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Analyticity, Convergence and Convergence
Rate of Recursive Maximum Likelihood

Estimation in Hidden Markov Models

Vladislav B. Tadié

Abstract

This paper considers the asymptotic behavior of the re@uirsiaximum likelihood estimation in hidden Markov
models. The paper is focused on the analytic propertieseoaslymptotic log-likelihood and on the point-convergence
and convergence rate of the recursive maximum likelihotichesor. Using the principle of analytical continuatiohet
analyticity of the asymptotic log-likelihood is shown fonalytically parameterized hidden Markov models. Relying
on this fact and some results from differential geometryjdkiewicz inequality), the almost sure point-convergence
of the recursive maximum likelihood algorithm is demonigda and relatively tight bounds on the convergence rate
are derived. As opposed to the existing result on the asytinfiehavior of maximum likelihood estimation in hidden
Markov models, the results of this paper are obtained witassuming that the log-likelihood function has an isolated

maximum at which the Hessian is strictly negative definite.

Index Terms

Hidden Markov models, maximum likelihood estimation, nesive identification, analyticity, Lojasiewicz inequal-

ity, point-convergence, convergence rate.

I. INTRODUCTION

Hidden Markov models are a broad class of stochastic presesgpable of modeling complex correlated data and
large-scale dynamical systems. These processes consigd @omponents: states and observations. The states are
unobservable and form a Markov chain. The observationsralepiendent conditionally on the states and provide
only available information about the state dynamics. Hidt#arkov models have been formulated in the seminal
paper[1], and over last few decades, they have found a witlgeraf applications in diverse areas such as acoustics
and signal processing, image analysis and computer vigiiomatic control and robotics, economics and finance,
computation biology and bioinformatics. Due to their pieaitrelevance, these models have extensively been studied

in a large number of papers and books (see e.g.,[[8], [12] efedtences cited therein).
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Besides the estimation of states given available obsenaf(also known as filtering), the identification of model
parameters are probably the most important problem agedcigith hidden Markov models. This problem can be
described as the estimation (or approximation) of the dtatesition probabilities and the observations conditiona
distributions given available observations. The iderdtfiin of hidden Markov models have been considered in
numerous papers and several methods and algorithms haxedegeloped (seé [8, Part 1], [12] and references
cited therein). Among them, the methods based on the maxitikelthood principle are probably one of the
most important and popular. Their various asymptotic prige (asymptotic consistency, asymptotic normality,
convergence rate) have been analyzed in a number of pagergi(s [5], [6], [10], [11], [19] — [22], [24], [28],
[33], [34]; see alsol[8, Chapter 12], [12] and referencesctitherein). Although the existing results provide an
excellent insight into the asymptotic behavior of maximukelihood estimators for hidden Markov models, they all
crucially rely on the assumption that the log-likelihoodétion has a strong maximum, i.e., an isolated maximum
at which the Hessian is strictly negative definite. As the-likglihood function admits no close-form expression
and is fairly complex even for small-size hidden Markov med#ur or more states), it is hard (if not impossible
at all) to show the existence of an isolated maximum, let@ldmecking the definiteness of the Hessian.

The differentiability, analyticity and other analytic prerties of functionals of hidden Markov models similar
to the asymptotic likelihood (mainly entropy rate) haveertty been studied ir_[13][14][ [15].[29], [30]._[35].
Although very insightful and useful, the results presentethese papers cover only models with discrete state and
observation spaces and do not consider the asymptotic inefedithe maximum likelihood estimation method.

In this paper, we study the asymptotic behavior of the reeairmaximum likelihood estimation in hidden Markov
models with a discrete state-space and continuous obemsatVe establish a link between the analyticity of the
asymptotic log-likelihood on one side, and the point-cageace and convergence rate of the recursive maximum
likelihood algorithm, on the other side. More specificaliglying on the principle of analytical continuation, we
show under mild conditions that the asymptotic log-likebld function is analytical in the model parameters if
the state transition probabilities and the observatiorditmmal distributions are analytically parameterizedirg
this fact and some results from differential geometry (s@gaicz inequality), we demonstrate that the recursive
maximum likelihood algorithm for hidden Markov models ismalst surely point-convergent (i.e., it has a single
accumulation point w.p.1). We also derive tight bounds om @#lmost sure convergence rate. As opposed to all
existing results on the asymptotic behavior of maximumliliieod estimation in hidden Markov models, the results
of this paper are obtained without assuming that the loglillbod function has an isolated strong maximum.

The paper is organized as follows. In Sectian I, the hiddesrkRdv models and the corresponding recursive
maximum likelihood algorithms are defined. The main resaits presented in Sectidd Il, too. Section Il provides
several practically relevant examples of the main res8kstion IV contains the proofs of the main results, while

the results of Sectiol1Il are shown in Sectloh V.



II. MAIN RESULTS

In order to state the problems of recursive identificatiod araximum likelihood estimation in hidden Markov
models with finite state-spaces and continuous obsengtiga use the following notationdy, > 1 is an integer,
while X = {1,...,N,}. d, > 1 is also an integer, whil®’ is a Borel-measurable set froRfs. {p(z'|x)} ex
are non-negative real numbers such thaf,. . p(2'|z) = 1 for eachz € X. {Q(-|x)}.cx are probability measures
on Y. {(X,,Yn)}n>o0 is @an X’ x Y-valued stochastic process which is defined on a (canornicabability space
(Q, F, P) and satisfies

P(Yn+l € Ba Xn+l - SC|X0, Y07 sy Xnv Yn) = Q(B|x)p(I|Xn)

w.p.1forallz € X, n > 0, and any Borel measurable getfrom ). On the other sidely is a positive integer, while
© is an open set fromR? . {py(z'|7)}. . cr are Borel-measurable functions éf © such thatpy(z'|z) > 0 and
Y wrexPo(x’|z) =1forall 0 € ©, z,2" € X. {qo(y|z)}.cx are Borel-measurable functions @f,y) € © x Y
such thatgy(ylz) > 0 and [y, go(y'|z)dy’ = 1 forall 6 € ©, z € X, y € Y. For6 € ©, {(X},Y,))}n>0 is an
X x Y-valued stochastic process which is defined on a (canorpcabability spacgf?, 7, Py) and admits

Py(Y0, € BXY,, = al XYY, X0 Y9 = /B 46 (y12)po (| X2)dy

w.p.1 for eache € X, n > 0, and any Borel measurable sBtfrom Y. Finally, f(-) stands for the asymptotic

value of the log-likelihood function associated with d4ig, },,>¢. It is defined by

f(6) = lim E (%long(Yl,...,Yn))

n—o0
for 6§ € ©, where

n
P, ym) = Y, Po(X§ =0) [ ] (a0 (uklr)po(zalar—1))
=1

0y, Tn €EX
foro e O, y1,...,y, € Y, n>0.

In the statistics and engineering literatuf€.X,,, Y,,)}.>o (as well as{(X?,Y,?)},>0) is commonly referred to
as a hidden Markov model with a finite state-space and comtigwbservations, whil&,, andY;, are considered
as the (unobservable) state and (observable) output atetisiimen. On the other hand, the identification of
{(Xn,Yn)}n>0 is regarded to as the estimation (or approximation{ofz’'|z)}s cx and {Q(-|z)}secr yey
given the output sequencgY,,},>o. If the identification is based on the maximum likelihoodngiple and
the parameterized moddly(z'|z)} s wcx, {qo(y|x)}rer yey, the estimation reduces to the maximization of
the likelihood function f(-) over ©. In that context,{(X?,Y,%)},>0 is considered as a candidate model of
{(Xn,Y,)}}n>0. For more details on hidden Markov models and their idestifom see[[B, Part 11] and references
cited therein.

Since the asymptotic mean bfg pj (Y1, ...,Y,,)/n is rarely available analyticallyf(-) is usually maximized by

a stochastic gradient algorithm, which itself is a spec#decof stochastic approximation (for details see [2]] [18],



[32] and references cited therein). To define such an alyuritve introduce some further notation. Fbe R%,

., e X,y€), let
ro(yla', z) = qo(yl2")pe(z'|),
while Ry(y) is an RY=*N= matrix whose(i, j) entry isry(yli, ) (i.e., Ra(y) = [ro(yli, )]ijex). On the other
side, ford € R%, u € [0,00)N= \ {0}, V € R¥*Ne 'y e Y 1 <k < dy, let
o (u, y) = log(e Ry(y)u),

Fe(ua Va y) = v9¢9 (U, y) + VVU(be (U, y)a

Ry (y)u
eI Ry(y)u’

H@(ua ‘/7 y) = VQGO(Ua y) + VquG (u7 y)

Go(u,y) =

wheree = [1...1]T € R¥=. With this notation, a stochastic gradient algorithm forxingizing f(-) can be defined

as
Ont1=0n + anFo, (Un, Vi, Yii1), ()
Un+1 = Go, ,(Un, Yn11), (2)
Vst = Hyp o, (Un, Vo, Yos1), 0> 0. 3)

In this recursion{«,, } ,>0 denotes a sequence of positive reéjse R4 U, € RN= andV; € R%*N= gre random
variables which are defined on the probability spéeeF, P) and independent ofY,, },,>o.

In the literature on hidden Markov models and system ideatifon, recursior{1) £13) is known as the recursive
maximum likelihood algorithm, while subrecursion$ (2) g8 are referred to as the optimal filter and the optimal
filter derivatives, respectively (sek! [8] for further dé&tpi Recursion[{1) —[{3) usually includes a projection (or
truncation) device which prevents estimaftgs, },,>o from leaving® (see [25] for further details). However, in
order to avoid unnecessary technical details and to keepxb@sition as simple as possible, this aspect of algorithm
(@ - (3) is not considered here. Instead, similarly asir,[26r results on the asymptotic behavior of algorithm
(@ - @) (Theoremkl2 ard 3) are expressed in a local form.

Throughout the paper, unless stated otherwise, the follpwbtation is used. For an integée> 1, P¢ denotes
the set ofd-dimensional probability vectors (i.eR¢ = {u € [0,00)? : eTu = 1}), while C¢ andC?*¢ are the sets
of d-dimensional complex vectors anid< d complex matrices (respectively). || is the Euclidean norm iiR? or
C4, while d(-, ) is the distance induced by this norm. For a real nunber(0, c0) and a setd C C?, V5(A) is

the (complex))-vicinity of A induced by distancé(-, -), i.e.,
Vs(A) = {w e C?: d(w, A) < 5}
S is the set of stationary points ¢f(-), i.e.,

S={0€0:VfH) =0}



Algorithm (@) — [3) is analyzed under the following assurops.

Assumption 1limy, o oy, = 0, limsup,,_, . e, 1 — o, ! < 0o and 307 | o, = oo. Moreover, there exists a
real numbern € (1,00) such thaty_ > ja272" < .

Assumption 2:{X,,},>¢ is geometrically ergodic.

Assumption 3:There exists a functiory (y|z) mapping(f, z,y) € © x X x Y into [0, o), and for any compact

set() C O, there exists a real numbeg, € (0,1) such that
eqso(yla’) < ro(yla’,z) < eg'so(yla’)

forall 0 € Q, z,2' € X, y € ).

Assumption 4:For eachy € Y, ¢y(u,y) andGy(u,y) are real-analytic functions o, «) on entire®© x PN,
Moreover, ¢y (u,y) and Gy (u,y) have (complex-valued) analytical continuaticzfns(w,y) and Gn(w,y) (respec-
tively) with the following properties:

) é,(w,y) and G, (w,y) map (n,w,y) € C% x CN= x Y into C andCN= (respectively).

i) do(u,y) = po(u,y) andGo(u,y) = Go(u,y) forall 0 € ©, u € PN=, y e V.

i) For any compact set) C ©, there exist real numberk, € (0,1), Kg € [1,00) and a Borel-measurable

functiong : ¥ — [1,00) such thatp, (w,y) andG,,(w,y) are analytical in(n, w) on Vs, (Q) x Vs, (PN+)

for eachy € Y, and such that

|6y (w,y)| < Yo(y),

Gy (w, )| < Ko,

/wé(y')Q(dy’lw) < oo
for all n € Vs, (Q), w € Vs, (PN=), 2 € X, y € V.

Assumption[]L corresponds to the properties of step-sizeese® {«,},>0 and is commonly used in the
asymptotic analysis of stochastic approximation alganghlt holds ifa,, = 1/n* for n > 1, wherea € (3/4, 1].

Assumptiong R anf]3 are related to the stability of the mdd4l,,, Y,,)}.>o and its optimal filter. In this or
similar form, they are involved in the analysis of varioupexts of optimal filtering and parameter estimation in
hidden Markov models (see e.d.] [5]J [6],_[10], [11], [19](22], [24], [2€], [33], [34], [36]; see alsd [8, Part II]
and references cited therein).

Assumptior# corresponds to the parametrization of catelidedels{(X?,Y?)},>o. Basically, Assumptiof]4
requires transition probabilitiesy(«’|2) and observation conditional densitigg(y|x) to be analytic inf. It also
requirespy(z’|xz) and gs(y|x) can be analytically continuable to a complex domain such tte corresponding
continuation of the optimal filter transfer functi@i (u, y) is analytic and uniformly bounded if¥, «). Although
these requirements are restrictive, they still hold in maractically relevant cases and situations. Several exesnpl

are provided in the next section.



In order to state our main results we rely on the followingation. {~,},>0 iS a sequence of real numbers

defined by, = 1 and

n—1
Yo =1+ Z Q;
i=0
for n > 1. EventA is defined as
A= {sup 16,]] < oo, inf d(6,,00) > 0} .
n>0 n20

With this notation, our main results on the properties ofeabye functionf(-) and algorithm[(L) —[{3) can be
stated as follows.

Theorem 1 (Analyticity)Let Assumption§12 £14 hold. Then, the following is true:

i) f(-) is analytic on entired.

i) For eachd € O, there exist real numbeig € (0,1), up € (1,2], My € [1,00) such that

|£(6") = f(O)] < MoV £(6")]"
for all " € © satisfying||0 — ¢'|| < d.
Theorem 2 (Convergencel:et Assumptio 1L £14 hold. Them, = lim,,_,~. #,, exists and satisfie¥ f(f) = 0

w.p.1 on eventA.

Theorem 3 (Convergence Ratd)et Assumption$]l £]4 hold. Then,

IV = O(37).  1£(6a) = FO)] = O(1,7), 116w — 0] = O(1,,7) (4)

w.p.1 onA, wherej = p, and

1/2—-p), ifp<2
Py /=) K ,  p=pmin{r,7}, §=min{(p—-1)/2,r—1}. ®)
00, otherwise

Proofs of the Theorenid 1[4 3 are provided in Sedfioh IV.

In the literature on deterministic and stochastic optirtima(notice that recursiori{1) £1(3) belongs to the class
of stochastic gradient algorithms), the convergence afigrd search is usually characterized by gradient, olvjecti
and estimate convergence, i.e., by the convergence of seesieV f (6,,) }n>0. {f(0n) }n>0 and{6,}.>o (See e.g.,
3B, 4], [31], [32] and references cited therein). Similarthe convergence rate can be described by the rates at
which sequence§V f(0,,) }n>0, {f(0n)}n>0 and {0, } >0 converge to the sets of their accumulation points. In the
case of algorithm{1) -£{3), this kind of information is prded by Theoremls|2 arid 3. Basically, Theotdm 2 claims
that recursion[{1) {{3) is point-convergent w.p.1 (i.ee #et of accumulation points ¢b,,},>¢ is almost surely
a singleton), while Theoreil 3 provides relatively tight hds on convergence rate in the terms of Lojasiewicz
exponenty; and the convergence rate of step-sifes,},>o (expressed through and {7, },>0). Theorem(l,
on the other side, deals with the properties of the asynptog-likelihood f(-) and is a crucial prerequisite for
Theorem$ P and] 3. Apparently, the results of Theordeims 2 hrrd 8fdocal nature: They hold on the event where

algorithm [1) —[(8) is stable (i.e., whef#,, }.,>¢ is contained in a compact subset®}. Stating asymptotic results



in such a form is quite common for stochastic recursive dlgars (see e.g.| [18].[25] and references cited therein).
Moreover, a global version of Theoreis 2 &id 3 can be obtaasily by combining them with methods used to
verify or ensure stability (e.g., with [7]._[9] of [25]).

Various asymptotic properties of maximum likelihood estiimn in hidden Markov models have been analyzed
thoroughly in a number of papers| [11,! [5]. [6],_[10[, 111[.90L— [22], [24], [28], [33], [34]; (see alsd |8, Chapter
12], [12] and references cited therein). Although thesalteoffer a deep insight into the asymptotic behavior of
this estimation method, they can hardly be applied to coxmpidden Markov models. The reason comes out of
the fact that all existing results on the point-convergeamg convergence rate of stochastic gradient search (which
includes recursive maximum likelihood estimation as a gp@ase) require objective function to have an isolated
maximum (or minimum) at which the Hessian is strictly negatilefinite. Sincef(-), the objective function of
recursion [(IL) —[(B), is rather complex even when the observapace is finite (i.,ed = {1,...,N,}) and N,,

N,, the numbers of states and observations, are relativeljl étiheee and above), it is hard (if possible at all) to
show the existence of isolated maxima, let alone checkiegdefiniteness o2 f(-). Exploiting the analyticity

of f(-) and Lojasiewicz inequality, Theorerh$ 2 dnd 3 overcome tlif§ieulties: They both neither require the
existence of an isolated maximum, nor impose any restriabio the definiteness of the Hessian (notice that the
Hessian cannot be strictly definite at a non-isolated mamimu minimum). In addition to this, the theorems cover
a relatively broad class of hidden Markov models (see thé¢ sestion). To the best of our knowledge, asymptotic
results with similar features do not exist in the literatorehidden Markov models or stochastic optimization.

The differentiability, analyticity and other analytic prerties of the entropy rate of hidden Markov models, a
functional similar to the asymptotic likelihood, have bestndied thoroughly in several papelrs|[13],1[14],1[15],
[29], [30], [35]. The results presented therein cover onlgdels with discrete state and observation spaces and
do not pay any attention to maximum likelihood estimatiorotMated by the problem of the point-convergence
and convergence rate of recursive maximum likelihood exttins for hidden Markov models, we extend these
results in Theorernl1 to models with continuous observatamstheir likelihood functions. The approach we use
to demonstrate the analyticity of the asymptotic likelilde based on the principle of analytical continuation and

is similar to the methodology formulated in_[13].

Il. EXAMPLES

In this section, we consider several practically relevaaingples of the results presented in Secfion Il. Analyzing

these examples, we also provide a direction how the assongpéidopted in Sectidn] Il can be verified in practice.

A. Finite Observation Space

Hidden Markov models with finite state and observation spate studied in this subsection. For these models,
we show that the conclusion of Theorelms[I — 3 hold whenevepdh@meterization of candidate models is analytic.
Let N, > 2 be an integer, while) = {1, ..., N, }. Then, the following results hold.

Proposition 1: Assumptiong 13 andl4 are true if the following conditions aagsfied:



i) For eachz,z’ € X, y € Y, ro(y|2’, x) is analytical inf on entire®.

i) ro(ylz’,z) >0forallded, x,2/ € X, y e .

Corollary 1: Let Assumption§]1[,]2 and the conditions of Propositibn 1 h®hiken, the conclusions of Theorems
@ -[3 are true.

The proof is provided in SectidnlV.

Remark: The conditions of Propositidi 1 correspond to the way thelickaie models are parameterized. They

hold for the naturQl exponentig and trigonometr& parameterizations.

B. Compactly Supported Observations

In this subsection, we consider hidden Markov models witmdefinumber of states and compactly supported
observations. More specifically, we assume ffias a compact set frof?». For such models, the following results
can be shown.

Proposition 2: Assumptiong 13 anl4 are true if the following conditions aagsfied:

i) For eachz,z’ € X, ro(y|2’, z) is analytical in(d,y) on entire®© x Y.

i) ro(yle’,z) >0forall @ e®, z,2/ € X, ye.

Corollary 2: Let Assumption§]1[,]2 and the conditions of Propositibn 2 h®hikn, the conclusions of Theorems
—[3 are true.

The proof is provided in Sectidn]V.

Remark: The conditions of Propositidd 2 are fulfilled if the natutponential or trigonometric parameterization
(see the previous subsection) is applied to the state tiamgirobabilities{py(z’|z)} s+ cx, and if the observation
likelihoods{gs(-|x)}.cx are analytic jointly ind andy. The later holds whefigs (-|x)}.c x are compactly truncated
mixtures of beta, exponential, gamma, logistic, normaj;h@rmal, Pareto, uniform, Weibull distributions, and whe

each of these mixtures is indexed by its weights and by theurak parameters of its ingredient distributions.

! The natural parameterization can be defined as folléws:[c1,1 - - - an, N, B1,1 - - BNI,Ny]T andpg (z'|z) = oy o7, qo(ylz) = Ba,y
for z,2’ € X, y € Y, while © is the set of vector§an 1 -+ an, N, B11--Bn,,~,]T € (0, 1)Nz (Nz+Ny) satisfying leizl Qg =
leiyl Bz, =1 for eachz € X.

2 In the case of the exponential parameterization, we Bexeo1,1---an, N, B1,1- “ﬁN,,Ny}T, and

exp(az,q) exp(Be,
po(z'|x) = %7 a0 (y|z) = J\Q(ixy)
Zl:i Oxp(azyl) l:Jl Oxp(ﬁz,l)

for z,2’ € X,y € Y, while © = RNz (Na+Ny),
3 The trigonometric parameterization is defineddas: [o1,1 - an, N, B1,1-- -BNm,Ny]T and

z' —1

Nz
po(l|z) = cos? az1, pe(a|z) = cos? Oty H sin? oz,  po(Nzlz) = l_Isin2 g,
=1 =1

y—1 Ny
qo(1]z) = cos® Bz1,  qo(yle) = cos® Buyy [ [ sin® Bes  go(Nylz) = [ [ sin® Bey
=1 =1

forz € X, 2" € X\ {1, Nz}, y € Y\ {1, Ny}, while © = (0, 7/2)Ne (NotNy),



C. Mixture of Observation Likelihoods

In this subsection, we consider the case when the obsem#itElihoods{qs(-|x)}.cx are mixtures of known

probability density functions. More specifically, lét > 1, N5 > 1 be integers, whiled C R? is an open set and

Ng
B= (81 By,.v,]" € (0,)NN ) " 5, =1 for eachz € X

i=1
We assume that the state transition probabilities and teerwhtion likelihoods are parameterized by vectorks A
andj € B (respectively), i.e.ps (7' |7) = po(2'|7), go(y|7) = q5(y|x) fora € A, B € B, 0 = [aT BT, 2,2’ € X,
y € Y. We also assume

Ng
4 (yle) = Barfulylz),

k=1
where 8 = [B11-- Bn,,n,]T € B,z € X, y € Y, while {f,(-|z)}scx,1<k<n, are known probability density
functions.

For the models specified in this subsection, the followirguts hold.

Proposition 3: Assumptiong 13 anl4 are true if the following conditions aagsfied:

i) For eachz,z’ € X, p,(2'|z) is analytical ina on entire A.

i) po(z’lz) >0foral e A, z,2’ € X.

iii) (y) >0 and [log? ¢ (y)Q(dy'|z) < oo for all z € X, y € Y, whered(y) = 3, cx S0y fr(yl2).

Corollary 3: Let Assumption§]1,]2 and the conditions of Propositibn 3 h®hikn, the conclusions of Theorems
@ -3 are true.

The proof is provided in Sectidn]V.

D. Gaussian Observations
This subsection is devoted to hidden Markov models with égfimimber of states and with Gaussian observations.
More specifically, letd, and.4 have the same meaning as in the previous section, Whi#eR and
B={[AAn, g1 pn, )" € 0,000V xRV N, # A, forz # 2/, 2,2" € X} (6)

Similarly as in the previous subsection, we assume that th& dransition probabilities and the observation

likelihoods are indexed by vectorsc A and g € B (respectively). We also assume

as(ylz) = VA /mexp(—=Aa(y — p12)?),

whereB = [A\1 Ay, p1---pun, ]t €B,x € X,y €.
For the models described in this subsection, the followegults can be shown.
Proposition 4: Assumptiong 13 anl 4 are true if the following conditions aagsfied:
i) For eachz,z’ € X, p,(2/|x) is analytical ina on entire A.

i) pa(z|z) >0forall e A, x,2’ € X.
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i) [y*Q(dy|z) < oo for all z € X.
Corollary 4: Let Assumption§]1,]2 and the conditions of Propositibn 4 h®hikn, the conclusions of Theorems
@ -[3 are true.
The proof is provided in Sectidn]V.
Remark: Unfortunately, Propositioh]4 and Corolldty 4 cannot be ede to the cas$ = (0, 00)V+ x RV=,
since the models specified in the subsection do not satisfyptior[ 4 without the condition, # A, for = # 2/
(which appears irﬂGE.However, this condition is not so restrictive in practicefass dense in(0, oo)Ve x RV«

and provides an arbitrarily close approximation(€goo)™s x R¥=,

IV. PROOF OFMAIN RESULTS
A. Optimal Filter and Its Properties

The stability properties (forgetting and ergodicity) ottbptimal filter [2), its derivatives{3) and its analytical
continuation (to be defined in the next paragraph) are dfuitie¢his subsection. The analysis mainly follows the
ideas and results of [21], [22] and [23]. The results pre=eirt the subsection are an essential prerequisite for the
analysis carried out in Subsectidns 1V-B dnd TV-C.

Throughout this subsection, we rely on the following natatio™= denotes the set
ONe = {u € [0,00)Ne : Ty > 1/2},

wheree = [1---1]7 € RN= (QN= can be any compact set froff, co)™= satisfying0 ¢ QV=, intP™= c QN=,
but the above one is selected for analytical convenienag@)nF> m > 0 and a sequencg = {y,}n>0 from
Y, Ym:n denotes finite subsequentg,,, . .., y,). Foru € [0,00)= \ {0}, w € CNe, V € R4>*Ne p > m >0
and sequenced = {9,}n>0, 1 = {Mn}n>0, Y = {Un}n>1 from ©, Cde, Y (respectively), IetGgf;T(u) = u,
Grim(w) = w, Hyi™(u, V) =V and

Gg,:';l-i_l (’U,) = G19n+1 (ng,;z (’U,), yn-l-l)a
é%n,:';l-i_l (’LU) = Gnn+1 (Gm;(w), yn+1)7

Hg'Hu, V) = Hy,, (G (w), Hyly' (u, V), Ynt1)

4Let ha,yu(B) = eTRo(y)ufora € A, B € B, 0 = [aTBT]T, y € Y, u € PN=. Obviously, for anya € A, y € Y, u € PNz,
ha,y,u(+) has a unique (complex-valued) analytical continuationictvitan be defined as

hayu®) = Y Vg /mexp(—lp (y — me)*)pa(a’ [2)us
z,al €X
whereb = [l1 -+ In, m1---mp,]T € C?Ne. Let B = [A1--- AN, p1---pun,]T € (0,00)N= x RN= pe any vector satisfying, = A/
for somez # a/, z, 2’ € X. Then, it is not hard to deduce that there exis€ A, y € Y, u € PN= (depending on3) such thatha,y,u(-)
has a zero in any (complex) vicinity ¢f. Since the zeros of the analytical continuationedfRy(y)u would be the poles of the analytical
continuation ofGy(u, y), it is not possible to continués (u,y) analytically in any vicinity of point(6,v), where§ = [a”8T]T. Hence,
Propositiol# and Corollarfi] 4 cannot be extended to the Base(0, co)Ne x RN,
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(Go(u,y), Gy(w,y), Ho(u,V,y) are defined in Sectionlll). ¥ = {6},>0 (i.e., ¥,, = 6), we also use notation
Gyrr(u) = Ggio(u), H (u,V) = Hgi(u,V), as well asGy™(u,y1.n) = G§%(u), HY™(u,V,y1n) =
H$™ (u, V). Similarly, if n = {n}n>0 (i.e.,n, = n), we rely on notatior&":" (w) = G (w) andG9™ (w, yy.n) =

C?Q;f;(w). Then, it straightforward to verify
b (W) = Gyl (Gly (),
Gy () = Gy (G (w)),
Hg(u, V) = Hyw(Gys(u), Hy' (u, V)
for eachu € [0,00)"= \ {0}, w € CN=, V € R%*Ne 0 < m < k < n and any sequence$ = {¢,},>0,
N ={"}n>0. ¥ = {Yn}n>1 fromo, Cd, ) (respectively). Moreover, it can be demonstrated easily
G (w, yin) = GYM(GY™ M (W, Yrin—1), Yn—kr1in) @)
forall n € C%, w € CN=, 0 < k < n and any sequencg = {Yn}n>1 from Y. It is also easy to show
Hy™ (u, V,y1n) = V (VuGy™ ) (u, y1:0) + (VoGg™) (4, yrin),
Fy (Gg™ (u, y1n)s HY™ (w0, Vo yrin), yna1) =V (VaGo™) (w,y1:n) (Vade) (G5™ (1, Yrin), Ynt1)
+ Vo (06 (G™ (1, y1:0), Ynt1)) (8)

for eachd € ©, u € [0,00)N \ {0}, V € R%>*N= p > 0 and any sequencg = {y,}n>1 from Y (ég(u,y),
Fy(u,V,y) are Sectioi1;(V,G3™)(u,y), (VeG5™)(u,y) denote the Jacobians 6f)" (u,y) with respect tou,
6, while (V,¢9)(u,y) stands for the gradient afy(u, y) with respect tou).

Besides the previously introduced notation, the followirigation is also used in this section. Roe [0, c0)™= \
{0}, n >m >0 and sequences = {¥,,}n>0, ¥ = {yn}n>1 from ©, Y (respectively), letdy”, (u) = I € RN=*Ne

(I denotes a unit matrix) and

5y (1) = (VuGo, ) (GEy (W), Yma1) -+ (VuGo, )Gy ™ (), yn).

Then, it is easy to demonstrate

n—1

Hyo(u, V) =V AZ () + Y (VoG )Gy (w) yir) Ay ™ (G0 (w) 9)

for eachu € [0,00)™= \ {0}, V € R%>*Ne 5 > m > 0 and any sequence® = {9,,},>0, ¥ = {yn}n>1 from O,
Y (respectively).
In this subsection, we also rely on the following notatiéh.and S, denote setsS, = X x Y x PNe x RdoxNa

andS; = X x Y x PN=, Forf € O, Py(-,-) and Py(-,-) are the transition kernels of Markov chains
{Xn-l-luYn+17Gg;n(uuylzn)qum(uuVu Yl:n)}nZO a-nd {XnuynuGg:n(uale:n)aHg:n(ua‘/aY'l:n)}nZO
(respectively), whildIy(-,-) andTly(-,-) are the transition kernels of Markov chains

{Xn-l-luYn+17Ggm(u7Y1:n)}n20 a-nd {Xnuynu Gg:n(uan:n)}nZO
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(notice thatPy(-,-), Py(-,-), Hy(-,-), Ig(-,-) do not depend om, V). Ford € ©, z = (z,y,u,V) € S,, { =
(x,y,u) € S, let

Fy(u,V,x) = E(Fp(u, V, )| X1 = @),
Po(u, ) = E(¢p(u, Y2)| X1 = x)
while
F(0,2) = Fo(u,V.y), F(0.2) = Fy(u,V.y), ¢(60.C) = do(u.y), (6.¢) = do(u,y).
Then, it is straightforward to verify
(P"F)(0,2) =E (Fo(G§"™(u, Y1), HY™ (u, V, Y1:n), Y1) | X1 = 2, Y1 = )
=B (Fg(Ggm(u, Vi), HY™ (u, V, Vi), Xo)| X1 = 2, Y3 = y)
=(P"'F) (0. (2,9, Golu,), Ho(u. V.y)) ). (10)
(IT"9)(0,¢) =E (¢o(Gy™ (u, Yiin), Yni1)| X1 = 2, Y1 = )
—E (ée(Ggm(u, Yim), Xo)| X1 = 2,1 = y)
=("16)(0, (9. Golu.9))) (12)
forall 0 € ©, z = (x,y,u,V) € S;, ( = (x,y,u) € S¢, n > 1. It can also be concluded

( logpp ™ (Y1, .., Yog1)

Xi=a,Y] =
n+1 1 Z, X y)

E(n—l—lz(be GO (ug, Y1:4), Yit1) X1:$7Y1=y>
I do(ug, Y1)
:Hl;(n 19)(0, (2., Golua.y)) ) + 2L00) w2

for eachd € ©, ¢ = (z,y,u) € S¢, n > 1, whereuy = [P(X{ =1)--- P(X? = N,)|T.
Lemma 1:Suppose that Assumptidd 4 hold. L& C © be an arbitrary compact set. Then, there exist real
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numbersy; ¢ € (0,1), C1,o € [1,00) such that

|d6(u, )| < Ciq, (13)
1Ey(u, V,y)l| < Crovey) 1+ VI, (14)
1Fy(u, V,2)|| < Cro(L+ VI, (15)
|Gor (u', ) = Porr(u”, )| < Cr(|0 = 0"[| + |[u = u"|), (16)
|bur (W' y) = by (", )] < Crgva )l —n"|| + llw’ —w”|)), 17)

”F@’(ula Vlu y) - F9” (uI/, Vllu y)”

< Crve)A+ VI +IVINI6" = 0" + [lu" = u"[| + [|[V" = V"|]), (18)
| Eyr (u', V', ) — Fgu(u”, V", )|

< Cr@+ V[ +IIV7IDI6" = 0" + Ju" = u"|| + [V = V"]) (19)

forall 0,0".0” € Q, ', 0" € Vs, ,(Q), u,u/,u”" € PNe, w' w" € Vs, ,(PN=), V,V', V" € RIo>*Ne g € X,
y €)Y (¥g(-) is specified in Assumptiol] 4).

Proof: Let 61,9 = dg/2 (d¢ is defined in Assumptionl4). Then, Cauchy inequality for gfi@ifunctions (see
e.g., [37, Proposition 2.1.3]) and Assumptldn 4 imply thwre exists a real numbé}l,Q € [1,00) such that

max{ ||V (y,0) 0n (@, 9|, 1V, ) dn (w, )1} < Croa(y)

foralln e Vs, ,(Q), w € Vs, o(PY), y € Y (Vinuw) V?n ) denote the gradient and Hessian with respect to
(n, w)). Consequently, there exists another real nuntiiep € [1,00) such that

max{|| ¢y (w',y) — by (W Y)|, |V (W', y) = Vet (w”, )1}
< Cou)(Iln' = n"ll + ||w’ —w"|)

foranyn',n" € Vs, ,(Q), w',w” € Vs, ,(PN+), y € Y. Therefore,

1Ey(u, V,y) || <IIVodo(u, )l + [|Vudo (u, y)[[[|V]
<Crove)1+ V),
[For (u', V' y) = For (", V", y)|| <[[Voger (v, y) = Vodor (u”, y)ll + [[Vuder (u',y) — Vuder (u”, y)ll[[V']]
+ I Vaugor (" ) [V = V|
<o)X+ VI + IV"INI6" = 6" + o' —u"[])

+ Croo(y)|V = V|
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for eachf,¢’,0" € Q, u,u',u" € PN+, V, V' V" € R%*N=_ \We also have
IFofa,V.2)] < Cug(1+ VI) [ do(u)Qylo
|For (W, V') = Fgor (", V", )|
< (Cro+ Co )M+ IV I+ VIO = 0" + o' = u"[| + |V — V”H)/l/f@(.ﬂ)@(@lﬂf)
forall 0,0',0" € Q, u,v/, v’ € PN=, V,V' V" € R%*N= 2 ¢ X. Then, it can be deduced that there exists a
real numbeiC' g € [1,00) such that[(IB) -[{19) hold for each¢’,6” € Q, n'.n" € Vs, ,(Q), u, v/, u" € PN=,
W, w" € Vs, o(PN=), V,V/ V" e R¥*Ne e X,y € . ]
Lemma 2:Suppose that Assumptidd 4 hold. L& C © be an arbitrary compact set. Then, there exist real
numbersi, ¢ € (0,1), Ca,o € [1,00) such that
||v77@77(w7y)” S OQ-,Q) (20)
[ Ho(u, V,y)ll < Cao(1 4 V), (21)
max{[| Gy (w', y) = G (W, )|, | VG (0, y) = Vi G (0", )|}
< Cao(lln" — 0"l + [w" = w"[]), (22)
[Hpr (u, V,y) — Hor(u, V,y)|| < Caq(L+ [VI)6" — 6" (23)
forall 6,60",0" € Q, n,n',n" € Vs, ,(Q), u € PN w,w',w' € V(sQ,Q(PNz), Ve RWXNe oy,

Proof: Let §2 ¢ = min{dgy/2,d1,0}. Owing to Cauchy inequality for analytic functions and Aseition[4,

there exists a real numbét, o € [1,00) such that
max{[|V ) G (0, 9) |, [V ) G (w0, ) [} < Crg

foranyn € Vs, ,(Q), w € Vs, , (PN*),y € Y (G'f](w,y) stands for thé-th component ot’}',,(w, y)). Consequently,

there exists another real numb@s o € [1,00) such that
max{|| Gy (w',y) = G (W Y|, VG (W', y) = VG (", )|, | VG (0 y) = Vi Gr (w” ) |}

< Coqllln ="l + w’ = w”|)
for all n/,n" € Vs, ,(Q), w',w" € Vs, ,(PN=), y € Y. Therefore,

[ Ho(u, V)|l <[VoGo(u, y)ll + [[VuGeo(u, y)[ V]|

<CroN(1+[IV]),
[ Her (u, V. y) — Horr(u, V,y)l| <[[VoGor(u,y) — VoGor (u, y)|| + [[VuGor (u,y) = VuGeor (u, y) [ V]
<Ca(L+[IVI)lI6" 6"

for eachd,0’,0" € Q, u € PN+, V € R%*Nz_ Then, it is clear that there exists a real numbel, € [1,00) such

that (20) —[(2B) hold for alb,6’,0” € Q, n,7',1" € Vs, ,(Q), u € PN, w,w” € [/52@(7)1\71), V € Rdox Nz
ye). [ |
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Lemma 3:Suppose that Assumptiobk 3 ddd 4 hold. Qe © be an arbitrary compact set. Then, the following

is true:

i) There exist real numbets ¢ € (0,1), C3 ¢ € [1,00) such that

145y (W < C3.0e7 ", (24)
A5y (u) = Agly (W) < Cs ey " |u" —u”], (25)
Gy (w') = Gy (W) < Cs. 087 " 0" — | (26)

for all u,v’,u” € PN=, w',w” € QN=, n > m > 0 and any sequenca$ = {J,,},>0, Y = {Yn}n>1 from

Q. Y (respectively).
ii) There exist real numbers; g € (0,1), Cy o € [1,00) such that

[Hgy' (w, V)| < Cao(1 + [IV]) (27)
[Hgly (u', V') = Hg'g (", V)| < Cageng™ (v =L+ [V + [V )+ [V =V"])  (28)

for all u, v’ v’ € PNe, V. V' V" € Rée*Na ' > m > 0 and any sequence$ = {J,,}n>0, ¥ = {¥n}tn>1
from @, Y (respectively).

Proof: Using [36, Theorem 3.1, Lemmas 6.6, 6.7] (with a few strdgitard modifications), it can be deduced
from AssumptioriB that there exist real numbers, € (0,1), Cs ¢ € [1,00) such that[(24),[{25) and

w' w'
T

G w) = G| <27 (No + 1) Co e g | 5 —

hold for all u, u’, u” € PNe, w' w” € [0,00)N=\ {0}, n > m > 0 and any sequences= {9} >0, ¥ = {Yn}tn>1

from @, Y3 Since

wl w/l

T

[ —w”|[(e"w") + |Jw”|| " (w’ — w")|
(eTw’)(eTw”)

for any w’,w” € QN+, we have that[(24) is satisfied for all’,w” € QN+, n > m > 0 and any sequences

< 2(Ng + 1w’ — w"|

eTw  eTw”

9 = {Un}n>0, ¥ = {yn}n>1 from Q, V. Hence, (i) is true.
Now, we shaw that (ii) is true, too. Lef = {9, }n>0. ¥ = {yn}n>1 be arbitrary sequences fro®, Y

(respectively). As a consequence of Lendma 2, (i) and (9), ete g
n—1
IHg (w, V)| < Gt g IV + CoqCs.0 Y e g™ < CagllVI + CogCsa(l —e1,0) "

=m

5 To deduce this, note that, V, yo.n, G%Z (u), A%Z(u)v have the same meaning respectively as quantiiieg, y™, Fj'(u,y™),
Gy (p, 1, y™) appearing in[[36].

6 Inequality [26) can also be obtained from [20, Theorem 2r1]28, Theorem 4.1]. Similarly,[{24)[(25) can be deducednfr{ild,
Lemmas 3.4, 4.3, Proposition 5.2] (notice tWﬁ(u), Agﬁﬁ(u) have the same meaning respectivelyMs, ., V [Mm,n, pm] specified in

[19, Section 5]).
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for all w € PNe, V € R%*N= > m > 0. Due to the same arguments, we have

gy (u', V7) = Hg'g (u”, V|

< Agy (') = Agly W)V + 1AG 5y (w)IIIV = V|

n—1

+ ) 1(VeGo, )Gl (W), yier) = (VoGlo ) (Gl (w”), yis ) | ATy ™ (G (W)
et

+ D (VoG ) (G ("), i) AG, ™ (Gt (u) — Al (G ()]
o n—1

<Os.0et g " IIV/Illlw — || + Cs.qet g "IV = V| + Co,qCa Y el 1G5, () — Gy (u”)]
n—1 =
+C2Q03@ZEZH HGey W) = Gy W]

< O3t " (u/ = w"[[[[V| + [V = V"[) +2C2,C3 et 5" (n — m)
for eachu/,u” € PN, V!, V" € R4*Ne ' > m > 0. Then, it is clear that there exist real numbess, € (0, 1),
Cu.g € [1,00) such that[(2[7)[(28) hold for all, u’, v’ € PN=, V, V', V" € R%*N= and any sequenag = {9},>o0,
Y = {Yn}n>1 from Q, Y (respectively). ]
Lemma 4:Suppose that Assumptiohb 3 dnd 4 hold. et © be an arbitrary compact set. Then, there exists
a real numbeCs ¢ € [1,00) such that
Gy (u) — Ggiry (W)l < Cs.0l0" — 0", (29)
[Hgi%y (u, V) = Hyiy (u, V)| < Cs,0l6" — 6"[[(L+[[V[]) (30)
forall 0',0” € Q, u € PN+, V € R¥%*Ne 'n > 1 and any sequencg = {y,},>1 from ).

Proof: Let OQ = CQVQC&QOE)Q, while y = {y»}n>0 is an arbitrary sequence fropi. It is straightforward

to verify
n—1
Gy () = Gy () = 3 (G (G (w) = GEELT (G ) ) (31)
=0
n—1
HE (0, V) = Yy (0, V) = S (HE (GR (), HEE (0, V) = Hy g™ (GO ), B w,V)) - (32)
=0

forall ,0" € Q, u € PN+, V € R%*Nz n > 0. On the other side, Lemma&$ 2 and 3 yield
1GEy (Gl () = G (G )l = G (GG ) = Gy (G (@ )|

<03Q5n i— 1’

Gty (Gl () = G (G5 ()|

<Cqet g~ 'e — 0" (33)
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for any#’,0” € Q, u € PN+, V € R%*N: (0 < i < n. Using the same lemmas, we also get
| Hry (G (), HY (0, V)) = B 5 (G (), HY b (0, V)|
= [ (a5 ) B (G (), HE (0, )
— Hyl " (G (R () HE ! (G (w), HO (u V) )|
<Cuqehg ™ |[GHE NG, (W) - Gt (6B, w)|
1+ HH;f“ (G (), HY (u, V) H + HH;J“ GYi L (u )),Hg;{y(u,V))H)
+ Craeh | Ha (G (), HE (0, V) = B (GE L, (), B, (0, V)|
<3C2,0C% geng 10 = 0"l(1+ [IVI]) + C2.Cuaqesg 10" = 0”11 + [|Hpir , (u, V)II)
< 5Cqes g 10" = 0" 111+ |[VI]) (34)
for each#’, 0" € Q, u € PN+, V € R%*N= ( < i < n. Combining [(31) —[(34), we conclude that there exists a
real numberCs o € [1,00) such that[(20),[(30) hold for alt’,0” € Q, u € PN=, V € R%*N= n > 1 and any
sequencey = {yn }n>1 from ). [ ]

Lemma 5: Suppose that Assumptiohs 2} 4 hold. Igtc © be an arbitrary compact set. Then, the following

is true:
i) f(-) is well-defined and differentiable of.
ii) There exist real numbers; g € (0,1), Cs,o € [1,00) such that

[(P"F)(0,2) = V()| < Coqek o1+ IVI?),
[1"$)(0,C) — f(0)] < Co.0e5.
forall 0 € Q, z = (z,y,u,V) €S,, (= (z,y,u) € S¢c, n > 1.
Proof: Using [36, Theorems 4.1, 4.2] (with a few straightforwarddifications), it can be deduced from

Lemmall that there exist functiogs: © — R, 1) : © — R and real numbers; o € (0,1), Cs.o € [1,00) such
that

I(P"F)(8,2) — g(0)|| < Co.0¢5 01 + V), (35)
[(TT"9)(6,¢) — 1(0)| < Co.g¢5.¢ (36)

forall 0 € Q, z=(z,y,u,V) €S,, ( = (x,y,u) € S¢c, n > 1H Since E|¢g(ug, Y1)| < oo for any 8 € @ (due to
Assumptior[4), it follows from[(T2),(36) thaf(-) is well-defined and identical tg(-) on Q. On the other side,
Lemmad1l[B yield

1Fo(GE™ (w, y1:n), H'™ (u, Vyy1:n), ynsn) || SCLQQ(Un+1) (1 + [HE™ (u, V. yrin) )

<2C1,QC1,QYqQ(Yn+1) (1 + V)

“The same result can also be obtained frbm [20, Theorem 5.4]
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for eachd € Q, u € PN+, V € R¥%*N: and any sequencg = {y,},>1 from . Then, Assumptiofil4 gives
E ([1Fp(Go™ (u, Yiin), HY™ (w0, V, Yiin), Yo || X1 = 2, Y1 = )
< 2010Cha(L+ VI max [ vo(w)QUy o) < o0
forall € Q, u e PN=, V e R¥*Nz ¢ X, y € ). Consequently, the dominated convergence theorem[@nd (8),
(10), (11) imply
Vo(II"9)(0,¢) =E (Ve (¢6(Gy™ (1, Yi:n), Yni1)) | X1 = 2,Y1 = y)
=B (Fy(Gg™ (u, Yimn), Hy™ (1,0, Y1:0), Yng1)| X1 = 2,1 = y)
=(P"7'F)(6,(¢,0) 37)

foranyf € Q, ¢ = (z,y,u) € S¢c, n > 1 (here,0 stands fordg x N, zero matrix). AS(II"¢)(0, ¢) and(P"F)(6, z)

converge (respectively) tg(f) and g(¢) uniformly in 6 € Q for eachz € S,, ¢ € S; (due to [I0), [(T}1),[(35),

(39)), it follows from [3T) that Part (i) is true. Part (ii) then a direct consequence bfi(10),1(11).] (35)] (36)m
Lemma 6: Suppose that Assumptiohs 2} 4 hold. ligtc © be an arbitrary compact set. Then, there exists a

real numberC g € [1,00) such that
I(P"F)(¢',2) = (P"F)(0",2)|| < Crlld" 0”1 +[IV]?) (38)
forall ¢',0" € Q, z = (z,y,u,V) €S,, n > 1.
Proof: Let Owing to Lemmasgl113 arid 4, we have
| For (G (s y1n ), Hi™ (w0, Vo yrin)s Ynsr) — For (Gt (w, y1n ), Heir' (w0, Ve yrin), Yo )|
<C1,¥QUn+1)(1 + [[Hgi" (u, Vyyrn) | + 1 Hir (u, Vyyr:a) )
(10" = 0”11 + GG (u, y1:n) — G (w, yran) | + 1H™ (u, Voyiin) — Heil (u, Vg [1)
< 9C1,001,0C5,¥q (Ynr1) (L + [VI)?[10" — 6|
forall ¢,0” € Q, u € PN+, V € R%*Nz n > 1 and any sequencg = {y,, },>1 from . Consequently,
[ B)E, 2) — (W F)(0", 2)]| < E (| Fo (G (0 yren), HE™ (1 V, 1:n) o s1)
— Fyr (Ggir (w, y1n), Hgi"(u, Vo yrn) g || [ X0 = 2, Y1 = )
<9C.0CuaCiaalL+ VI ~ ¢ max [ voly)Qldy'lx)

for each#’,0” € Q, z = (z,y,u,V) € S.. Then, it can be deduced from Assumpt[dn 4 that there existah
numberCy g € [1, 00) such that[(38) holds for alV’,0” € Q, z = (z,y,u, V) € S.. ]
Lemma 7:Suppose that Assumptioh$ 3 dnd 4 hold. (et © be an arbitrary compact set. Then, there exist
real numberss g,e4,0 € (0,1), Cs,o € [1,00) such that the following is true:
i) G%ZZ(W) is analytical in(n,w) on Vs, ,(Q) x Vs, ,(PN=) for eachn > 0 and any sequencg = {y,}n>1

from ).
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i) Inequalities
d(GY" (w), PN*) < min{dq, 61,0, 02,0}
IG5 (') = Gy (W) < Csqeh gllw’ — |
hold for all ) € Vs, ,(Q), w,w’,w” € Vs, ,(P"+) and any sequencg = {y,},>1 from Y (5¢ is specified
in Assumptior{#).
Proof: Let y = {y.}.>1 be an arbitrary sequence fropA Moreover, letkg = min{n > 1 : C3 et o <
£1,0/2}, while 61 g = min{dg, 01,0, 02,0}, b2, = 4752 Cy o d1.0.
First, we prove by induction (i) that
Atk (w), PN=) < (2M1C o — 1)dag < b1 (39)

forall n € V5, (Q), w € VSZQ(PNm), n > 0,0 < k < kg. Obviously, [39) is true wheit = 0, n > 0,
ne Vs, (@), weV;, Q(PNI). Suppose now thaf (B9) holds for eagle Vi,  (Q), w € Vj, Q(PNI), n >0 and
some0 < k < kq. Then, Lemmal2 implies

HC’Z;Z”“W) — Go(U, Yntrt1)|| =|Ién(@2fﬂ+k(w), Yntkt1) — é@(uu Yntk+1)|]
<Coq(lln— 0] + Gy (w) — ul])

foranyd € @, n € Vs, (Q), u€ P+, we Vg, (PY), n>0. Therefore,
d(GryH (w), P) <Caq (dln Q) + (G (w), PY))
§2k+1052-21 52762
<@L — 1)dag < dig

foranyn € V;, (@), w € VSZYQ(PNI), n > 0. Hence, [(3D) is satisfied for al] € Vs, o (@) w e VSZYQ(PNm),
n>0,0<k<kg.

Let d3, = d2,/2. SinceGrl(w) = w and GE+HF+1(w) = G, (G2a+k (w), ypik41), it can be deduced from
Assumptioril and(39) thai?:n*+* (w) is analytic in(r, w) on Vs, o (Q)x V5, , (PN=) foreachn > 0,0 < k < kq

(notice that a composition of two analytic functions is atial too). Due to Assumptiohl 4 anf(39), we also have

IG5 W) = Gy (G (w), ynrsn) || < Kq (40)

for all n € V3, Q(Q), we Vs, Q(PNz), n>0,0<k<kq (Kg is defined in Assumptionl4). As a consequence of
Cauchy inequality for analytic functions arfid(40), therésexa real numbe€’; ¢ € [1,00) depending exclusively
on Kq, dy, N, (C1,q can be selected a8y g = 4(ds + N,)Kq /03 ;) such that

max{ ||V p,u) Glir (W) V8, 1) Glir (W)} < Crg

for anyn € V3, Q(Q), we Vs, Q(PNI), n>0,0<k<kg 1<I<N, (G?nn;rk(w) denote the-th component

of Grintk(w)). Consequently, there exists another real nuner, € [1oo) depending exclusively o, do,
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N, such that

max{[| G (w') = Gl (") IV WG ™ (') = VG ()1}

"y n".y
< Coqlln ="l + [lw’ —w"]) (41)
for eachry’,n" € V;, (Q), w',w" € V5, (PY+), n >0, 0 <k < kq.
Let 04, = min{0s,o,47'C5 he1.0}. Owing to LemmdB (Part (i), we have
1Go2y " w) — Gy W < gl — ' < (er.0/2) | —u”|

for all @ € Q, v/, u” € [0,00)N=\ {0}, n > 0. Therefore,|V,Gy’ "MQ( )| < e1,0/2 for eachd € Q, u €
[0,00)N=\ {0}, n > 0, which, together with[{41) yields

nn k n:n+k n:n+k An:n+k
IVWGry ¢ ()] <IVuGyy ™ )] + VW Gy (w) — Vu Gy (u)]|
<e1,0/2+ Caq([10 — il + llu — wl)
foranyf € Q, n € Vj, o (Q), u € PN=, w € Vs, Q(me), n > 0. Consequently,
IV Gy ™™ )] < e1.0/2 + Cao(d(n, Q) + d(w, PN)) < e10

for eachn € V5, (Q), w € Vj, Q(PNI), n > 0. Thus,
1Ghy ™ () = Gay ™ )] < / IV Gy ™ (b + (1 =y’ = w'lldt < 21 glle’ = | (42)

forallneV; (Q),we V&Q(PNz), n > 0.
Let b5, = (1 — £1,0)94,0C5 ,- Now, we prove by induction (i) that

d(Chyy® (w), PN=) < b (43)

foreachn € V5 (Q), w €V}, Q(PNI), i > 0. Obviously, [48) is true when= 0, € V5, (Q), w € V;, Q(PNI).
Suppose tha{((43) holds for ajl€ Vj_ o (@), w eV, Q(PNZ) and some > 0. Then, [41),[(4R) imply

A i+1)k iko:(i+1)k ~Niko:(i+1)k ~0:ik ~Niko:(i+1)k
|Gy ™ (w) = Gy TR ()| <G TR (G () - Gy T ()

+ ||GZkQ l+1)/€Q( ) _ G;’)C;g (Z"rl)kQ( )H

<er,ollGh Y (w) — ull + Caqll8 — 1
foranyt € Q. neV; (Q).ue PN, w e Vs, Q(PNI). Therefore,
d(GY ST (w), PNe) < 1 od(Ghyy? (w), PN*) + Co.0d(n, Q) < e1,001,g + Ca.005.0 = b10

for eachn € V;, (Q), w € V;, Q(PNI). Hence, [(4B) holds for alj € V; o (@) we Vs, Q(PNI), i>0.

Let 030 = min{ds 0,050} As GY0(w) = w and Gy 2 (w) = Gifg TR (G (w)), it can be
deduced from[{43) that[?0 e (w) is analytical in(n,w) on V; Q(Q) x Vs, Q(PNI) for eachi > 0 (notice that
Gika: Dk (1)) s analytic in(n, w) on Vs, o (Q)xV;,  (PN=) foranyi > 0). SinceGY" (w) = GRS (GYHR (1))
for i = |n/kq], we conclude from[(43) thaf}?,i’;(w) is analytical in (n,w) on Vg (Q) x VSW(PM) )
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Vis.0(Q) x Vs, o, (PN=) for all n > 0 (notice thatGrg 2 (w) is analytical in(r, w) on Vs, o (@) % VSW(PNI)
for anyi > 0, 0 < j < kg). On the other side[(39)_(43) yield
d(Gyyy (w), PN=) = d(Gg " (Gyy® (), PY7) < b1, = min{d.61.0. 02,0} (44)
forall n € Vi (Q) 2 Vi, o(Q), w € Vs, (PN+) 2 Vi, o(PN+), n >0 andi = [n/kq].
Leteyg = s}{SQ, Cs.q = Ca.01 - OWing to [42), [4B), we have
Gy ™" () = Gy T ) =G T (G () = G T (G ()
<e10llGhy (w') — Gy (")
for anyn € V5, (Q), w',w" € Vi, (PN+), i > 0. Therefore,
|Gy (') = Gy ()] < € gllw’ —u”|
for eachn € V5 (Q), w',w" € VSW(PNI), i > 0. Consequently[(41)[(43) yield
IGoy7 (w') = G ()| = NG ™ (G () = Gy ™ (G @ (W)
<CoollGyly® (w') = Gy (w")]

/IH

Sé&QEi,QHw/ —w

//H

§C&QEZQHw’ —w

for eachn € Vs (Q) 2 Vi, o(Q), w'sw” € V;, (PY*) 2 V5, o(PY), n > 0, i = |n/kq] (notice that

—(n—ikq)

Caget o = Ca.084.0) el o < Cs.qel o). Then, itis clear thabs o, £4,¢, Cs,q Meet the requirements of the

lemma. [ |

B. Analyticity

In this subsection, using the results of the Subse¢iion]If-dmmalT), the analyticity of the objective function
f(+) is shown and Theorefd 1 is proved. The proof is based on thgtanebntinuation techniques and the methods
developed in[[13].

Proof of Theorem]1:Let

1/;:71(1”’ I) =FE ((Jgn(égm(wa Yl:n)v YnJrl)’ X1 = x)
forn € C%, w e CN=, x € X, n > 1. Then, using[{7), it is straightforward to verify
Gyt (w,w) =B (B (6 (G5 (Cy(w, Y1), Yamin), Yra) | X1, Xo, 1) | X1 = )

=B (Gy(w, Y1), X2)| X1 = ) (45)
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for eachn € C%, w € CN+, 2 € X, n > 0. It is also easy to show
&Z(wxx/) _ ’(/AJ:;(’UJH,,TH)

=F ((Jgn(égm(w/a Yl:n) n+1) (bn( (807 }/ltn)7 Yn+1)’ X, = x/)

- K (gf;n(égm(w”, Yl:n); Yn+1) - an(G?]m(eO; Yl:n); Yn+1)’ Xl - IN)
n—1

+ Z ZE (én(égmilwrl (607 Yk:n)7 Yn-i—l) - én(égmik(em Yk-{-l:n)u Yn-l—l)‘ Xk = :E)
k=1xzeX

- (P*(zla’) = (2))

- Z ZE ( GO m—htl (807 Yk:n)7 YnJrl) - én(égmik(e(); YkJrl:n); Yn+1)} Xk = I)
k=1xzeX

: (p’“’l(xlx”) —m(x))

3 By (Gyle0. Ya), Yosd)| X = 2) (0" (ala!) — 7(a))

reX

— > E(¢n(Gyleo, Yn), Yoi1)| Xn = 2)(p" " (z]a) — 7(x)) (46)

reX
for all n € C%, w',w” € CNe, 2/, 2" € X, n > 1, whereeg = [1---1]T/N, € RM= andp*~!(2'|z) = P(Xy =
2| X1 = z), m(z) = limg_ 0 P(Xx = z). On the other side, Assumptidh 2 implies thdt) is well-defined and

that there exist real numbegsc (0, 1), C' € [1, 00) such that
" (@' |2) — w(a)] < C&" (47)

for eachz,z’ € X, n > 0.

Let Q C © be an arbitrary compact set, whilg o = min{dg,d1.0,02.0,93.0}, d2.0 = 01,0/2. Owing to
Assumption[# and Lemmi@ ZzSn(G%"(w,ym),yHH) is analytic in (n,w) on VSLQ(Q) X ng(PNI) for each
n > 0 and any sequencg = {y, }»>1 from ). Due to Assumptiofil4 and Lemria 7, we also have

|(Z§77 (Gvoyn(wa yl:n)a yn+1)| S wQ (yn-l-l)

for all n € Vg Q(Q), w e Vg Q(PNz), n > 0 and any sequencg = {y,}»>1 from Y. Consequently, Cauchy

inequality for analytic functions implies that there egist real numbe(:“lyQ € [1,00) such that
||Vn<l§n(é97m(wa yl:n)u yn+1)” < él,QwQ(yn-l-l) (48)
for eachn € Vs, Q(Q), we Vg, Q(PNm), n > 0 and any sequencg = {y, },>1 from ). Since

E(o(Ynt1)| X1 =12) < max/d;Q Q(dy'|z") < oo (49)

forall x € X, n > 0, it follows from the dominated convergence theorem (haw,’;(w,x) is differentiable

(and thus, analytic) im on V3, Q(Q) for anyw € V3, Q(PNm), n > 0.
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Let £ = max{ey o, ¢}. Due to Lemma§]l arld 7, we have

|¢En(é9]:n(u}/7 yl:n)u yn+1) - an(égm(wna yl:n)u yn+1)| S CI,QC&QEZQwQ (yn-l-l)”wl - wH||7 (50)
|¢A’n(égmik+l(wv yk:n)a ynJrl) - Qg’n(égmik(wa yk+1in)7 yn+1)|
S Cl,QwQ (yn+1)||é707:n_k(é7] (w7 yk)u yk-l—l:n) - ég:n_k(wa yk-l-l:n)H
< C1.q0s.02l g ¥ (Un+1) |G (w, yi) — wl| (51)
for eachn € V5, (Q), w,w’,w" €V, Q(PNI), n > 1,0 < k < n and any sequencg = {y, }»>1 from ). Using
(@7), (49) —[(51), we deduce that there exists a real nurBhgy € [1,00) such that the absolute value of the each
term on right-hand side of (#6) is bounded @)Qég for anyn € Vj, Q(Q), W w'” €V, Q(PNI), 2.2 € X,
n > 1. Therefore,
[ (w',2") =y (w”,2")| < 2Ca,05(n+1) (52)
for all n € Vs, ,(Q), w',w” € V;, (PY+), 2’,2" € X, n > 1. Consequently[{25) yields
[yt (w,@) = (w,0)| < B (1 (G (w0, Y1), Xo) = (w,2)|| X1 = 2) < 2Ca08(n+1)  (53)

for eachn € V3, (Q), w e Vj, ,(PN+), z € X, n > 1. Owing to [E2), [EB), there exists a functigh: C — C
such thaty) (w, z) converges ta)(n) uniformly in (n, w,z) € V3, (Q) x V3, ,(PN+) x X. As the uniform limit
of analytic functions is also an analytic function (s2el [Bfieorem 2.4.1]);)(-) is analytic onvs, Q(Q). On the

other side, since
ég(u,l’) =FE (¢9(ng(ua Yl:n)a Yn-l—l)‘ Xl = CE) =F ((Hn_l(b)(e, ((E, Yl,u))‘ X1 = .I')

forall 0 € ©, u e PN, z € X, n > 1, Lemmab impliesf(6) = ¢(6) for any 6 € Q. Then, it is clear that Part
(i) is true, while Part (ii) follows from the Lojasiewicz ineality (see e.g./ [17]/[26]/[27]) and the analyticity of
£0). =
As a direct consequence 6f [17, Theorem tI, Page 775] andréhdd, we have the following corollary:
Corollary 5: Let Assumption§12 £14 hold. Then, for any compact@et © and real numbea € f(Q), there
exist real numbersg , € (0,1), pg.a € (1,2], Mg, € [1,00) such that

1£(8) — a| < Mg.o|Vf(8)]"<e

for all 6§ € Q satisfying|f(8) — a|] < dg.q-
Remark: Obviously, if @ C {¢#' € R% : ||¢' — || < dy} anda = f(0) for somed € R, thenug , and Mg ,
can be selected as; , = up and Mg , = My (dg, po, My are specified in the statement of Theorlem 1).

C. Decomposition of Algorithni (1) £1(3)
Relying on the results of Subsection TV-A (Lemnids [ - 6), egjent representations of recursigm (111 (3) and

their asymptotic properties are analyzed in this subseciibe analysis is based on the techniques developéd in [2,

Part I1]. The results of this subsection are a crucial preigte for the analysis carried out in the next subsection.
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In this subsection, the following notation is used. FoP 0, let Z,, 1 = (X,+1, Yat1, Un, Vi), while
&n = F(On, Zny1) — Vf(0n),
$n = an(VF(0))" &n,
o= (T F O+ H0uss — 02)) — T F6)) (Bars — 0 )dt

and¢,, = ¢, +¢!" (F(-,-) is defined in the beginning of the previous subsection). Thtgorithm [1) —[(B) admits

the following representations:
On+1 =00 + a0 F 0y, Zpni1)
=bn + an(Vf(0n) +&n), n=0.
Moreover, we have
F(Oni1) = F(0n) + anl|VF(Ou)II” + ¢n
for n > 0. We also conclude
P(Zyn 41 € Bl0o, Zo, ..., 00, Zn) = Py, (Zn, B)

w.p.1 forn > 0 and any Borel-measurable sBtC S, (Ps(-,-) is also introduced in the beginning of the previous
subsection).
Lemma 8:Suppose that Assumptiohk 23+ 4 hold. Then, there exists d-Buasurable functio® : © x S, —

R% with the following properties:

i) ®(6,-) is integrable with respect t&(z, ) and
F(0,z) = Vf(0)=2(0,2)— (PP)(0,z) (54)

foralld € ©, 2 € S..
i) For any compact se@) C © and a real numbes € (0, 1), there exists a Borel-measurable functipg  :

S. — [1,00) such that

max{|[F'(0, 2)[|, |20, )], [[(PL)(0, 2) ||} < ¢q.s(2), (55)
[(PR)(6', 2) — (P®)(0", 2)]| < pq.s(2)]6" = 0", (56)
SI;IZSE (@é,s(zn)l{ern}‘ Zop=1z) < o0 (57)

forall 0,0',0" € Q, z € S., where
7o =inf{n >0:6, € Q}.

Proof: Let Q C © be an arbitrary compact set. Owing to Lemnids 1 Bhd 5, therstseai real number

C1.g € [1,00) such that

D IPFF)6,2) = VI(O)] < Craoly)(1+[V]*) (58)
k=0
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forall € Q, z = (z,y,u,v) € S. (P°F)(0, z) stands forF (0, z)). Consequentlyy ;> ,((P*F)(0, z) — V £(0))

if well-defined and finite for each € Q, z € S,. We also have

o0

(P*F)(#', 2) Z )0, 2 Vfw”))H

k=1 k=1

<D PER)@ =) = (PER)@", )| + n [V F(O) = VI(0")]
k=1

+ Y (PER)O,2) = V)| + D [(PRF)O",2) — V0|
k=n-+1 k=n-+1

for each¢’,0” € ©, = € S,, n > 1. Then, using Lemmds 5 andl 6, it can be deduced that thereregishumbers
gg €(0,1), Ca.q € [1,00) such that

oo oo

Y ((PEF)O',2) = Vf(0) = Y (PFF)(O",2) = V f(6"))

k=1 k=1
forall 0',60" € Q, z = (z,y,u, V) €S, n >0 (P°F)(0, 2) is defined ag- (6, 2)).
Let Co = max{C}.q,Ca.q}. Moreover, letNg (t) = [slogt/logég] for s,t € (0,1) and Ng 4(t) = 0 for

< Co(L+IVIP)(EG +nllo —0"]))  (59)

€ (0,1), t € {0} U[1,00). Then, it can be concluded that there exists a real numikgr € [1,00) such that

No,s(t) + 52" < Ko ut° (60)
for all ¢ € [0, c0).
For6 € ©, z = (z,y,u,V) € S., let
k=0

0q.s(2) = CoKqsthoy) (1 + V).

Since

(Ppq,s)(0,2) = CqoKq,s(1+ [[Ho(u, V,y)|*) E(o(Ya)| X1 = 2) < o0
forall 6 € ©, z = (z,y,u,V) € S,, we deduce from(38) thab(-,-) is well-defined, integrable and satisfi€s](54),
(B5) (notice that P®)(0,2) = > o=, ((P*F)(0,2) — V£(6))). On the other hand[{59)._(60) imply

I(P®)(#', 2) — (P) (0", 2)|| < CqoKa.s(1+ V)6~ 6"
forany¢’.0” € Q, z = (z,y,u,V) € S, (setn = Ng (|0 —0"|) in (89)). Thus,[(5b) is true for eadh,§” € Q,
z=(x,y,u,V) €S8,.
Let® = {6,},>0 andY = {Y,,},,>1. Due to Lemma13, we have
0Q,s(Zni1) I irg>ny =CoKq,stq(Yas1) (1 + | Ho (Uo, Vo) P  frg>ny

<4CKqsCF gvq(Yas1) (1 + [|Vo|l?) (61)
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for eachn > 0 (notice thatnggb(Uo,Vo) depends only on the first elements off, and thatd,,...,60, € Q is
sufficient for [61) to hold). Consequently,
E (¢3,s(Znt1){rg>ny| Z1 = 2) S16CHE .Ci (L + V) EWR (Yor1)| X1 = 2)
< ~2 12 4 4 2./ A
<16CHRE, Cloll+ VI max [ 03y 1) < o0

for all z = (z,y,u,V) € S,, n > 0. Hence, [(5F) is true for alt € S,. [ |

Lemma 9:Suppose that Assumption] 1 holds. Then, there exists a reabeus € (0,1) such that
Zzoo 711-1-5%2

Proof: Letp = (2+2r)/(2+7), ¢ = (24 2r)/r, s = (2+71)/(2 4+ 2r). Then, using the Hdlder inequality,

we get
Za1+s r_ Z( 721%2;)1/17 < (Z i%?) <Z %) '
n=1 =1 n=t

Sincev,41/vn = 1+ an /v, = O(1) for n — oo and
Z% nzl%wrl ;(7n+1)2A:"+1 dt ,_:1 n%((%y’

it is obvious that)>> j k™~ converges. [ |

Lemma 10:Suppose that Assumptionhs 1} 4 hold. Then, there exists art aesuch thatP(Ny) = 0 and such
that >0 o Ve, Do nén andy > ¢, converge o\ \ No.

Proof: Let @ C © be an arbitrary compact set, whiteis an arbitrary number fronf0, »]. Moreover, let

U : © — R xde pe an arbitrary locally Lipschitz continuous function. @isly, in order to prove the lemma, it
is sufficient to demonstrate that >~ , a7 ¥ (0,)&, and > ¢! converge w.p.1 o)~ {6, € Q} (to show
the convergence OEZO:O anyrén, sett = r and ¥(0) = I for all § € ©, where stands fordy x dy unit
matrix; to demonstrate the convergencedsf- , ¢,,, sett = 0 and ¥(¢) = ¢(V f(#))T for eachd € ©, where
e=[1---1]T € R%),

Let s € (0,1) be a real number such thaf > j alty" < oo, while

[w(0) =W (@) [IVf(0) = VIO
167 —6"l|s 16" — 6]

C'Q:max{|V\IJ(9)||, :9,9’,9”6@}.

Moreover, forn > 1, let
1/)1-,71 = \IJ(GH)(@(GH, ZnJrl) - (Pfl))(f?n, Zn))a
VYo = U (0n)(PP)(0n; Zn) — (PP)(On—1,Zn)) + (¥(0n) — V(0rn—1))(PP) (01, Zn),
1b3,n = \I}(en)(P(I))(em Zn+l)~

Then, it is straightforward to verify

n n n n—1
D U006 =D anvitri+ Y eivitai+ Y (@ir1vi — iv)ss — anYhtsn + a0vitse  (62)
=1

i=1 1=1 1=0
for n > 1.
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Owing to Assumptioii 1, we have
an = anp1(l+ anlagiy —ay')) = Olans),
Qp — Qny1 = anan+1(a;i1 —ayt) = O(a511);
Tnt1 = Yn = Tn (14 an/7a)" = 1) = o(any)

asn — oo. Consequently,

Za i = 3 (@ famin) @ < 00, (63)
n=0

oo oo oo

D v = anpvial Y anlvh = bl + Y lan — ansilrh g < oo (64)

n=0 n=0 n=0

On the other side, as a consequence of Letiima 8, we get
Ep.: (V10 Irgny) < 208 B0, (00,4 (Zns1)I(rgon}) + 205 B0, (93 4(Zn) {rg>n-1}) »
Eo.: ([Y2,nItrg>ny) < 2CqE0.= (9.5 (Zn)0n — On-1l*ITirg5ny) < 2C0as_1Eo.: (¢8.«(Zu){rg>n-1})
forall € ©, 2 € S,, n > 1. Due to the same lemma, we have
Box (13 Lirgn}) < COEo.z (93,5(Zns1) rg>n))
Eo» (|00 (rg5n}) < CoFo.: (101 = 0nl*Iirgsny) < CoarEox (9%,5(Zni1)irg>ny)

forall € ©, z € S., n > 1. Then, Lemm&l8 and (63) yield

Ey.. (Za A2 | I{TQ>n}> < 4CQ <Z Y ) sup Ey . (<pQ S(Zn+1)I{TQ>n}) < 00,

n=1

(Z Oén’Yn|1/’2 n|I{TQ>n}> < 20@ (Z an 1an7n> sup Ey, N4 (@Q s(Zn+1)I{TQ>n}) < oo

n=1 n=1

for any 6 € ©, z € S,. On the other side, Lemnid 8 arid{64) imply

Ey, (Z |l — O‘n+1"YrtL+1| |w3,n|I{TQ>n}>

n=1

1/2
<Z |an7n an+17n+l|> Sup (Ee z (@Q s(Zn+1)I{TQ>n})) / < 00,
( Oén+1’7n+1|1/13 nl I{TQ>n}> (Z an+1’7n+1> SUP Ep, . (<PQ S(Zn+1)I{TQ>n}) < 0,

Ey . (Z |¢Z|I{TQ>H}> < C~1(;) <Z « ) sup Ly, ,Z <PQ S(Zn+1)I{TQ>’ﬂ}) < o0
n=0 n=0

n>0

for eachf € ©, 2 € S,. Since

Ey» (V1.01{rg >0} 1 Fn) = U(0n) (Eo,z (2(On, Zn41)|Fn) — (P®)(0n, Zn)) Iirg>ny =0



28

w.p.1 for everyd € ©, z € S,, n > 1, it is clear that series

o0 oo oo oo
t t t t
Z nYn V1, Z Y2, Z(O‘n%z — U1 Yn41)¥3,ns Z O
n=1 n=1 n=1 n=1

converge w.p.1 of* {0, € Q}, and thatlim,_,o. a7}, ¥3,,» = 0 w.p.1 on the same event. Owing to this and
(62), we have thad_ >, a7 ¥ (6,)E, is convergent w.p.1 ofi) > {0, € Q}. [ |
Lemma 11:Suppose that Assumptidd 13- 4 hold. Then, o Ny, lim,,,~ Vf(6,) = 0 andlim,,_, f(6,)
exists.
Proof: Let Q C © be an arbitrary compact set, while is an arbitrary sample fromi)~ {6, € Q} \ No
(notice that all formulas which appear in the proof corregpto thisw). Obviously, in order to prove the lemma,
it is sufficient to show thatim,,, . f(6,) exists and thatim,,_,, Vf(6,) = 0.

Since)",° , ¢» converges and

S all VO = £0.) - £60) — Y
=0 i=0

for n > 0, we conclude> ", o, ||V f(6,)]|* < oo (also notice thatf(-) is bounded orQ). As

n—1 n—1

F(0) = F(B0) + Y ol VFO)N* + D i

=0 =0

for n > 0, it is clear thatlim,,,, f(6,) exists.
Let Cq be a Lipschitz constant o¥ f(-) on Q and an upper bound dfV£(-)|| on the same set. Now, we

provelim,,_,. Vf(6,) = 0. Suppose the opposite. Then, there exist (0, oo) and sequence§ny } x>0, {1k }x>0
(all depending onw) such thatm, < ni < mis1, [VF(Om,)| < e, [[Vf(0n,)] > 2¢ for k > 0, and such that

IVf(0.)| > € for mi < n < nyg, k> 0. Therefore,

nk—l

Z Oéifi

i:mk

nk—l

e < IVF(On) = VIOl < Collbn, = b, |l < CF Y i +Co

i:mk

(65)

for K > 0. We also have

2 Y < > all VeI

1=mpr+1 i=myp+1

nk—l
i:mk

for k > 0. Consequentlylimy_, o >

applied to [6b) would imply

a; = 0. However, this is not possible, since the limit procésss oo

Hence,lim,,—, o, Vf(6,) = 0. [ |

D. Convergence and Convergence Rate

In this subsection, using the results of Subsectlons]YABCI (Corollary[8, Lemmag]9,_10), the convergence

and convergence rate of recursigh (13 (3) are analyzed apdrém$ R andl 3 are proved.
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Throughout the subsection, we use the following notatian.tF (0, 00), n > 0, let
a(n,t) = max{k >n: vy, — v, <t}

For0<n <k, let

Cn = sup
k>n

k
> aik|,

i=n

k—1

/

Enk = E ;&
i=n

k—1
eh = D ai(VF(0:) = VF(6n)),
Gk = (vf(en))T(E;z,k +en k)

1
o, = / (VF (B + 10— 62)) — V1(0))" Bk — 0.,

while e, = €7, ;, + ¢, andép . = @), , + ¢, . Then, it is straightforward to verify

k—1
0, =0, + Z 061Vf(91) + E;z,k

=0n + (v — 1)V f(0n) + En,ks (66)

for0<n<k.
Besides the notation introduced in the previous paragraplalso rely on the following notation in this subsection.
For a compact sef) C ©, Cg € [1,00) denotes an upper bound 6% f(-)|| on @ and a Lipschitz constant of

Vf(-) on the same setd is the set of the accumulation points tf,, } >0, while

f =liminf f(6,,).

n—oo
p and B, Q are a random quantity and random sets (respectively) defiged
p=d(A,00)/2, B=|J{0 R0/ —0| <min{dp,p}}, Q=cl(B)

cA
on A, and by

p=0, B=4, Q=4
otherwise. Overriding the definition gf in TheoreniB, we specify random quantit&si, C, C' as

0=0qfp M=nqp C=Chp M=My; (68)

on A, and as
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otherwise §¢ .4, 11Q.a, Mg . are introduced in the statement of Corollaly 5; later, onbedfenl 2 is proved, it
will be clear that the definitions gf provided in Theorerhl3 and i (68) are equivalent). Randomiiies p, g,

7 are defined in the same way as [ih (5). Functiofi$ andv(-) are defined by
. (1/u(@)?, if uw(f) >0
0, otherwise
for 6 € ©.
Obviously, on event\, Q is compact and satisfied c intQ, Q c ©. Thus,ji, M, p, 4, 7, v(-) are are well-

defined on the same event (what happens with these quartittsgle A does not affect the results provided in

this subsection). On the other side, Corollaly 5 implies
1£(0) = I < M|V £(0)]1* (69)

on A for all 6 e Q satisfying|f(0) — f] < 6.
Lemma 12:Suppose that Assumptioh$ 13 4 hold. Them,, o, v.¢, = 0 on A\ Ny (Ny is specified in the
statement of Lemmia_10).
Proof: It is straightforward to verify
k k k i
Z Vi€ = Vit Z ;Y& + Z(v{ "= 7i41) Z a;Y;&;
i=n j=n i=n j=n
for 0 < n < k. Therefore,

k
Z 7i&i

-

[
Z ;v &;
j=n

k
< (%}H +> (- %-11)) sup
. N
i=n =

=, " sup Zajv;-f]
i>n ||
j=n
for 0 < n < k. Consequently, Lemnial0 implies
k
lim sup ,,(, = lim sup sup Z &l =0
n— o0 n—oo k>n i=n
on A\ No. [ |

Lemma 13:Suppose that Assumptiofs 17 4 hold. &t = (16pM1)2° (notice thatl < C; < oo everywhere).
Then, there exist a random quantftyand an integer-valued random variablesuch that) < £ < 1,0 < ¢ < oo

everywhere and such that

max |lenkl < (E/C1) (v + IV F(0)]), (70)
n<k<a(n,t)

max gkl < (£/C1) (7,2 + |V£(0n)]), (71)
n<k<a(n,t)
FOn) = FOuniy) + 27 VO < (/C)v T, (72)
FOn) = FOagniy) + 27 NIV L O 10 p) — Onll < (E/C1)v, %" (73)

onA\ Ny forn > o.
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Proof: Let C; = 2C exp(C), Cy = 2CCy, Cs = 2CC3 + Cy and Cy = Cy + Cs, while i = 1/(2C,Cy).
Moreover, let
&1 =max ({n >0:0,¢ Q} U{O}) ;
Gy =max ({n >0:a, > {/4} U{0}),
53 = max ({n >0:47C0 > f/(2élé4)} U {0})

while 0 = max{d1, 52,53} I\ n,. Then, it is obvious that is well-defined, while Lemma12 impliegs< o < oo

everywhere. We also have

ma'x{éb’)/’:,é-na 03/724-77,7 637727,TC727,7 04’7*:,4-717 64’7727,7“4-727,} S 27101_157 (74)
max{Cyt?, Cat?, C4t?} < 271C7 M, (75)
I?Z Fya(n,f) —Tn = ’Ya(n,f)-l—l —Tn — aa(n,f) 2 31?/4 (76)

onA\ Ny forn > 0.
Let w be an arbitrary sample from (notice that all formulas which follow in the proof corresmbto thisw).

Sinced,, € Q for n > o, we have

IVFOR) <[V F @)l + [V (Or) = V(0)]

<IVF @)l + Cl6i — bul

k—1
<IVFO) +C Y aill VIO + Cller, i

1=n

k—1
<C(Ga +IIVFE)) + C Y aill V£ (6]

=n

for o < n < k. Then, Bellman-Gronwall inequality yields

IV )l < C(Gu + IV F(E)]) exp(C (e = 1)) < Cexp(C) (G + IV F(8a)]])

for o < n <k < a(n,1). Consequently,
k—1

16 = Oall <D @llVFO) + ey, il

<Cn + C’exp(é)(Cn + ||Vf(9n)||)(% - ’Yn)
<Ci(Cn + (v — 1)V F (@)

for o < n <k <a(n,1). Therefore,

k—1
lengll <llen il +C D ailli — 6l

<Go + CC1L{(vm = 1)Ca + (v = 7)* IV £ (6)]])

<Co(Cn + (v — )2 IV.L(0)]]) (77)
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for o < n <k <a(n,1) (notice thaty, —~, <1 for n < k < a(n,1)). Thus,

1n.1cll IV F@a)lllen.icll + Cll6r — 01
<Co(Gall VS @)+ (e = 1) IV F(0) %) + 2CCH G + (e = 1)1V £ (6)P)
<C3(Gr + CallVFOn)ll + (i = 7)1V £ (0) ) (78)
for o < n < k < a(n,1). On the other side, combining (66]{67), we get
FOk) = [(0n) =[IVFO) [ (vr = )V f (On)l] + Pn i
=V FOn)[l10k = On + enpll + dnp
Z[VF @)Wk = Onll = llenkll) = 6kl
for 0 < n < k. Then, [Z7),[(ZB) yield
F(O0n) = f(Or) + IV F(On) 10k = Onll <IVf(On)llen,kll + |Pn,kl
<C3Ga + (Co + C3) (Gl V£ @) + (v = 7)1V £ (60)]1%)
<Cu(Gr + Gl VOl + (e = 1) 2V F(G)I1) (79)

forc <n <k <a(n,l).

Owing to [73), [75),[(77),[(48), we have
len k]l <Coln + Cof2 ||V £(6,)]|
<Cr (" + V£ 0D, (80)
|6ngel SC3Ch + CaGall VF(0n)ll + Cs®||V £ (62)°
<270 T A IV O+ IV F 012
<O + IV F(8a)II%) (81)

for o < n <k < a(n,t) (notice thaty,, —~,, <t for n < k < a(n,t)). Due to [67),[(75),[(81), we have also

F(0n) = (0401

IN

~ Vatn,py = WIVFO)? + 11 0]

< = GV O + CrE0 > + [V £(0:)]17)

== (3/4=CIIVIOL)P + Cf v

< =27V (01 + Oyt (82)

n

for n > o (notice thatC, > 4). Consequently,

CrHEIV L)1 <27V FO)I® < CT 7> + (FBugniy) — £(0n)) (83)
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for n. > 0. On the other side[{74) £(76[_(791.183) imply
F0n) = FOutniy) + IV FO)10uniy — Onll SCa(Ch+ CallV £ (On)l + £V £(6)]1%)
<27 (v A+ IV O+ V£ (00)117)
<CTY( T+ IV FO)I)

207 iy, + (f(Oa(n,iy) — f(On))

IN

for n > 0. Therefore,
20 (0n) = FOutn)) + IV LOn) 1000 5y — Onll < 207 My, 2" (84)

for n > o. Then, [Z0) —[(7B) directly follow from{80)[(81). (B2]. (B4 [ |
Lemma 14:Suppose that Assumptiofls T} 4 hold. C&t= 4pM?2 (notice thatl < C, < oo everywhere). Then,

there exists an integer-valued random variablguch thatd < 7 < co everywhere and such that

(w(Bun ) = wO) + EDIVFE)?) La, <O, (85)
((Bun i) = w0) + (F/Co)u(6,)) I, <0, (86)
(U(ea(n_ﬂ) — (8, — f/ég) Ie, >0 (87)

on A\ Ny for n > 7, where
An ={3lu(0n)] = 13UV F(On)]] > 13,
By, ={7hu(bn) > 1y N {p =2},
Cr ={yhu(0n) = 1} 0 {0, 5)) > 0} N {ja < 2}

(¢ is specified in the statement of Lemind 13).
Remark: Inequalities [(8b) —[(87) can be interpreted in the followimgy: Relations

(Y@l =1V RNV O)] 2 1) A>T = w(B,,5) — wbn) < =({/4)|VF(6a)], (88)
Vul@)|>1Ap=2An>1 = (O, 5y) < (1 - t/Co)u(B,), (89)
Vou(n) 1A <2 A>T = 0(0,0,5) —v(0a) >1/Cs (90)

are true onA \ No.
Proof: Let

%1:max({n20:9n€Q}U{O}),
To = max ({n >0:|u(d,)| > 5} U {O})

and 7 = max{o, 71,72} a\ N, Then, it is obvious that is well-defined, while Lemm&11 implies < 7 < oo

everywhere. On the other side, sinee> o on A \ Ny, Lemma[1B (inequality (72)) implies

WO iy) — u(Bn) < —(E/2)IV (007 + (£/Cr)7, " (91)
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onA\ Ny for n > 7. As 6, € Q, |u(b,] <6 onA\ Ny for n > 7, (9) (i.e., Corollaryb) yields
[u(6n)| < M|V £(0)]|" (92)

on A\ Ny for n > 7.
Let w be an arbitrary sample fromh \ Vy (notice that all formulas which follow in the proof correspmbto this

w). First, we show[(85). We proceed by contradiction: Suppbaé(8%) is violated for some > 7. Consequently,

(0o (i) = ul0n) + (E/DIVF(0)]* >0 (93)
and at least one of the following two inequalities is true:

u(@n)] =77, IVFO)] =" (94)
If |u(0,) >~,?, then [Q2) implies
IVF@I = (lu@)/3)"" = (/80228 > (46577
(notice thatp/fi < r, 4M?/% < 4NM? < Cy). Thus, as a result of one df{94), we get
IV £@)I1° = (4/Cr)v ™

i.e., (£/4)|V£(0,)]2 > (£/Ch)y;2". Then, [@1) implies

w(0a(n.iy) = ulln) < =(E/DIV ()7, (95)

which directly contradictd(93). Hencé,(85) is true for- 7. Owing to this, [9R) and the fact th&, C A, for

n > 0, we obtain
(0u.ty) = (6n) + (F/Co)u(6)) I, < (w0400.0)) = wl0n) + (NTE/C2) [V £ (0)]2) Iz,
< (40uguiy) = ul0n) + E/DIVFO)I?) I, <0
for n > 7 (notice thatu(6,,) > 0 on B,,; also notice thati)/ < C»). Thus, [86) is satisfied.
Now, let us prove[(87). To do so, we again use contradictiapp®se that(§7) does not hold for some- 7.
Consequently, we have < 2, u(,, ;) >0 and
You(8n) > 1, (96)
V(0niy) — 0(0n) < £/Co. (97)

Combining [96) with (already proved) (85), we getl(95). Or tither side,[{92) yields

IVF@ 12 > (u0/37) " > 512 (u(,) /7
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(notice that0 < u(6,) <& <1, 2/ =1+ 1/(ir) < 1+ 1/p). Therefore,[[35) implies

u(th) — U(ea(nﬂg)) ~o u(6,) — u(@a(n@)
i WG, ))m/ﬁ

12 /
G

<P /
G

:I(U(ea(n t)) —v(0n)).

Thus,v(0,, 7)) — v(0n) > t/Cs, which directly contradictd(97). Hencé&, (86) is satisfied fio> . [
Lemma 15:Suppose that Assumptiofs 13- 4 hold. Then,

IN

t
4

1+1/p
a(n t))

) ul-l—l/p

a(n,t)

You(0,) > —1, (98)
IV £ ()1 < (4/8) (#(u(On)) +7,7) (99)

on A\ Ny for n > 7, where functiony(-) is defined byp(z) = 2 10,00y (7), z € R.

Proof: Let w be an arbitrary sample froth\ Ny (notice that all formulas that follow in the proof correspido
this w). First, we prove[(98). To do so, we use contradiction: Assuinat [98) is not satisfied for somg > 7, and
define recursivelyi, 1 = a(ny,t) for k£ > 0. Now, let us show by induction thdtw (0, ) x>0 IS Nnon-increasing:
Suppose that(0,,) < u(f,,_,) for 0 <1 < k and somek > 1. Consequently,

w(0n,) < wlny) < —70f < =750
Then, Lemma_14 (relation§ (B5), (88)) yields
Wniir) = ulOn,) < =(E/DVf(0n,)]” <0,
i.e., u(0n, ) < u(fn,). Thus,{u(fn,)}r>0 is non-increasing. Therefore,
lim sup u(6,,,) < u(bp,) < 0.

n—oo

However, this is not possible, dsn,, . u(6,) = 0 (due to Lemma&11). Hencd, (98) indeed holdsfor 7.
Now, (99) is demonstrated. Again, we proceed by contrastictSuppose that (99) is violated for some> .

Consequently,
IVF@)? > (4/D727 > e
(notice thatp < jir < 2r), which, together with Lemmia_l4 (relatioris {8%),1(88)), ¢t
Wa(n) = w(ln) < —(E/DIVF(0n)].
Then, [@8) implies

IV <(4/8) ((80) = u0a(p))) < (41 (p(u(62)) +777)
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However, this directly contradicts our assumption thatiolates [99). Thus[{(99) is satisfied far> 7. [ |
Lemma 16:Suppose that Assumptiohs 13- 4 hold. & = 2C2. Then,

1irginf YPu(,) < Cs (100)

on A\ No.

Proof: We prove the lemma by contradiction: Assume tfaf1100) isatéd for some sample from A\ Ny
(notice that the formulas which follow in the proof corresgdo thisw). Consequently, there existg > 7 such
that

You(0y) > Cs (101)

for n < ny.

Let {nx}r>0 be defined recursively ag;+1 = a(nk,f) for k > 0. In what follows in the proof, we consider
separately the casgs< 2 and i = 2.

Caseji < 2: Owing to Lemmd 1K (relation§ (87), (90)) arid (101), we have

U(enk+1) - U(eﬂk) 25/02 > (Vmwrl - Wnk)/CQ

for k > 0 (notice thaty2u(6,,) > 1 due to [I01L); also notice that,, ., — Vx, < ). Therefore,

k—1

U(enk) > v(eno) + (1/02) Z(’ynwl - 7%‘) = v(eno) + (Wnk - /7710)/02
=0

for k > 0. Then, [I01) implies

(0000) e+ (1= Y0 300/ C) 2 (0(00) )P = A u00) >

for £ > 0. However, this is impossible, since the limit procéss~ oo (applied to the previous relation) yields
(5 < C?. Hence, [(100) holds whep < 2.
Caseji = 2: Due to Lemmd_14 (relation§ (B6), (89)) and (1101), we have

u(enk+1) < (1 - f/CQ)u(enk) < (1 - (Wnk+1 - 7”k)/é2) u(enk)

for £ > 0. Consequently,
k—1

u(0) <u(0n;) [T (1= s = )/C2)
i=0
. k—1
Su(ono) exXp <_(1/02) Z(’Ym+1 - FYm))
=0

=u(0y,) exp (—(%k - %o)/@)

for £ > 0. Then, [I0L) yields

(0¥, 5D (= (us, = Y0/ C2) = 2, u(6n,) = C
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for £ > 0. However, this is not possible, as the limit procéss+ oo (applied to the previous relation) implies
Cs < 0. Thus, [Z0D) holds in the cage= 2, too. ]
Lemma 17:Suppose that Assumptiofs 13 4 hold. &t = 6C5. Then,

lim sup v2u(6,,) < Cy (102)

n—oo
on A\ No.

Proof: We use contradiction to prove the lemma: Suppose [hat (302plated for some sample from A\ Ny
(notice that the formulas which appear in the proof correspi thisw). Sincelimnﬁoo(ya(nyg)/%) =1, it can

be deduced from Lemniall6 that there exigt> mq > 7 such that

Vg (0mo) < 2, (103)
V() > Cu, (104)
mOrgilr%no Pu(6,) > 2Cs, (105)
amax  yfu(0n) < C, (106)
and such that
(Ya(mo,d) /1mo)? < min{2, (1 —1/Co)7 3. (107)

Let Iy = a(mo,t). As a direct consequence of Lemind 15 dnd (103), we get
IV £ (Omo) 1> < (4/8) (9((0mo)) + 7o) < 12(C/E) 7,0
Consequently, Lemm{a L3 arld [67) imply
w(0n) = w(Omg) < |Smo,n| <E/CO) (V" + 1V F Omo)II?)
<E/CO ™ + (12C3/Cr)d < 73k
for mo < n < ly (notice thatp < 2r, £/Cy < 1/2, C1 > 24C5). Then, [I0B),[[105) yield
w(mo) = w(Omgt1) = Yok 2 2C5(Ymg /Yo +1)P Vb = Yoa = (Cs = Dyt > 7,2, (108)
w(0n) < u(Omy) + 758 < (2C3 + 1) (I /Ymo)? 75" < 6C37, 7 = Cuy,, (109)

for mo < n < Iy (notice that(v, /Ym, )2 < (1, /Ymo)? < 2 for mg < n < ng). Using [10%), [109), we conclude
lyp < ng.

In the rest of the proof, we consider separately the case2 andji = 2.

Casefi < 2: Owing to Lemmad1W (relation§ (87), (90)) arid (.08}, (108), vewe

’U(elo) > v(omo) + 1?/02 2(263)_1/13 Ymo + (’Ylo - ’Ymo)/CQ
>min{(2C3) 12, C5 Yy,

:(2(73)_1/1ﬁ Vo
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(notice that(2C3)'/? > Cy). Therefore,
w(By,) = (v(0,)) P < 2C37;. "
However, this directly contradictE (1I05) and the fact that < Iy < ng. Thus, [Z0P) holds whep < 2.
Casej = 2: Using Lemmd_1¥ (relation§ (B4).(89)) arid (1L08), we get
u(01) < (1= 1/Co)u(Ormg) < 2C5(1 = 1/Co) (i /3m0)P,” < 2057, "

However, this is impossible due tb (105) and the fact that< Iy < ng. Hence, [Z0R) holds in the cage= 2,
too. [ |
Lemma 18:Suppose that Assumptiofs 13- 4 hold. Then,

180ty = Onll < 292 (u(0) — w(By 7)) + 67, T (110)

on A\ Ny for n > 7.

Proof: Let w be an arbitrary sample from \ Ny, while n > max{c, 7} is an arbitrary integer (notice that
all formulas which appear in the proof correspond to these). To show [1ID), we consider separately the cases
V£ @)l = 7 T and [V £(0)] < 7a T

Case|V£(0,)] > v """: Due to Lemmd_13, we have
IV £ 01180ty — Onll < 2(u(Bn) = w(By(,1))) + 2(/C)7, " (111)
On the other side, sincgV f(6,,)| > 'y;(‘”l) > 4,," (notice thatg + 1 = min{(p + 1)/2,r} < r), Lemmal14
(relations [(8b),[(88)) implies
W(0q(n,iy) = u(n) < =(E/DVF(0.)II° <0,
i.e., u(0n) — u(f,,#) > 0. Then, [11L) yields
10,y = Onll <2(u(Bn) = w0 DIV L O™ + 20/ C)ve > IV F£(00)] 7
<2y (w(0n) = w0y ) + 75 2T
SQVZ-H(“(en) - u(ea(n,f))) + 77:(6-"_1)
(notice thatt/C, < 1/2; also notice thatj + 1 < r, which implies2r — (G + 1) > § + 1). Hence, [11D) is true
when |V £ (0,)] > 7 .
Case||Vf(0.)| < v T Using Lemmd 1B and (67), we get
|u(9a(n,f)) - u(e’ﬂ” S(/ya(n,f) - 7n)|‘vf(9n)||2 + |¢n,a(n,£)|
<EVLO)? + E/C > + IV F(00)]17)

SQ%:Z(QJA)
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(notice thatj + 1 < r < 2r and#/C; < 1/2). On the other side, owing to Lemrial13 and](66), we have

Hea(n,f) - e’ﬂH S(/ya(nf) - 'Yn)HVf(en)” + Hgn,a(n,f)”
<EIVLO0)] + E/C) (3" + IV £(0a)]))

§2%:(¢i+1)
(notice thatg + 1 < r). Consequently,

16an.ty = Onll <2 (u(Bn) = u(Bn,i)) + 208 () = u(Bagn,iy)] + 27, T
§272+1(u(9n) - u(oa(n,f)) + 6,}/1:@4’1)

Thus, [A1ID) holds in the cadev f(6,,)| < Y [ |
Lemma 19:Suppose that Assumptiofls I~ 4 hold. Then, there exists @anandantityC;; such thatl < C < co

everywhere and such that

lim sup vJ max 16 — 6, < Cs (112)

n—o0
on A\ No.

Proof: Let C' = 9C, (g + 1) andCs = 20CE~*(1 + 1/4), while w is an arbitrary sample from \ N, (notice
that all formulas which follow in the proof correspond toshi).

As a consequence of Lemniad 15 anél 17, we get

lim sup 72 [u(6,)| < Ci, (113)
n—oo

limsup~2 |V f (6) [ < 8Cu /i (114)
n—oo

SinceY,(, 1y — 1 =t + O(ay, 1) for n — oo, and
(1= t/7) " =11+ )" + ol 1)

for n — oo, we conclude from{113)[(114) that there exists> max{c, 7} (depending o) such thatu(6,,)| <
2172, V(O] < ACu /89", Yoy — 1 > /2 and

(1= 1/) ™ > 1= (G+ 1)1, (115)
for n > ng. Then, [66) and Lemmall3 imply
[0k = Onll <(ve = ) IV F(On)]l + llenll
<EIV L) + E/C) (3" + IV £(6)]))
<8Cuv, " + 7,7
<Cr,1 (116)

for ng < n <k < a(n,t) (notice thatg < min{p/2,r}).



40

Let {ni}r>0 be recursively defined as,, = a(ny,t) for k> 0. Due to Lemma 18, we have

<62”Y (G+1) 4 QZ,},qul — u(0n,,,))

”9"1 - onk” < Z ||0ni+l - nz

<6Z~y @+ 42 Z ) u(6,,)

i=k+1

+ 290 u(On, )] + 298 [u(Bn,)| (117)

fori >k >0.As
G+1 . G+1 . 5
P =i = (1= (U= Gy = o)) ™) <98 (1= (1= i)™ ) < @+ 10,

for i > 0 (use [11F)), we get
l

> (I = ) u(0n,)] <2Ca(G+1) Y P CY oy, Y (118)
i=k+1 1=k 1=k

for I > k > 0 (notice thatp — G > (p + 1)/2 > ¢+ 1). Since

= Tn, + Z Tniyr — Yri) = Yo + (£/2)(l — k)

for I > k > 0 (notice thaty,,, ; — yn = t/2) for n > ng), we have
Z,y—(q-i-l) < Z (Y, + 1i/2)~ (G+1)

<y + / (Yo + fu/2)~ Dy
0
D 2y
<(L+2071g )y,
for k > 0. Consequently[(117) anf{118) imply

162, = Ol < (6 4+20) D~ 4 @Y 4 4Cuy, PHIH! 4 4Cu, YT < 16C(L+ 7167 ), (119)
i=k
for I > k > 0 (notice thatp — (G + 1) > (p — 1)/2 > §). Using [1I6) and[{119), we get

10k — Onll <[|6k — 9"]’” + ||9nj = O, || + |65, — Onll

<Cy I+ Cyy T+ 16C (1 + 1 )0

i

<Csv, 1

for k > n > ng, j >i>1 satisfyingn,_1 <n <n;, nj_1 <k <n;. Then, it is obvious thaf (112) is true. m

Proof of TheoremE]l2 arld 30wing to Lemma$ 11 and 19, we have that & Ny, 0 = lim,,_, . 0,, exists
and satisfiesV f(d) = 0. ConsequentlyQ C {6 € R% : ||§ — 6| < §;} on A\ Ny. Thus, random quantities,
¢ defined in this subsection coincide wifh ¢ introduced in Theorerm] 3 (see the remark after Coroflary Benl
Lemmad Ib[ 11,19 imply thatl(4) is true dn\ No. [ |
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V. PROOF oFProPosITIONTT] -4

Proof of Propositior1l: Owing to Conditions (i), (ii) of the proposition, for any camact setQ c O, there
exists a real numberg € (0,1) such that

eq <rg(ylr',z) < 551 (120)

forall 0 € Q, z,2’ € X, y € Y. Hence, Assumptioll 3 is satisfied. On the other side, Camd{fi) implies that
ro(yla’, x) has an (complex-valued) analytical continuatigiy|z’, «) with the following properties:

a) 7,(ylz’,z) maps(n,z,2’,y) € C% x X x X x Y into C.

b) 7fo(yla’,z) = re(y|z’,x) forall § € ©, z,2" € X, y € V.

c) For any compact sep C ©, there exists a real numbé{g € (0,1) such thatr, (y|z’, z) is analytical inn

on V5 (Q) for eachz, 2’ € X,y € ).
Relying on#,(y|z’, ), we define quantities%n(y), q@n(w,y), G’n(w,y). More specifically, forn € C%, y € ),
R,(y) is an N, x N, matrix whose(i, j) entry is#,(y|i, j), while
A log(eT Ry (y)w), if €T Ry(y)w # 0

Pn(w,y) = (121)
0, otherwise

w/(eT R if e7 R w
G (w,y) = Ry(y)w/(e” Ry(y)w), i e Ry(y)w #0 (122)
0, otherwise

forne Cde, yc ), we CN=,

Let @ C © be an arbitrary compact set. SineeRy(y)u > N,eq forall 6 € Q, y € Y, u € PN« (due to [I2D)),
we conclude that there exists a real numbigre (0,3¢) such thatle” R, (y)w| > N,eq/2 for all n € Vso (Q),
w € Vs, (PN+), y € V. Therefore,, (w,y), G, (w,y) are analytical in(n, w) on Vs, (Q) x Vs, (PN=) for any
y € Y. Consequently|¢, (w, )|, |G, (w,y)| are uniformly bounded ir(, w,y) on Vo (Q) x Vs, (PN=) x Y.
Thus, Assumptiofil4 is satisfied, too. [

Proof of Propositior R: Conditions (i), (ii) of the proposition imply that for any apact set)) c ©, there
exists a real numbesg € (0,1) such thateg < ro(y|z’,z) < eél forall 0 € Q, z,2’ € X, y € Y. Thus,
Assumptior 8 holds. On the other side, as a result of Comd(iiy r¢(y|2’, 2) has an (complex-valued) analytical
continuationr, (z|2’, ) with the following properties:

a) 7,(z|2’,x) maps(n,z,a’,z) € C% x X x X x C¥ into C.

b) Fo(yla’,x) = r9(y|2’,z) forall § € ©, x,2’ € X, y € V.

c) For any compact sef) C O, there exists a real numbép € (0,1) such thati, (z|2/, z) is analytical in

(n,2) on VSQ(Q) x Vs, () for eachx, 2’ € X.
Relying on#,(y|z’,z), we define quantities?,(y), é,(w,y), G,(w,y) in the same way as in the proof of
PropositiorL L. More specifically, foy € C%, y € ), Rn(y) is an N, x N, matrix whose(z, j) entry is#, (y|i, j),
while ¢, (w, y), G, (w,y) are defined by[(I21)[{A2) fore C%, y € Y, w € CN=.
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Let @ C © be an arbitrary compact set. Ag,cq < el Ryg(y)u < Nxaél foranyf e Q,y €Y, ue PN, we
have that there exists a real numbgre (0,d¢) such thatN,co/2 < |e” R, (y)w| < 2NI551 for all n € V5, (Q),
w € Vs, (PN=), y € Y (notice thatle” R, (y)w| is analytical in(n, w, y) on Vs, (Q) x Vs, (PN+) x ). Therefore,
bn(w,y), Gy(w, y) are analytical iy, w) on Vs, (Q) x Vs, (PN=) for anyy € Y. Moreover,| b, (w,y)|, |Gy (w,y)|
are uniformly bounded irfn, w,y) on Vs, (Q) x Vs, (P"=) x Y. Hence, Assumptiohl4 holds, too. [ |

Proof of Propositiod B: For o € A, 8 = [81 -+ Bn,]" € B, z,2’ € X, let gj('|z) = Bo kpa(a’|z). Then,

we have

ro(yla’, z) ka (yl2')g5 (' |2)

forall 0 € ©, 2,2/ € X,y € Y. We also have that for any compact $tC O, there exists a real number

eq € (0,1) such thatg < g (2'|z) < 551 for eachd € Q, z,2' € X, 1 <k < Ng. Consequently,

Ng Ng
eo Y fr(yle)) < royla’, ) <eg' Y frlyla’)
k=1 k=1

forall 0 € Q, z,2’ € X and any compact s& C ©. Hence, Assumptiof] 3 holds (sef(y|x) = zfjgl Tr(y|2)).
On the other side, Condition (i) implies that for eath< k < Ng, g(2’|z) has an (complex-valued) analytical
continuationg ( '|z) with the following properties:

a) g,(2'|z) maps(n,z,2’) € C% x X x X into C.

b) gk(z'|z) = gk(2'|z) forall € ©, z,2" € X.

c) For any compact sep C ©, there exists a real numbég € (0,1) such thatg’g(:c’|x) is analytical inp on

V5, (Q) for eachz, 2’ € X.

Relying ong,’j(:c’pc), we define some new quantities. More specifically, for C%, w = [w; ---wy,|T € CNe,

' € X,ye), let
(yla', z) ka (ylz") gy (@' |2),
hs,w(xl) = Z gn(xl|xll)wx”a

2eX
while R,(y) is an N, x N, matrix whose(s, j) entry is#,(y|i, 7). Moreover, letd, (w,y), G,(w,y) be defined
for n € C%, w € CN=, y € Y in the same way as if_(IR1], (122).
Let @ C © be arbitrary compact set. Since
eg < de |$CUISEQ
zex

forall € Q, u = [ur---un,|’ € PNe, 2,2’ € X, 1 < k < Ng, we deduce that there exists a real number
5q € (0,0q) such thatRe{hk ,(z)} > eq/2, |hk ,(a")] < 265" for all n € Vs, (Q), w € Vs, (PN+), 2 € X,
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1 <k < Ng. Consequently,

Ng
le" Ry (y)w| > Refe" Ry()w} = > > fulyla'\Re{hf (')} > (£¢/2)1(y) > 0,
' eX k=1

Ng
max{|| R, (y)w|, le" By (y)w|} < D> fulyla))|hf ()] < 2:5 ()
z'eX k=1
for all n € Vs, (Q), w € Vs, (PN=), y € Y. Thereforeg,(w,y), G,(w,y) are analytical in(n,w) on Vs, (Q) x

Vs, (PN=) for eachy € Y. Moreover,
|G (w, y)|| < 4%,
|6n(w,y)| < [logle” Ry (y)w|| + 27 < [log ¢(y)| + log(2e5,") + 2

for all n € Vs, (Q), w € Vs, (PN=), y € Y. Then, it is clear that Assumptidd 4 holds, too. [ |
Lemma 20:Let the conditions of Propositidd 4 hold. Thety(u,y), Ge(u,y) have (complex-valued) analytical
continuationsﬁn(w,y), G‘,,(w, y) (respectively) with the following properties:
) on(w,y), Gy(w,y) map(n,w,y) € C¥% x CN= x Y into C, CN= (respectively).
i) o(u,y) = do(u,y), Golu,y) = Golu,y) forall § € ©, u e PN+, y € Y.
iii) For eachd € ©, there exist real numbets € (0,1), Ky € [1,00) such tha‘rg}n(w,y), Gn(w, y) are analytical

in (n,w) on Vs, (0) x Vs,(PN=) for anyy € ), and such that

|60 (w,y)| < Ko(1+y7),

Gy (w, )|l < Ko

for all n € V;, (), w € Vs, (PNe), y € V.
Proof: Due to Condition (i) of Propositidnl 4, (z’|z) has an (complex-valued) analytical continuatigiiz’|z)
with the following properties
a) pa(z'|z) maps(a,z,2’) € Cle x X x X into C.
b) po(z'|z) = pa(z’|z) foral a € A, z,2" € X.
c) For anya € A, there exists a real numbér, € (0,1) such thatp,(z’|z) is analytical ina on Vs (a) for
eachz,z’ € X.

On the other side, the analytical continuatiiy|z) of gs(y|x) is defined by

G (ylz) = Vs /mexp(=la(y — mz)Q)a

forb=1[ly--In, my-my,]T €CNe z € X, y e V.

Let 7, (y|2’, 2) = Go(y|2")pa(2’|2) for a € Cl=, b € C*Ne, n = [aT bT)|T, 2,2’ € X, y € V. Moreover, for
neCh, yed, R,(y)isanN, x N, matrix whose(i, j) entry is#, (yli, 7), while ¢, (w,y), G, (w,y) are defined
for n € C%, w € CN=, y € Y in the same way as il (IR1], (122).



44

Leta, 8= [\ - An, 1y, ]t be arbitrarily vectors fromd, B (respectively), while = [o” 7] Obviously,
it can be assumed without loss of generality that A; < A2 < --- < Ay, . Since
Z Po(2'|2)uy >0
reX
forall 2’ € X, u = [u1 ---un,|T € PN+, there exist real numbers ¢, &, € (0,1) such thatR,](y) is analytical in

nonVs (0) foranyy € ¥, and such that

Re { Z ]ﬁa(x’|x)ww} > &g, (123)

reX
E pa |£L' Wy
reX

min{Re{l; },Re{l,s —l1}} > &o,

< 59 , (124)

max{|ly |, [man|} < &5
for all a € ng(a), b= [llle mi ---mNI]T S %1,9(6), w = [’wl'-"UJNI]T € %1,9(PNm)v e X \ {1},
2" € X. Therefore, we have
4y (y|)] =V |lz|/7 | exp( Re{lz}y2 + 2Re{lama }y — Re{lxmi}ﬂ
<v |lw|/7T exp(—Re{lI}y2 + 2|lw||mw||y| + |lw||mw|2)
<(1/\/meq) exp(—Eoy® + 2, |yl + &,°)
foranyb = [ly---Iy, mi---mn,]" € V5 (B), z € X,y € V. We also have

v (ylz)
av(y[1)

=v/|l|/]l1]] exp(=Re{l, — I1 }y* + 2Re{lomy — l1m1}y — Re{lom?2 — lym3})|

<Vla|/ 1] exp(=Re{ls — li}y? + 2(lellmal + [l llmaly| + llollmel + |i][ma|*)

<e, 'exp(—Egy? + 48,2yl + 28, %)

forall b =[ly---In, mi---mn,]T € Vs ,(B), z € X\ {1}, y € V. Consequently, there exists a real number
Cy € [1,00) such that

alr)| _ -
awn| = (29
|log |Gs(yl2)|| < Ca(1+y?) (126)

forallbe Vs (B), € X,y €Y, and such that

v (y|)
an(y[1)
foranyb € V; (8), z € X\ {1}, y € [—Cy, Cy]° (to show that [I27) holds for all sufficiently larde|,

notice thatlim,,|_,. ¢s(y|z)/ds(y[1) = 0 for = # 1). As Gy(y|x)/qs(y|x) is uniformly continuous in(b,y) on

<27IN1ed (127)
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Vs, ,(B) x [=Cy, Cy] andlimy_,5 G (y|x)/qs(ylz) = 1 for anyxz € X, y € V), there also exists a real number
d2.9 € (0,1) such that

qs(ylx)
G(ylz)
(y|33) <2 (129)

forall b e V5, (8), z € X,y € [-Cy,Cy).
Let g = min{d; 9,020}, Ko = 8N, Coé, 2. As a result of [124),[{125), we have

Z pa |17 Wy

reX

max{|| Ry (y)wl]|, [e” By (y)w|} < > |ds(yla’)]
z'eX

for all a € Vs, (), b € V5, (B), n = [aTbT]T, y € Y, w = [wy ---wn,]T € V5,(PN=). Using [128), [124),[(127),
we get

< NoCoiy Han(yl1)| (130)

A Qb R
" Ry (y)w]| =y (y[1)] Z Z Pa(@|2)w,
’EX TzeEX
v (yl2’ )
>[a(y11)| Re{zpaux } )3 f’(f'uf\zpa(x'u)wm
zeX wrexvy | PV TeX
>27124| Gy (y[1)] (131)

for all a € Vs, (a), b € Vs, (), 1 = [aT0T]7, y € [~Cp, Cy)°, w = [wy - -wn,]T € Vs, (PN=). Combining [I2B),
[@23), [128), [(129), we obtain

e Ry (y)w| > > as(yla’) D pal@|2)ws| — | D (@(yl2)) — as(yla’)) D pale’|e)w
z'eX rzeX z'eX zeX
X
> gslyl)R {Zpa (@' |2)w } > as(ylr) | y||x > bala|x)w
z'eX rzeX r’'eX y TEX
>27'% > qplyla)
T'eX
>2"19qs(y[1)
>47 4]y (y[1)] (132)
for any a € Vs, (), b € Vs, (8), n = [a TbT]T € [~Co,Co), w = [wy ---wn,]T € Vs,(PN=). Then, it can

concluded from[(T31)[{I32) thak, (w,y), G, (w,y) are analytical in(n, w) on Vs, () x Vs, (PN+) for eachy € V.
On the other side[(126),_(130) E(132) imply

|6 (w, y)| < |log ¥ Ry(y)w]| + 21 < Co(1 + y?) + log(NoCoy ') + 21 < Ko(1 +y?),

|Gy (w, y)|| < AN,Coéy? < Ko

for anyn € Vj, (), w € V5, (PN+), y € Y. Hence, the lemma’s assertion holds. [ ]
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Proof of Propositio ¥: Let @ C © be an arbitrary compact set. Then, owing to Conditions (i),of the
proposition, there exists a real numhegs € (0,1) such thateg < p,(2'|z) < 551 forall « € A, z,2" € X

satisfying[aT 8T]T € Q for somej € B. Therefore,

equs(yla’) < ro(yle’,x) < e5'qs(yla’)

foralla € A, B e B, 0=[a?BT)T, z,2' € X,y € Y satisfyingf € Q. Thus, Assumptiofi]3 is true.

Since the collection of set§V;, ,2(0)}scq coversQ and sinceQ is compact, there exists a finite subsgtof
Q such thatQ is covered by{Vs,/2(0)}scq- Let 6o = min{ds/2 : 6 € Q}, Kg = max{Ky : 6 € Q} (d,
Ky are defined in the statement of Leming 20). Obvioudly,c (0,1), Kg € [1,00). It can also be deduced
that for each¥ € Q, Vs, (0) x Vs, (PN=) is contained in one of the sets from the collectigh, (0)}pcq- Thus,
Vio (Q) X Vg (PN+) € Upeg Vs () x Vs, (PN+). Then, as an immediate consequence of Lemmha 20, we have that
Assumptior 4 holds. [ |

VI. CONCLUSION

We have studied the asymptotic properties of recursive maxi likelihood estimation in hidden Markov models.
We have analyzed the asymptotic behavior of the asymptogelikelihood function and the convergence and
convergence rate of the recursive maximum likelihood allgor. Using the principle of analytical continuation, we
have shown the analyticity of the asymptotic log-likelikofor analytically parameterized hidden Markov models.
Relying on this result and Lojasiewicz inequality, we hawmenstrated the point-convergence of the recursive
maximum likelihood algorithm, and we have derived reldfiigght bounds on the convergence rate. The obtained
results cover a relatively broad class of hidden Markov neudéth finite state space and continuous observations.
They can also be extended to batch (i.e., non-recursive)rman likelihood estimators such as those studied in [6],
[11], [24], [33]. In the future work, attention will be giveto the possibility of extending the result of this paper to
hidden Markov models with continuous state space. The lpitigsiof obtaining similar rate of convergence results

for non-analytically parameterized hidden Markov modeils ne explored, too.
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