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Multi-User Non-Locality Amplification
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Abstract—Non-local correlations are among the most fasci- Popescu-Rohrlich boj26] cannot be realized [7]? A number
nating features of quantum theory from the point of view of attempts have been made to single out quantum corresation
of information: Such correlations, although not allowing for among general non-signaling systems: Are quantum correla-

signaling, are unexplainable by pre-shared information. he fi th that d t coll icati |
correlations have applications in cryptography, communiation ~1ONS theé ONnes that do not collapsémmunication compiex-

complexity, and sit at the very heart of many attempts of ity [4], that are of no help fonon-local computatiof22], that
understanding quantum theory — and its limits — in terms of respecinformation causalitya principle generalizing the non-

classical information. In these contexts, the question isracial  signaling principle to the case of limited communicatiod][2
whether such correlations can beamplified or distilled, i.e, or that arelocally orthogonal [16], i.e. respect Specker’s

whether and how weak correlations can be used for generating _ . . le that if ir of i bout ¢
(a smaller amount of) stronger. Whereas the question has bae principle that It any pair of questons about a system can

studied quite extensively forbipartite correlations (yielding both b€ answered, theall questions togethecan be answered
pessimistic and optimistic results), only little is known n the simultaneously[[6]?
multi-partite case. ) .

We introduce a general framework of reductions between It has turned out that non-local correlations have impor-
multi-party input-output systems. Within this formalism, we tant applications for information processing,g, device-

show that a natural n-party generalization of the well-known independent cryptography or communication complexity. In
Popescu-Rohrlich boxcan be distilled, by an adaptive protocol, g|| these contexts, a question of paramount importancesis th

to the algebraic maximum. We use this result further to show hat one of distillation of non-locality Given weak correlations
a much broader class of correlations, includingall purely three- ty !

partite correlations, can be distilled from arbitrarily we ak to IS it possible to generate stronger ones by local wirings? Fo
almost maximal strength with partial communication i.e., using instance, distillation can potentially lead to higher cdafi-

only a subset of the channels required for the creation of the tiality levels or to a collapse of communication complesxtty
same correlation from scratch. Alternatively, this means hat ar- (apparently) weak correlations

bitrarily weak non-local correlations can have a “communiction
value” in the context of the generation of maximal non-locaity. In the two-party scenario, the possibility of distillation
Index Terms—Correlation distillation, information-theoretic ~ has already been extensively studied and, notably, led to
systems, multiparty non-locality, quantum entanglement,guan- complementary results adding up to a pretty complete pctur
tum theory Whereadsotropic CHSH-typd8] correlations seem undistill-
able [11], the same fails to hold in generall[14], [5].[20}. |
fact, certain arbitrarily weak CHSH correlations can even b

distilled up to virtually perfect PR boxes by adaptive pomtis.
NE of the most mysterious, challenging, but also useful h  th ) hi is Kk
consequences of quantum theory are non-local correjan the case of three or more parties, much less is known.

tions: The joint behavior under (different possible) measu It was shown that the straight-forward generalization @& th

ments of a quantum system can be unexplainable by ppgpn-adaptive) XOR protocol [1‘.1] to more parties fails to
shared (classical) information determining all the outeemd'St]:II extr?mal boxes of the non-signalling polytope tmakst-
locally. This result by Bell [[8] can be seen as a late repl9er ect [21].

to the claim, in 1935, of Einstein, Podolsky, and Rosen [13] The contribution of the present work is as follows: We
that quantum theory was incomplete and must be augmeniedoduce a general framework for reductions of systems.
by hidden variablesi.e., classical information predicting all In this model, we show that the natural generalization of
measurements’ outcom@s. PR boxes ton parties has the property that non-isotropic

It has been a prominent open problem why nature dofgulty versions thereof can be distilled to close-to-petrfey a
display non-local behavior, yet no maximal one. More specifnulti-party variant of Brunner and Skrzypczyk's [5] protbc
ically, why can Bell's inequality be violated, but a perfec{Section IV). This result is used to show distillability far

" _ ' _ much larger class of correlations, where the distillatisn i
e o () e e ongs . SUPpOed by partia communicatiore, a subset of the pattes
Technology” (QSIT), and the COST action on "FundamentalbRms in 1S allowed to communicate, whereas this communicaione
Quantum Physics.” The results were presented in part at28IB [12]. This s insufficient for generating the target correlation (8etv).
e pyraht o o e ot b ancinad L 214 W cal this partal communication supported cstilatioon-

H. Ebbe and S. Wolf are with the Faculty of Informatics, Umsity of lOcality amplification The result can alternatively be inter-
Lugano, 6900 Lugano, Switzerland (e-mail: ebbeh@usi.difs@usi.ch).  preted as arbitrarily weak non-local correlations having a

1Bell's paradox only persists under the assumption that oreasent bases “communication value” in the context of the generation of
are chosen freely; at the same time, however, none ofdéterministic

interpretations of quantum physics satisfies with explanation neither of aImOSt'perfeCt S_yStemS- In Sectlon VI, the general results
the correlations’ origin nor of their limitations. procedures are illustrated with two examples.

I. INTRODUCTION
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Il. SYSTEMS, BOXES, AND NON-LOCALITY Proof: We assume thaP’ exists and define the random
A. Systems variable

Definition 1 (n-Partite System) An n-partite systemis a R := A oA Ay xy—1420 - Ano - Ana -1 - (7)

conditional distribution ) ) ) o
Obviously, this random variabl®& satisfies[(4).

Pai Ay Ay | X1 Xo X (1)  Assume thatP is local. In order to see tha?’ exists, we
where X; is the input and4; is the output variable of thé&h define
party. le41,oA1,1---An,oAn,1 (a1,0a1,1 " Qn,0an,1) =
n
B. Boxes are Non-Signalling Systems Z Pg(r) - HP,Q“Xi (i 0,0) - P, x,(ai1, 1) 8
reR i=1

Definition 2 (Non-Signaling) An n-partite system with con-
ditional probability distribution” (aias - - - an|z172 - - - 2,,) is  and compute the marginals.

said non-signalingif the marginal distribution for each subset ]
of parties{ay,, ax,, ---, ax,, } only depends on its correspond- Throughout, the remainder of this article, all the ranggs
ing inputs and X; are assumed to bf, 1}.

P(akl ...akm|x1 "'In) frnd P(akl ...akm|Ik1 "'Ikm) . N
(2) D. Specific Non-Local Boxes

An equivalent condition to Definitiofil 2 can be found in][23], e define certain classes and specific types:qfartite

[ boxes which we will use for our reductions. They are gen-
eralizations of the bipartite boxes studied [in][14], [5]].[2
Y P(a1---ap---aplry - xp ) = We focus our attention téull-correlation boxes Intuitively
ak , speaking, such a box displays correlation only with respect
%P (a1---ag---apley - ap - -wn) () thefull set of players.

) In the following definitions, thei-tuple of inputs is denoted
for all k € {1,2,...,n}, all inputsay, as, ..., a,, and outputs by X = (21,22, ...,wn), Wherez; € {0,1}. The n-tuple of

L1 2 eens L1y Loy oy Thp 15 e0s T outputs isa = (ay,az, ..., a,), wherea; € {0,1} for all 5.
Definition 3 (n-Partite Box) An n-partite boxis an-partitt  pefinition 5 (Full-Correlation Box) An n-partitefull-corre-
system that is non-signaling. lation boxis characterized by the following conditional distri-
The ranges of4; and X;, respectively, are arbitrary sets; bution:
and X;. Tt > a; = f(x) (mod 2)
P(alx) = i _ 9)
0 otherwise,

C. Multipartite Locality

Of central interest for us aren-partite boxes with the where f(x) is a Boolean function of the inputs.
property that the parties cannot simulate the behavior ef th

box without communication but shared randomness only. ThisTV_V0 :pemal c??ser? I_tht?)e fu!—CﬁrreIatlon b_oxebs ar(fe the
property is callechon-locality partite Popescu-Rohrlich boand theeven-parity box forn

parties
Definition 4 (Local Box) An n-partite box with input vari-

ablesX,, X, X,, and output variablesl;, A, A is Definition 6 (n-Partite Popescu-Rohrlich Box) An n-par-

tite Popescu-Rohrlich bofor n-PR boy is characterized by

local if
the following conditional distribution
Py tge A XXX, = 3 Pr(r) - Phx, - Ph x, (4) 1
reR PR on—T @ai = sz
. By (alx) = i i (10)
for some random variabl&. 0 otherwise.
Equivalently, there exists a distributighunder which all joint  pefinition 7 (n-Partite Even-Parity Box) An  even-parity
outputs coexist. box forn partiesis characterized by the following conditional
Lemma 1 (Locality means Realism)A boxP is local if and distribution
only if there exists a distribution L @ai=0
» ) Plax)={ " (12)
Ar0A1,1 Ay x| —142,0 Az x| —1 An0 A x| -1 0 otherwise.

with the property that its marginals satisfy Note that the box of Definitiof]7 idocal. A convex

PALW”A”M =P, Ay | Xamino X (6) combination of the boxes of Definitioi§ 6 ahtl 7 is called a

, } ' correlated non-local box for n parties
foranyi; € X; for j € {1,2,...,n}.



Definition 8 (Correlated Non-Local Boxes) The family of if there exists a protocol that simulat&s using R and shared
correlated non-local boxes for n partiés defined by randomness.
Clearly, if (I3) holds, then there also exists a protocot tha

PR _ _pPR c
Pz =eP "+ (1=e)by (12) simulatesR’ using arbitrarily many copies at (k copies ofR
where0 < e < 1. is written asR®*), an arbitrary other resourd@”’, and shared
randomness

. R®* R"} = R, 14

E. Communication as Systems { bz (14)
In the protocols below, we will not only usepartite boxes Wherek € NU {oo}.

as resources, but also communication between some of thave write .
parties,i.e., signaling systems. This partial communication R="R (15)

can be seen as a directed graphwith n vertices and if there exists a protocol that simulaté& using arbitrary many
directed edges which correspond to the one-way commughpies of R and shared randomness.®f can be simulated

cation channel between theparties. We denote the one-wayaritrarily precisely with a small number of copies Bfthen
communication channels with'(G), these channels can beye write

used once in arbitrary order. R *R' (16)

I1l. A REDUCTION CALCULUS FOR SYSTEMS C. Examples of Reductions

A. Protocols With this notation, we are able to rephrase some well-known
A protocol is a distributed algorithm that takes the inputsesults. Obviously,
of the parties and produces outputs for every one. If the §=P a7

protocol also takes shared systems to produce outputs, itfis d onlv if P is local
called areduction protocal Its goal can be to simulate somg' anad only .1 Is local.
target systeni’, either perfectly or arbitrarily precisely [L5].
Assume there arex parties that sharen n-partite systems
S1,59,...,S, and a random variabl&. The parties get the
input x = (z1,z2,...,2,), and finally, they outputa =
(a1, as,...,a,). During the protocol, the parties are allowed PPR = PPR forall0<e<e <1. (18)
to apply any classical circuitry to their local parts of the . L
shared system. Such a circuitry is calleiting and consists " @ Section IV, we see that for evety< ¢ < 1 existse’ > ¢
of choices for the inputs of the boxes and the generation gich that
the outputsl[i],[2]7].

Definition 9 (Adaptive Protocol) In an adaptive protocgl and forallo <e <1

every Partyi gets the inputr; and acts as follows: Party PEE = PR (20)
inputs f;(zs, R, by, , by, ..., bs;_, ) to the shared systeis};; for ’
all j € {1,2,...,m}, where the index; depends on;, R,
and the former output bits;, , b;,,...,b;,_,. The systemS;,

outputsb;, to partyi. The final output of Party is given by Non_-locahty d|st|IIa_t|on_ protocols are exe_cuted Inypar_—
the functionf®i (R, by, ba, ..., by) ties without communication. The protocol simulates a binar

input/output system by classical (local) operations on-non
Definition 10 (Non-Adaptive Protocol) In a non-adaptive |ocal boxes [[14]. The goal is to use weak non-local boxes
protocol every Partyi gets the inputr; and acts as follows: for simulating stronger ones. Since these protocols ongyaus
Partyi inputs f;(z;, R) to the shared systerfi; for all j € given set of boxes and local operations that can be simulated
{1,2,...,m}. The systemS; outputsb; to partyi. The final by shared randomness, we can describe the result of the non-
output of Partyi is given by the functiorf®: (R, by, ba, ..., b ). locality distillation as a resources inequality: Assumattthe

In contrast to adaptive protocols, no input of a systemSt'”at'on protocol uses as resources the baRes?, ..., P,

depends on the output of another one in a non-adaptiygere” € NU {cc}, to simulate the box”. Therefore, we

protocol. get the resources inequality

{P17P25"'7Pn}tp . (21)

From the definition of correlated non-local boxes for
parties, we know that such a box is a convex combination
of the even-parity box?¢ and then-PR box PPR. Since the
even parity box is local) = PS¢ and, therefore,

®2
PIR™" - PR, (19)

IV. MULTI-PARTY NON-LOCALITY DISTILLATION

B. Resources Inequalities Brunner and Skrzypczyk [5] proposed an adaptive protocol
In the following, we useesources inequalitieas introduced for two parties that distills non-locality in the asymptoti
in [9], [LO], [19]. They are used to express whether somgnit: All correlated non-local boxes are distilled arlaitity
resource can be simulated by other resources plus shackbely to the (maximally non-local) PR box. In the notation
randomness. Assume we have two systefhsind R’. We of resources inequalities, we could describe this kind of
write distillation as
R> R (13) PPR?? ~ pPR (22)



and Hence,e’ = g/2"7%. (27! + 1 —¢). We show that’ > ¢
PR —* PR (23) for all 0 < ¢ < 1, therefore, the protocol takes any correlated
non-local boxPyFR to a stronger box27R,.

We show that in the asymptotic regime of many copies, any
PPR with 0 < e < 1 can be distilled arbitrarily closely to the
Protocol 1 (Generalized BS Protocol forn-PR Boxes) All  n-PR box. We are starting witt™ copies of the box?"R and
n parties share two boxes, where we denoterbyhe value get, finally, the boxPPR , where '
that theith party inputs to the first box and hy the value c
that thesth party inputs to the second box. The output bit of Tu(e) = gn1 (2" +1-¢), (28)
the first box for theith party isa;, and the output bit of the
second box i$;. The n parties proceed as followg; = z;a;

and they output, finally; = a; ® b; (see also Figl1l).

where0 < ¢ < 1 ande’ =¢/2- (3 —¢) > e. We extend this
to all n-partite PR boxes in Protoch] 1 and Theorem 1.

Em — Tn(amfl) N and Ep:i=E€ . (29)

The fixed points of this map are = 0 ande = 1. To
analyze the stability of these two fixed points we calculbte t

Cil 312 ajf eigenvalues of the Jacobian (since the map is one-dimeaision
1 T Tn the Jacobian is a real value and not a matrix). For the box
|¢ + ¢‘ PS¢ (¢ = 0), we find dT},/de|.—o = 1 + 1/2"1 > 1,
Tv T so this box is repulsive. For the other bd¥’R we find
aaz on dT,/de|o=1 = 1+1/2""1—1/2"=2 < 1; the box is attractive.
xllfu xaaz w%‘n |
o e V. MULTI-PARTY NON-LOCALITY AMPLIFICATION
1 The generalized BS protocol can be used to obtain non-
a @ “n locality amplification protocols for full-correlation bes,
i = a;i ®b; where the use of communication is allowed to some of the
parties. We allow a subset of the parties to use one-way
Figure 1. Generalized BS Protocol farPR boxes communication channels (as often as required). We show that

we are able to amplify a general class of full-correlatiordm

- . . arbitrarily closely to the maximum with such protocols.
Theorem 1 Protocol[1 distills two copies of an arbitrary box y y P
PPR with 0 < & < 1 to ann-partite correlated non-local box

PEE/ with &/ > e. A. Construction of Full-Correlation Boxes

Lemma 2 If f is a Boolean function of the input elements

®2
PR = PPR, . (24) 2,2, ...,x,, then it can be written as
In the asymptotic limit of many copies, ProtoEdl 1 distillsya
PPR with ¢ > 0 to a box arbitrarily closely to the:-PR box f@r,z) =@ lar- Nai | (30)
IeT el

PR .+ pPR
Poe =" B (25) whereZ = P ({1,2,...,n}) anda; € {0,1} forall [ € T.

In the language of distillation, we say that in the asymptoti L . . .
case of many copies, ang®® with = > 0 can be distilled Hence, it is obvious that the full-correlation box assaaiat

o S ; .to the Boolean functiorf can be constructed by, ., a; n-
arbitrarily closely to then-PR box. This shows that also NSR boxes. Indeed, for eveny — 1, ann-PR box is needed,

the multipartite case, non-locality can be distilled. . . o .
Proof: We introduce the notatiom > B, which means where theith party inputsz; if i € I, and otherwise he
) ' inputs 1. Then, the box will output!. In the end, every

that the first box in Protoc@ll 1 acts liké and the second one party outputs:; — & b/ For an example, see Fig. 2
. . _ . . P = 1€7Z, ar=1Y%" y J. £.
like B. The initial two-box state of ProtocBl 1 is given by Note that then-PR boxeslbelonging ta; where|l| < 1 are

PE,EDP:?? = PRy pPR local and can be simulated by local operations and shared
+e(1—¢) (PRo PS4+ PSo PPR) randomness. _ _
4 (1—e)2PSs P (26) We already know that alk-partite full-correlation boxes

can be simulated by-partite PR boxes. We define the set of
We apply Protocd[]1 and get the following relatiod¥’R> all n-PR boxes that are needed to simulate the full-correlation
PPR = PPR (i.e, PPRis a fixpoint), PPR> P¢ = PPR PS> box: Let
PPR=21"npPR4 (1 —21=") Pt and PS> PS = Pf.

After the application of Protocdll1, we get the final box, J={l€T|ar=1and|I| >2}. (31)

which is This set can be partitioned into pairwise disjoint subsets

PR = 25_1 (2" ' +1-¢) PR {J1,J2, ..., Jn,} such that allA € J; and B € J; fuffill
c - . ANB = ( for all i # j. We define the maximal num-
T (1 el G 5)) Pa . (27) per of such subsets as; and denote this partition as the




Yy =z T y z and all othera; for all I € Z\ {0} keep their valuesi.g., we
L " L i hetrivial part of the boy. We can do this by takin
L 1l L T 1 1 = v 1 = 1 = | ignore thetrivial part of the 3. by g
N N N A A A SN & the XOR of the original box and the local box withy = 1
1Qryrz| — lf'PFiBOj‘ lf'PFiBoj‘ lf'PiBoj‘ for |I| < 1. To get our original box back in the end, we take
T 1T ¢ a1 by &1 a2 by c2 a3z by c3 | again the XOR of the modified box and the local box.
a b c 1 l 1 We replace the boxes step by step. In the first step, we are
a=a1$a2®as ¢ =1 92D paginning with an-PR box with the associated skt To that
b=1b1 &b bs end, we are looking for anotherPR box with associated sét
such thatf NJ # () (this is possible because of the assumption
Figure 2. Construction of thé & zy @ zz-Box made). Because of Lemrha 3, we are able to replace these two

boxes by two smaller boxes: We substitute the first box by an
|\ J|-PR box with inputsI. The second box is substituted
empty-overlap partition of7. We define, for alll € J, by an(n — |I|)-box, where we input/ and for the parties
my = [I\Ue /|, 1., the number of variables that only{1,2,...,n} \ (I U J), we input 1.
appear in the non-local box correspondingl/te 7. Assume that we have, in this way, replaced somER
We take two full-correlation boxes. The first is given by boxes by new boxes. Let there be a furthePR box which
ko is not yet replaced, and whose input elements intersect with
2,62%1 &P a; = q1(z1,...,zk,) the input elements of the new box. We are making the same

Pi(ar---ap|v1---an,) = =1 steps as before to replace these two boxes. In the end, we
0 otherwise, have replaced alk-PR boxes by a new box with the claimed
. . . (32) ._properties. [ ]
where g; is a Boolean function which depends on all of |t£

input variables, and, < n. The second box is defined as B. Imperfect Full-Correlation Boxes

Assume we have a non-local full-correlation bBX asso-

1 n ks
on—Fk1 @biznxi

Py(by, -+ -bplag, - n) = i~ =k, _ (33) ciated to the Boolean functiofi and a local full-correlation
0 otherwise, box Pf associated to the Boolean function
where0 < k1 < ko < k3 < n. We construct am-partite full- fi= @ /\ Ti (36)
correlation box with these two boxes by taking the XOR of Iff:\flg

the two outputs:; andb; if Party ¢ participates at both boxes,

otherwise the party outputs; o b;: where J and thea;’s are with respect to the functiof This

box corresponds to the trivial part of the full-correlatibox
a; i€{1,2,...,k1—1} P/,
ci=Ra;i®b; i€ {kiki+1,.. k} (34) The imperfect boxP/ is defined as the convex combination

b i€ (ko +1,ks+2,.n}. of these two boxej, f f

P/ =¢P: 1—¢e)P/ 37

Lemma 3 Box [34) is equali(e., the joint probabilities are e =ePi+(l—¢) ’ (37)

equal) to the full-correlation box defined by where( < e < 1.
We define the XOR of boxes:

n ks
1
T P = 3o D i initi -
Pclx) =4 2 T 1@10 g1(21 Tisy) i:Hklff (35) Definition 11 (XOR of boxes) Let P and P’ be two n

partite boxes that outputy, as, ..., a,), resp.(b1, b, ..., by),
for the input (x1,x2,...,z,). The XOR of the two boxes

Proof: The statement follows directly from the property” and P’, i.e, P & P’, is ann-partite box P* with output
of the full-correlation box that the set of outputs of anysetb (a1 ® b1, a2 @ b, ..., a, © b,) for the input(zy, zo, ..., z,).

of n — 1 parties (or smaller) is completely randon [2], an(ﬂ)efinition 12 (XOR* of boxes) Let P, and P, be two n-

the property that the XOR conserves randomness in casep8 tite full correlation boxes, and;. = P, + (1 — €)P°

0 otherwise.

independence. B foric{1,2}. TheXOR* of P, and P, i.e, P . ®* Py,
Theorem 2 (Construction of a Full-Correlation Box) Let is definded by
P/ be the full-correlation box associated to the Boolean Pi.® Pj. = eP,®P;+(1—¢c)P°a®P°

function f, and let f be written as in Lemma]2. Iff .

fulfills n; = 1, then there exist subsets of parties such that = PP+ (1-e)P. (38)

the full-correlation box can be simulated with generalized We can assume without loss of generality ti#f is the

PR boxes shared between the parties of a subset with #wen-parity box (; = 0, if this is not the case redefirfé{ng

condition that the number of PR boxes in that some parti@® & P/, Pi, = P/* @ P/, and P/ew = P/ @ P11). Note

inputs all the time a constants is at most one. that the boxPf can be written as the XOR of generalized
Proof: We replace full-correlation boxes withy = 1 for n-PR boxesPs, P,..., P as seen in Sectidl ViA

|I| < 1 by the full-correlation box witha; = 0 for |I| < 1, Pl=PoP,® --®P, . (39)



For that reasonP/ can be rewritten as boxes and at most one local full-correlation box (that can
Pl P ot P ot ‘p 40 be simulated by shared randomness). Each of these boxes
¢ The® oD D e (40) belongs to one of the sets of the empty-overlap partition
where P, = eP, + (1 — £)P° for all i € {1,2,..,m}. {J1, J2, ..., Jn, } of J. The full-correlation box that belongs
That means we can simulate the bBX with imperfect full- t0 J; is defined by the function
correlation boxes that all work correctly at the same time or
y filwn,wa,wn) = @ N = (42)

all work incorrectly at the same time. /
Jed; jed

Theorem 3 (Construction of an Imperfect F.-C. Box) Let  From the first part of the proof, we know that we need

0 < e <1, let P/ be a full-correlation box associated to the’U; ; J‘ _ 1 communication channels to simulate this box
. . . JeJd;

Boolean functionf, let f be written as in Lemm&l 2, and lett.om scratch. Thus, we need to simulate all the n-partite

P! be defined as above. fffulfills ny = 1, then there exists on_|ocal full-correlation boxes, for which we need
subsets of parties such that the hBx% can be simulated with

imperfect generalized PR-boxes shared between the pafties Nserateh _ U I —n (43)

a subset with the condition that the number of imperfect PR comm 7

boxes in that some parties inputs all the time a constants is i

at most one. If all these imperfect generalized PR boxes w&&mmunication channels. u

at the same time correctly and at the same time incorrectly From Theoreril4, we know that all parties that belong to one
then the simulation is equivalent to the bBX. of the sets of the empty-overlap partition g%, sayJ;, have

o to communicate directly or indirectly to one of these paitie
Proof: The proof is similar to the proof of Theoreh 2'Corollary[1 follows from this property.
[ ]

Corollary 1 Let f be the Boolean function associated to an
- i - i f i i
C. Protocols Based on Partial Communication ﬁerﬁglgfu.l:.ﬁg:ela“on boxP%, and letf be defined as in
Assume we have an-partite full-correlation boxP/ that C(G) = P/, (44)
is to be simulated by one-way communication channels and
shared randomness. The question is: How many one-wipereG is a directed graph wit vertices and the property
communication channels do we need for simulatingran that for every set;, i.e., a set of the empty-overlap partition

partite full-correlation box? Theorefl 4 answers this qoest Of 7, there exists a vertex < (U ;. ;, /) such that from every
o other vertexw € (|, J), there exists a path to for all
Theorem 4 (Number of Communication Channels)Let f € {1,2,...nz). ‘

be the Boolean function associated to ampartite full-

correlation box P/, and let f be defined as in Lemnid 2.
The numbetVserateh of one-way communication channels td- Protocol Based on Brunner/Skrypczyk-Protocol that o

comm

simulate the full-correlation box from scratch is Partial Communication
We have seen protocols that only use copies of some given
Ngcrateh U Il—ng. (41) boxes or partial communication. Now we study a combination
e of them.

Theorems[b and]6 state that a general class of full-
correlation boxes can be simulated by (distillation) pcots
. . . . and classical one-way communication channels. The number
(i.e., the terms of single variables) and start with the case whep y .
Of these one-way channels is then smaller than the number of

the functionf depends on two variables. The cdsg = 2 o :

. . . one-way communication channels we need if we do not apply

is equivalent to a PR box. From_[25], we know that it can . .. .~ . i
K - L a distillation protocolj.e., operate from scratch. More specif-

be simulated by one one-way communication channel. Now,

o ically, there exists a minimal set of one-way communication
we assume that the claim is true figf| < n. Assume further ; !
. . . ) channels that simulates such a full-correlation box, biy an
that we have a function with7| = n + 1 that still fulfills

the assumption. We substitutefor z;, wherez; is the input subset of these channels is used to simulate the box using a

which is an element of a minimal number of elementgjof (distillation) protocol.

) : ' : Assume we have the non-local full-correlation b@x
This new function also fulfills the assumption of the theorer%ssociated to the Boolean functigh Let the boxesP’
We also know that7| = n and, therefore, we need — 1

S . : f i i ion Vi B.

communication channels to simulate the associated box. \Wédp@ be_ d_efmed asin .SeCt'B We show that th? i
. . . . can be distilled arbitrarily closely to the full-correlati box

combine all thesen function values into one variable. The

original function can be written with two variables. Theue, P/ using partial communication if it fulfills certain conditis.
we are back at the cage/| = 2. Together, we need one- Theorem 5 (Distillation with Communication I) Let 0 <
way communication channels for simulating a function wite < 1, let P/ be a full-correlation box associated to the
|JT|=n+1. Boolean functionf, let f be written as in LemmAl 2, and let
Assume nown ; > 1. We write the original full-correlation the boxP? be defined as in Sectién V-B . fffulfills n; = 1,
box as a combination of; other non-local full-correlation then the numbeN %5t of one-way communication channels

comm

Proof: We first prove the statement fat; = 1 by
induction. We ignore the local part of the Boolean functjpn



required for distilling the boxP/ up to the full-correlation the boxP/ be defined as in Sectign Y-B. If
box P/ with using the generalized BS protocol is

n—1—max(my) max(ms)#n max(my) > n — U I, (48)
Ndistill < IeJg IeJg (45) Ieg Ier
comm =10 max(my) = n.
Ieg

and n; = 1, then there exists a grapty with N3cratch

comm

Proof: Here, we replace full-correlation boxes with =  directed edges and a proper subgraphc G with N5t di-
1 for [I] < 1 by the full-correlation box witha; = 0 for rected edges such that(G) = P/ and{P/,C(G")} —* P/.

|| < 1, and the Oth?““’ for 9” I'€T\{0}, keep th_ewvalues. Proof: The statement follows from Theorers 4 dnd 5,
We do the same with the imperfect full-correlation bBX.
and Corollary1. [ |

We can do this by taking the XOR of the original box and the All extremal three-partite full-correlation boxes of them

local box witha; = 1 for |I| < 1. To get our original box . : . i,
back in the end, we take again the XOR of the modified bos>|(gnall|ng PO'VFOPG fultill the conditions of Corollafd 6.0F
more parties, it is unknown how many extremal boxes also

and the local box. fulfill the condition
We assume that the replacement is made according s '

TheoreniB. We have replaced the original correlatgzhrtite

boxes in such a way that the correlated box with constant VI. EXAMPLES

input does not correspond to the original correlategartite

box belonging to the largest;. This is possible since we A. Example of an Amplifiable System

can replace this box first. We are now able to isolate the|, this example, we simulate the following full-correlatio
box belonging to the largest:;. Therefore, we allow all |-

parties that appear at least twice as well as the parties that

input all the time a constant to communicate their inputs and 1 é s e © Tz D @
outputs to a party that also has an input for the isolated box. alx) = i

tputs t ty that also h t for th lated b p! 2 @ T A1beds Wbabd 49
We have isolated the correlated multipartite box belonging 0 otherwise.

to the largestn;, and we are able to apply the generalized

BS protocol to this box. All the other correlated boxes that Therefore, we determine first the above-defined sets and

appear in the abstraction of Theor&in 3 can be simulated ¢gnstants. LeZ = P({1,2,3,4}). From Lemmd[R, we know

the communication of the parties and shared randomness.tat alla; = 1 for I € {{1,2,3},{3,4},{1}}, and otherwise

we will needmax;c 7(m;) one-way-communication channelsz; = 0. This means that the given full-correlation box can

less than if we started from scratch. m be simulated by three 4-PR boxes with some constant inputs,
The following is a corollary of Theorem 5: where one of these boxes is local (see Elg. 3 a)). We are also

able to determine the sgt of non-localn-PR boxes that are

f - i . . .
Corollary 2 Let0 < e < 1, let P/ be a full-correlation box required to simulate the full-correlation box:

associated to the Boolean functigh) let f be written as in
Lemmal®2, and lef be the set of the inputs of the box that J =1{{1,2,3},{3,4}} (50)
belongs to the largest:;. If f fulfills n; = 1, then
. . Both of these non-local 4-PR boxes can be obtained from the
{P!,C(G)}y = P!, (46) original box by taking the XOR of the original box and the

where the boxP! is defined as in SectidiV-B ar@ is a local 4-PR box when every party inputs his bits except for

directed graph withn vertices with the property that there.the parties that input the constant 1 to the 4-PR box, they

exists a vertew € (U, (7 J) N1 such that from every vertex Enpoltt ct)hlz;]t ?r?éhn?)%xﬁ) Sc'allf F;,Zl?t ?)?ptlze-rgsgirn? fﬁll(gbrtrhe(i;iiwe
we ({1,2,..,n}\I)U (U,c; /) there exists a path to. } §

box can be simulated by two connected?R boxes with no

Corollary 3 Let0 < ¢ < 1, let P/ be a full-correlation box constant input (see Figl 3 b)).

associated to the Booelan functigh and let f be written as  Since there is only one set in the empty-overlap partition

in Lemm&. Ifny = 1 and maxje7(mr) >n —|U;cs I, of J, ny = 1. Therefore, the number of required one-way

then communication channels for simulating the full-corredati
Ndistill - nrscratch (47) box can be calculated according to Theofém 4:

comm comm
U1
Ieg

where N4still s the number of one-way communication

channels needed for distilling the bd¥ that is defined as in Negmm " =
Sectior V-B.
Proof: The statement follows from Theoreiis 4 ndm. One of the graphs that charaterizes the one-way communi-
cation channels i€ = (V, E) with V = {1,2,3,4,5} and
Theorem 6 (Distillation with Communication Il) Let0 < g = {(4,3),(3,2),(2,1)}. That leads to
e < 1, let Pf be a full-correlation box associated to the
Boolean functionf, let f be written as in Lemmal 2, and let C(G) = P'. (52)

—1=3. (51)
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Figure 3. (a) Simulating the full-correlation box with terd-PR boxes. (b) Simulation of the full-correlation boxtwgeneralized PR boxes without a
constant input and a local box. (c) How to simulate the 3-PRwith the original full-correlation box and a local box.

Obviously, this box is not local. We define the trivial parB. Example of a Non-Amplifiable System

of this full-correlation box In this example we simulate the following full-correlation
box:
1 4 6
Pha) —{F u=n 59 Prap = {7 G e g
0 otherwise. 0 o_therwise

We start with the second part of the example, where wehere f(z1, 22, ..., x6) = X122 ® Tox3 B T4T526 S Ts.
show in detail how we take a box from the famif. = Let Z = P({1,2,3,4,5,6}). From LemmaR we know
eP+(1—¢)PL, where0 < ¢ < 1, to the boxP(a|x). For that, that alla; = 1 for I € {{1,2},{2,3},{4,5,6},{5}}, and
we determine first which of the parties have to communicatetherwisea; = 0. This means that the given full-correlation
Therefore, we calculate the number of parties that onlyrzelobox can be simulated by four 6-PR boxes with some constant
to one of the non-local 4-PR boxesu(; .3 = 2 and inputs, where one of these boxes is local. We are also able to
mys,4y = 1. This means that we isolate the box that belongssign the sef/ of non-localn-PR boxes that are needed to
to the 4-PR box with three arbitrary inputs. This can be dorsémulate the full-correlation box:
in the same way as before: We inp(t;, 22, x3,0) to P- _
and the local box and take the XOR of its outputs. Then, J = {125 {235 {4,5,61 (56)
we use a one-way communication channel from Party 4 to Bach of these three non-local 6-PR boxes can be obtained from
This corresponds to a grapi’ = (V’,E’) with ¥/ = v the original box by taking the XOR of the original box and the
and E' = {(4,3)}, which means we need one one-wajocal 5-PR box when every party inputs its bits except for the
communication channel. Remember that the communicatiBarties that input the constant 1 to the 5-PR box, they input 0
channel can be used as often as required. Hence, we are #bfeoth boxes.
to simulate perfectly the other 2-PR boxes, and the imperfec Since we know.7, we can determine the empty-overlap
3-PR box can be isolated by communicating the inputs af@titon {Ji, Jo}, where J;1 = {{1,2},{2,3}} and J> =
outputs of the 2-PR box to Party 3 (see Hij. 3 c)). We hadd4,5,6}}. Thereforen s = 2 and the number of required
isolated the boxP3 PR that is known to be asymptotically ©ne-way communication channels for simulating the full-
distillable up toP3P by the generalized BS protocol. In thiscorrelation box can be calculated according to Theokém 4:
way, we are able to take the bdk to the full-correlation box
in the beginning. This results in the resources inequality Nserateh _ U I
1eg

comm
One of the graphs that charaterizes the one-way communi-

We get that?’ is a proper subgraph @ and the number of cation chann2elz '§4:5(V’5Eé WIt?h‘;tia;é’sz ?s)’t4c; 5,6} and
one-way communication channels that is needed for this klnd {(1,2),(2,3),(4,5), (5,6)}- u
of protocol isNdistill — 1 j.e., less thanVicratch — 3, C(G) = P?. (58)

comm comm

—ng=4. (57)

PL* @ 0(G) = P . (54)



Sincen s # 1, Theorenib does not apply. [17] R. Gallego, L. Masanes, G. De La Torre, C. Dhara, L. Apliand
A. Acin, “Full randomness from arbitrarily deterministivents,” quant-
ph/1210.6514, 2012.
VIlI. CONCLUSION [18] V. Galliard, “Randomness from non-local correlatidn®iss. ETH
No. 20654, 2012.
We have studied the problem of non-locality distillation in19] N. Gisin, S. Popescu, V. Scarani, S. Wolf, and J. Wullsgér, “Obliv-

the multi-partite setting. We have found. first. that amﬂy ious transfer and quantum channels as communication EEQUNat.

K | | : . . . he nait Comp, Vol. , No. 12, 2013.
weakly non-local non-isotropic approximations to the maltu 5o p. Hgyer and J. Rashid, “Optimal protocols for nonligadistillation;”

generalization of a PR box to parties are distillable by an  Phys. Rev. Avol. 82, No. 4, 2010. o
adaptation of a protocol for two parties. Second, this can ffd] Li-Yi Hsu and Keng-Shuo Wu, “Multipartite nonlocalitdistillation,”

. . Phys. Rev. Avol. 82, 2010.
applied to showing that a much more general class of extrera) N.y LindenAS. Popescu, A. J. Short, and A. Winter, “No muan

correlations, includingll purely three-partite correlations, can  advantage for nonlocal computation,” quant-ph/061009062
be amplified to usingpartial communication requring 0n|y [23] L. Masanes, A. Acin, and N. Gisin, “General propertiésionsignaling

b f di d L h Is th theories,”Phys. Rev. AVol. 73, 2006.
a subset of directed pairwise channels than as Compafeqzlf? M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scaraai, Winter, and

the case when weak systems can be used. In this context,M. Zukowski, “Information causality as a physical prin@plNature461,
weak non-locality, hence, manages to replace commun'rcaggﬂ 1101, 2009.
e

b b i . | . hall . S. Pironio, J.-D. Bancal, and V. Scarani, “Extremalretations of the
etween a subset of parties. It remains a challenging o tripartite no-signaling polytope,J. Phys. A: Math Thegr\Vol. 44, 2011.

problem to understand, classify, and apply multi-party -nofee] S. Popescu and D. Rohrlich, “Nonlocality as an axiofgtindations of
locality systematically. It seems that for certain tasksctsas Physics Vol. 24, pp. 379, 1994.

e . - . . [27] A. J. Short, S. Popescu, and N. Gisin, “Entanglementppivay for
randomness a_mpllflca'uon []-7.| [18])' multl-party non-zbdlty generalized nonlocal correlationg?hys. Rev. AVol. 59, 2006.
outperforms bipartite correlations.
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