥ d(N ).

From the above arguments, it follows thatΛ(N ) ≥ d(N ).
The special case follows immediately sinceΛ(N ) ≤ C(N ) ≤
indegree(t), for all t ∈ T .

As an application of Theorem 7, consider the case of a
network in which all non-source nodes are sink nodes with
diversity exactlyd, and such that there are no parallel edges
between nodes, except possibly emanating from the source
node. Then the multicast capacities both before and after
broadcast transformation are exactly equal tod. Note that, as
the indegree of any non-source node is exactlyd, any removed
edge would result in a smaller capacity. Thus, we may con-
clude that, given a fixed number of edges, the network capacity
is maximized by having nodes select incoming edges from
distinct parents rather than from the same parent. This result
holds even if all non-source nodes are untrusted, provided a
broadcast transformation is performed.

Example 3 (JLC networks):We now describe a class of
networks that has not only good theoretical properties but
also potential for practical applications. The protocol for
constructing and operating these networks has been proposed
by Jain, Lovász and Chou [13] as a scalable and robust solution
to peer-to-peer data dissemination with network coding. We
refer to any network constructed according to their protocol
as aJLC network.

An example of a JLC network is depicted in Fig. 4. The
network is acyclic, and all non-source nodes are sinks. Initially,
the network contains only the source node (or server), which
hask (potential) outgoing links. Here, each link represents a
stream of unit bandwidth. At any time, the server maintains a
list of k available links for download. When a new node joins
the network, it requests from the serverd download links. The
server randomly picksd links from the pool of available links,
and updates its list withd potential links originating from the
new node. Therefore, the network always hask links (i.e.,
streams of unit bandwidth) available for download.

It is easy to ensure that a JLC network isd-diverse by
performing a simple protocol modification. When a new node
joins the network, rather than choosing thed upstream links
completely at random from thek available links (thereby

allowing the possibility of fewer thand distinct parents), the
server simply needs to provide the new node withd links
from d distinct parents. Note that, in practice,k ≫ d2, so the
k available links come from at leastl = ⌈k/d⌉ ≫ d parents.
Hence, the modification can be done easily.

VI. CONCLUSIONS

We have introduced the broadcast transformation of a
network, which restricts the influence of potential adver-
saries by limiting them to a single transmission opportunity
per generation. For networks with a sufficient diversity of
internally-disjoint paths from source to sink(s), the multicast
capacity may not be greatly affected by this transformation. In
particular, for a class of networks calledd-diverse networks,
the full capacity is maintained whend is sufficiently large.
Combined with error control for network coding, the pro-
posed approach may be an effective means of dealing with
adversaries, particularly in application scenarios such as real-
time media streaming, where alternative (e.g., cryptographic)
methods may be cost-prohibitive.
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