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Abstract—Quantum states are the key mathematical objects in
quantum mechanics [1], and entanglement lies at the heart of the
nascent fields of quantum information processing and computa-
tion [2]. However, there has not been a general, necessary and
sufficient, and operational separability condition to determine
whether an arbitrary quantum state is entangled or separable.

In this paper, we show that whether a quantum state is
entangled or not is determined by a threshold within the quantum
state. We first introduce the concept of finer and optimal separable
states based on the properties of separable states in the role of
higher-level witnesses [3]. Then we show that any bipartite quan-
tum state can be decomposed into a convex mixture of its optimal
entangled state and its optimal separable state. Furthermore,
we show that whether an arbitrary quantum state is entangled
or separable, as well as positive partial transposition (PPT) or
not, is determined by the robustness of its optimal entangled
state to its optimal separable state with reference to a crucial
threshold. Moreover, for an arbitrary quantum state, we provide
operational algorithms to obtain its optimal entangled state, its
optimal separable state, its best separable approximation (BSA)
decomposition, and its best PPT approximation decomposition
while it was an open question that how to calculate the BSA in
high-dimension systems.

I. INTRODUCTION

Quantum entanglement almost fantastically accompanied
the emergence of quantum mechanics [4, 5]. Quantum en-
tanglement was first described by Einstein, Podolsky, and
Rosen [6], and Schrödinger [7] as apparent paradoxes and
counter-intuitive consequences of quantum mechanics. Later,
in 1964 Bell [8] introduced the so-called Bell inequality to
experimentally confirm it. In 1989 Werner mathematically
formulated the definition of separability, a notion that was
to be the direct opposite of entanglement [9]. A quantum
state in a composite system is called separable if it can be
mathematically written as a convex combination of product
states, and entangled otherwise. This accurate definition re-
veals an (external) boundary between entangled states and
separable states. Here we give an internal boundary between
entanglement and separability within an arbitrary quantum
state. We show that an arbitrary bipartite quantum state can be
decomposed into a linear combination of a purely entangled
structure and a purely separable structure, which we call them
the optimal entangled state [3] of the quantum state and the
optimal separable state of the quantum state, respectively.

Lying at the heart of quantum information theory, quantum
entanglement plays a crucial role in quantum information
processing such as quantum cryptography [10], quantum dense

coding [11], quantum teleportation [12], quantum computation
[13], etc. Detecting and quantifying quantum entanglement,
therefore, become one of the central problems in the emerging
quantum areas. Despite a number of necessary [14–22] or
sufficient [23, 24] separability criteria, as well as the necessary
and sufficient separability criterion for low dimension states
[25], there has not been a general, necessary and sufficient
operational separability condition for an arbitrary state yet.
Here we classify all quantum states into disjoint families, each
with a single optimal entangled state and a single optimal
separable state at its core. We show that whether an arbitrary
quantum state is entangled or separable, as well as having
positive partial transposition (PPT) or not, is determined by
the ratio of its optimal entangled state to its optimal separable
state. In other words, whether an arbitrary quantum state is
entangled or separable is determined by referring to a crucial
member of its family.

Structure of the Paper. In Section II, we provide pre-
liminaries of the internal structure and decomposition of a
quantum state and a hierarchy of witnesses. In Section III,
we give the investigation on the boundary between optimal
entanglement and optimal separability within a quantum state.
In Section IV, we show what determines whether an arbitrary
quantum state is entangled or separable. In Section V, we
show the boundary between PPT entanglement and non-PPT
entanglement within a quantum state. In Section VI, we give
an investigation on internal structure of entanglement and
separability for the multipartite scenario. In Section VII, we
give a general algorithm of its optimal entangled state and its
optimal separable state and a general algorithm of its BSA
decomposition for an arbitrary quantum state. Then we fully
illustrate our results using the Horodecki states [26]. Finally,
we offer conclusions and further study in Section VIII.

II. PRELIMINARIES

For the convenience of the reader, we briefly recall the
research on the internal structure and decomposition of a
quantum state and a hierarchy of witnesses. For more details,
we refer to [3–5].

A. The internal structure and decomposition of a quantum
state

The internal structure and decomposition of a quantum state
was originally introduced in [27] in the context of nonlocality,
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and it was later independently rediscovered by Lewenstein and
Sanpera [28] in the context of entanglement and separability
[29]. Lewenstein and Sanpera showed that any quantum state
ρ can always be written in a form as ρ = λρBSA+(1−λ)ρE ,
where ρE is an entangled state, ρBSA is a separable state
and the weight λ of the separable part is maximal. Later, the
form was proven to be unique [3, 30]. The separable state
ρBSA is called the BSA of ρ, and the convex decomposition
is called BSA decomposition (also called Lewenstein-Sanpera
decomposition (LSD)). On the one hand, the BSA decompo-
sition allowed for the derivation of many very strong results
[30–34]. The uniqueness of the BSA decomposition has been
developed into important separability criteria in 2×N bipartite
system as well as N ×N [32]. Not only a remark connection
between the BSA and the concurrence C(ρ) was built [35]
but also a connection between the BSA and the max- relative
entropy was found [36]. On the other hand, a plethora of works
have developed on this topic [36–43]. Any convex sum of a
separable state and an entangled state of a composite quantum
state was called LSD in some works [37–42], and it was called
optimal LSD when the separable state has maximal weight in
the convex sum. Optimal LSD just corresponds to the notion
of BSA decomposition because of the uniqueness of the BSA
decomposition. For simplicity, in the following, we shall freely
use optimal LSD and BSA decomposition. Many methods
for the BSA decomposition were provided for a number of
relevant types of states [35–42]. It is worth mentioning that
the problem of finding the optimal LSD in some special
cases [38, 39, 41] was formulated as a semidefinite program
(SDP) [44]. Moreover, Thiang provided a procedure to obtain
the optimal LSD of a bipartite state of any finite dimension
via a sequence of semidefinite relaxation [42]. However,
the maximal λ depends on the chosen separable set in the
definition of so-called optimal LSD, and there is still no one
universal practical method for finding the BSA decomposition
for an arbitrary state. All in all, the BSA decomposition is
known for a lot of relevant types of states but, despite a
good understanding of its properties, presently we do not have
an operational method for finding it for an arbitrary state.
Here we give another novel decomposition of any quantum
state and an algorithm for this decomposition. Compared with
other methods for the BSA decomposition, this decomposition
makes it easier for us to obtain the BSA decomposition by
comparing the weight of its optimal entangled state with a
crucial threshold.

B. The optimal entangled state of a quantum state

For our purpose, we first consider a finite-dimensional
bipartite composite Hilbert space H = H1⊗H2. The quantum
state σ in such a system is called separable if it can be written
as

σ =
∑
k

pk|φk1⟩⟨φk1 | ⊗ |φk2⟩⟨φk2 |, (1)

where pk is a probability distribution and each |φki ⟩ is a pure
state of Hi, for i = 1, 2. If a quantum state ρ cannot be written
as the form of Eq. (1), it is referred to as entangled.

The method of entanglement witnesses is arguably the
most powerful method for entanglement detection both exper-
imentally and theoretically (see, e.g., [45–47] and references
therein). Since the set of all separable states is convex and
compact, there must exist a hyperplane that separates an
arbitrary given entangled state from the set of all separable
states by the Hahn-Banach theorem [25, 48]. We call this
hyperplane an entanglement witness [49], as shown in Fig.
1. A hermitian observable W is said to be an entanglement
witness if: (i) it has non-negative expectation value for an
arbitrary separable state σ; and (ii) it is not semi-positive. For
an entanglement witness W , we can define a set of states
in which the expectation value of the entanglement witness
is negative, i.e. the entangled state ρ is detected by W . We
denote this set by DW = {ρ|tr(Wρ) < 0}. We say that W2

is finer than W1 if DW1
⊆ DW2

, namely, if all the entangled
states detected by W1 are also detected by W2. It was shown
that W2 is finer than W1 if and only if there exists a P ≥ 0 and
0 ≤ ϵ < 1 such that W1 = (1− ϵ)W2 + ϵP . It is determined
that W is optimal if there is no other entanglement witness
which is finer. We can obtain that W is optimal if and only
if for all P and ϵ > 0, W ′ = (1 + ϵ)W − ϵP is not an
entanglement witness. For more details, we refer to [34].

For every entangled state, there is at least one entangled
state to detect it and there exists an optimal entanglement
witness for each entanglement witness. It is, therefore, very
significant to characterize the set of optimal entanglement
witnesses since optimal entanglement witnesses are sufficient
to detect all the entangled states. Although there has been a
plethora of effort in this direction, complete characterization of
optimal entanglement witnesses is far from satisfactory (see,
e.g., [45–47, 50] and references therein).

Recently, we showed a hierarchy of witnesses where entan-
gled states play the role of high-level witnesses [3]. The notion
of entanglement witnesses was extended, and a hierarchy of
witnesses for classes of observables was introduced. This
hierarchy shows the fact that entangled states play the role of
witnesses for detecting entanglement witnesses and separable
states play the role of witnesses for the set of non-block-
positive Hermitian operators. Fig. 1 illustrates the schematic
picture. This framework assembles many seemingly different
findings with simple arguments. It indicates that, for example,
the answer to when different entanglement witnesses can
detect the same entangled states [51] and the answer to
when different entangled states can be detected by the same
entanglement witness [52] can be obtained by each other.
Moreover, it indicates that we can develop the approach of
investigating entanglement witnesses to investigate entangled
states or separable states.

Instead of by using a numerical value [53], the entanglement
of an entangled state ρ was characterized by using a set of
entanglement witnesses for detecting the entangled state Dρ =
{W |tr(Wρ) < 0}, where W is the entanglement witness of
ρ. Given two entangled states ρ1 and ρ2, it was said that ρ2 is
finer (more entangled) than ρ1 if, and only if, Dρ1 ⊆ Dρ2 , in
other words, all entanglement witnesses detecting ρ1 can also
detect ρ2. We call ρ optimal if there exists no other entangled
state which is finer than ρ. It was shown that the optimal
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Fig. 1. (Color online) We denote S the set of all separable states, E the
set of all entangled states, W the set of all entanglement witnesses, Q ≡
S ∪ E the set of all quantum states, B the block-positive operators, H the
set of all hermitian operators, and O ≡ H − Q − W the set of bounded
Hermitian operators. A hierarchy structure of witnesses in which entanglement
witnesses “witness” entangled states, entangled states play the role of high-
level witnesses, and separable states play the role of higher-level witnesses.

entangled state just corresponds to the remainder (the non-
separable part) [30] of the Lewenstein-Sanpera decomposition
for a density matrix since any separable state cannot be
subtracted from the optimal entangled state [3]. Under this
characterization and classification of entangled states, different
entangled states belonged to different optimal-entangled-state
families cannot be comparable just as we cannot generally
tell which one is “finer” from the badminton world champion
(player) and the tennis world champion (player).

III. THE BOUNDARY BETWEEN OPTIMAL ENTANGLEMENT
AND OPTIMAL SEPARABILITY WITHIN A QUANTUM STATE

To characterize the partial order within entangled states, the
concept of finer entangled states was introduced [3]. And to
characterize the purely entangled part of a quantum state, the
concept of optimal entangled states was employed. A natural
question arises. Is there a similar partial order within separable
states and a purely separable part of a quantum state?

A. The optimal separable state of a quantum state

For our purpose, we have the following definitions.
Definitions 1. In analogy with entanglement witnesses [34]

and entangled states [3], we give the following definitions
about separable states. Given a separable state (higher-level
witness [3]) σ, we define Dσ := {Θ|tr(Θσ) < 0,Θ = Θ†};
that is the set of operators “witnessed” by σ. For our purpose,
we restrict the not-block-positive Hermitian operator Θ in the
“generally-normalized” scope with −I ≤ Θ ≤ I and the
operator norm ∥Θ∥∞ = 1 in this paper, where I is the identity
matrix. Given two separable states, σ1 and σ2, we say that σ2
is finer (more separable) than σ1, if Dσ1 ⊆ Dσ2 ; that is, if all
the operators “witnessed” by σ1, are also “witnessed” by σ2.
We say that σ is an optimal separable state if there exists no

other separable state which is finer than σ (it does not exist a
separable state σ′, such that Dσ ⊂ Dσ′ ).

However, Definitions 1 are the only trivially extended
definitions of entangled states in Ref. [3] because we have
the following observations.

Observations 1. Consider any Hermitian operator H in
H = Cd1 ⊗ Cd2 such that tr(Hσ1) ̸= tr(Hσ2) (this
operator should exist if the separable σ1 and the separable
σ2 are different density matrices). Then, let the operator
Θ = H − tr(Hσ1)

I
d1d2

satisfies tr(Θσ1) = 0, tr(Θσ2) =
tr(Hσ2) − tr(Hσ1) ̸= 0. Hence, depending on the sign of
tr(Θσ2), either Θ or −Θ does not belong to Dσ1

, but it
belongs to Dσ2 . Dσ2 ̸⊂ Dσ1 . Analogously, either H−tr(Hσ2)
or −H + tr(Hσ2) belongs to Dσ1 , but not to Dσ2 . And thus
Dσ1

̸⊂ Dσ2
.

From observations 1, we can conclude that, unfortunately,
the only way that σ2 is finer than σ1 is that they are exactly the
same state (σ2 ≡ σ1) following Definitions 1. To make this
partial order work, we need to employ the entangled state.
In other words, the concept of the finer separable cannot
independently stand on its own. From below, we can see
that there can exist, exactly by referring to entangled states,
optimal entangled states. We have the following redefinitions.

Redefinitions 1. Mathematically, we define Dσ :=
{Θ|tr(Θσ) < 0,Θ = Θ†} and DΩ := {Θ|tr(ΩΘ) ≥ 0,Ω ≥
0,Θ = Θ†}. Letting Dσ,Ω ≡ Dσ∩DΩ, we say that a separable
state σ2 is finer (more separable) than a separable state σ1, if
there exists a Ω ≥ 0 such that Dσ1,Ω ⊆ Dσ2,Ω; that is, if all
the operators “witnessed” by σ1, are also “witnessed” by σ2.
We call σ an optimal separable state if there exists no other
separable state which is finer than σ. Note that the concept of
the finer separable cannot independently exist (depending on
an (optimal) entangled state Ω). For simplicity, Dσ,Ω for the
separable state σ is hereinafter referred to as Dσ since DΩ is
actually another constraint on Θ.

Similar to the criteria for entangled states [3] and entan-
glement witnesses [34], for separable states, we have the
following conclusions on the conditions if a separable state
is finer than another one, and a separable state is optimal.

Lemma 1. Let the separable state σ2 be finer than the
separable state σ1 and

δ ≡ inf
Θ1∈Dσ1

∣∣∣∣ tr(Θ1σ2)

tr(Θ1σ1)

∣∣∣∣ . (2)

Then we have the following:
(i) If tr(Θσ1) = 0, then tr(Θσ2) ≤ 0.
(ii) If tr(Θσ1) < 0, then tr(Θσ2) ≤ tr(Θσ1).
(iii) If tr(Θσ1) > 0, then δtr(Θσ1) ≥ tr(Θσ2).
(iv) δ ≥ 1. In particular, δ = 1 if and only if σ1 = σ2.
Proof: Since σ2 is finer than σ1 we will use the fact that

for all Θ = Θ† such that tr(Θσ1) < 0 then tr(Θσ2) < 0.
(i) Let us assume that tr(Θσ2) > 0. Then we take any

Θ1 ∈ Dσ1
so that for all x ≥ 0, Θ̃(x) ≡ Θ1+xΘ ∈ Dσ1

since
tr(Θ(x)σ1) = tr(Θ1σ1) + x · tr(Θσ1) = tr(Θ1σ1) + x · 0 <
0 (can also see the similar proofs in Refs. [3, 34]). But for
sufficiently large x we have that tr(Θ̃(x)σ2) is positive, which
cannot be since then Θ̃(x) /∈ Dσ2

.
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(ii) We define Θ̃ = Θ+ |tr(Θσ1)|I, where I is the identity
matrix. We have that tr(Θ̃σ1) = 0. Using (i) we have that
0 ≥ tr(Θσ2) + |tr(Θσ1)|.

(iii) We take Θ1 ∈ Dσ1
and define Θ̃ = tr(Θσ1)Θ1 +

|tr(Θ1σ1)|Θ, so that tr(Θ̃σ1) = 0. Using (i) we have
|tr(Θ1σ1)|tr(Θσ2) ≤ |tr(Θ1σ2)|tr(Θσ1). Dividing both
sides by |tr(Θ1σ1)| > 0 and tr(Θσ1) > 0 we obtain

tr(Θσ2)

tr(Θσ1)
≤

∣∣∣∣ tr(Θ1σ2)

tr(Θ1σ1)

∣∣∣∣ . (3)

Taking the infimum with respect to Θ1 ∈ Dσ1 on the right-
hand side of this equation we obtain the desired result.

(iv) By (ii), it immediately follows that δ ≥ 1. The “only
if” part is trivial. We prove that if δ = 1 then σ1 = σ2.

For any positive operator Θ, we have tr(Θσ1) ≥ 0.
Case (1): If tr(Θσ1) = 0 then, by (i), tr(Θσ2) = 0.
Case (2): If tr(Θσ1) > 0, then by (iii)

tr(Θσ2) ≤ tr(Θσ1). (4)

Let Θ̃ = −Θ. Then tr(Θ̃σ1) < 0; by Lemma 1 (ii), we
have

tr(Θ̃σ2) ≤ tr(Θ̃σ1). (5)

Hence
tr(Θσ2) ≥ tr(Θσ1). (6)

By Eq. (4) and Eq. (6), we have tr(Θσ2) = tr(Θσ1).
According to case (1) and (2), we have, for any positive
operator Θ

tr(Θσ1) = tr(Θσ2). (7)

Hence σ1 = σ2. □
Corollary 1. Dσ1

= Dσ2
if and only if σ1 = σ2.

Proof: We prove the only if part. The if part is trivial. We
define δ as in Eq. (2) and define

δ̃ ≡ inf
Θ2∈Dσ2

∣∣∣∣ tr(Θ2σ1)

tr(Θ2σ2)

∣∣∣∣ . (8)

By Lemma 1 (iv), we have that δ̃ ≥ 1 since σ1 is finer than
σ2.

Equivalently, since σ2 is finer than σ1, we have

1 ≥ sup
Θ1∈Dσ1

∣∣∣∣ tr(Θ1σ2)

tr(Θ1σ1)

∣∣∣∣ ≥ δ ≥ 1. (9)

Therefore, we have σ1 = σ2 since δ = 1 according to
Lemma 1 (iv). □

Lemma 2. A separable state σ2 is finer (more separable)
than σ1 if and only if there exists 0 ≤ ϵ < 1 such that σ1 =
(1 − ϵ)σ2 + ϵΩ, where Ω ≥ 0 is not finer than σ1 or Ω is
a “negative quasiprobabilities of separable state” (entangled
state) [54] such that tr(ΩΘ) ≥ 0 with tr(Θσ1) < 0 for all
Θ = Θ†.

Proof: (If) For all Θ ∈ Dσ1
we have that 0 > tr(Θσ1) =

(1 − ϵ)tr(Θσ2) + ϵtr(ΘΩ) which implies tr(Θσ2) < 0 and
therefore Θ ∈ Dσ2 . (Only if) We define δ as in Eq. (2). Using
Lemma 1(iv) we have δ ≥ 1. First, if δ = 1 then according

to Lemma 1(iv) we have σ1 = σ2 (i.e., ϵ = 0). For δ > 1, we
define

δ̂ ≡ sup
Θ1∈Dσ1

∣∣∣∣ tr(Θ1σ2)

tr(Θ1σ1)

∣∣∣∣ , (10)

Ω = (δ̂− 1)−1(δ̂σ1 − σ2) and ϵ = 1− 1/δ̂ > 0. We have that
σ1 = (1 − ϵ)σ2 + ϵΩ and δ̂ > 1. We can easily know that Ω
is not finer than σ1 or Ω is a “negative quasiprobabilities of
separable state” such that tr(ΩΘ) ≥ 0 with tr(Θσ1) < 0 for
all Θ.

Next, we prove that Ω is positive. For any |ψ⟩, ⟨ψ|Ω|ψ⟩ =
(δ̂ − 1)−1(δ̂⟨ψ|σ1|ψ⟩ − ⟨ψ|σ2|ψ⟩). Let Θ = −|ψ⟩⟨ψ|.
⟨ψ|Ω|ψ⟩
|tr(σ1Θ)| = (δ̂ − 1)−1 (tr(σ2Θ)−δ̂tr(σ1Θ))

|tr(σ1Θ)| = (δ̂ − 1)−1(δ̂ −
|tr(σ2Θ)|
|tr(σ1Θ)| ) ≥ 0. □

Corollary 2. A separable state σ is optimal if and only if
it does not exist a separable state σ′ = (1 + ϵ)σ − ϵΩ being
finer than σ for any ϵ > 0 and Ω ≥ 0 with tr(ΩΘ) ≥ 0 and
tr(Θσ) < 0 for all Θ = Θ†.

Proof: (If) According to Lemma 2, there is no separable
state which is finer than σ, and therefore σ is optimal. (Only
if) If σ′ is a separable state, then according to Lemma 2, σ is
not optimal. □

We can easily conclude that the maximally mixed state is
an optimal separable state by Corollary 2.

Corollary 3. If {|ψi⟩} is an orthogonal (partially or
completely) product basis (PB) [55], σ =

∑
i pi|ψi⟩⟨ψi|

(pi > 0) is an optimal separable state.
Proof: Let us assume that σ is not optimal. By Corollary 2,

there exists at least one separable state σ′ = (1+ ϵ)σ− ϵΩ is
finer than σ, and tr(σ′Θ) < 0 for all Θ with tr(σΘ) < 0.

Let Θ = ti|ψi⟩⟨ψi|+ tΩ, where ti and t are real numbers,
and Ω = |Φ⟩⟨Φ| denotes a maximally entangled state [56].
We can obtain tr(σΘ) = tipi + t⟨Φ|σ|Φ⟩ and tr(σ′Θ) =
(1+ ϵ)(tipi+ t⟨Φ|σ|Φ⟩)− ϵ(ti|⟨Φ|ψi⟩|2+ t). Therefore, there
must exist Θs such that tr(σΘ) < 0 and tr(σ′Θ) ≥ 0 for
ti < min{− t⟨Φ|σ|Φ⟩

pi
,− t

|⟨Φ|ψi⟩|2 }. We can conclude that σ′ is
not finer than σ, and σ is optimal. □

To compare the approach of the optimization over entangled
states [3] and the approach of the optimization over entangle-
ment witnesses [34], the optimization over separable states
should be implemented by subtracting the block operator 1.
An entanglement witness can be written as a pseudo-mixture
of local projectors (product states) [57], and an entangled state
can also be represented by negative quasiprobabilities of prod-
uct states [54]. To subtract this “negative quasiprobabilities of
separable state” (entangled state) from a non-optimal separable
state and to keep the positivity of the resulting operator, one
can only subtract the entangled state by Lemma 2. Exactly,
the entangled state excluding any separable state, namely the
optimal entangled state should be subtracted. However, it is
still not practical. The weight of the optimal entangled state
cannot easily be known because it is not the maximum number
to keep the positivity of the resulting operator even if the
subtracted optimal entangled state is known. Fortunately, we
have an algorithm to obtain its optimal separable state and its
optimal entangled state for an arbitrary state (see Section VII).

1Private communication with Marco Piani.



5

B. The optimal-entanglement-and-optimal-separability de-
composition of a quantum state

Note that different from the optimal entangled state, the
resulting operator may be a quantum state if we subtract an
optimal entangled state from an optimal separable state, but
then there exists no finer (more separable) relation between the
original optimal separable state and the resulting state. Gener-
ally, the orthogonal product basis is not unique for an optimal
separable state in Corollary 2. However, the decomposition
into the convex mixture of its optimal entangled state and its
optimal separable state is unique for any bipartite quantum
state.

Theorem 1. An arbitrary bipartite density matrix ρ has a
unique general decomposition in the form as

ρ = ΛρOE + (1− Λ)ρOS ; Λ ∈ [0, 1], (11)

where (normalized) ρOE denotes the optimal entangled state
of ρ and (normalized) ρOS denotes the optimal separable state
of ρ.

Proof.— Case (i): ρ is separable. By Lemma 2 and Corollary
2, ρ = (1− ϵ)ρOS+ ϵΩ, where Ω ≥ 0 is a “negative separable
state” (entangled state) such that tr(ΩΘ) ≥ 0 with tr(Θσ1) <
0 for all Θ = Θ†. Without loss of generality, let Λ denote
the minimum weight such that Ω is positive. If ρ itself is
optimal separable, Λ equals to 0. Let us assume that Ω is not
optimal (entangled). There exists at least a product state P and
a nonnegative number t > 0, such that Ω′ = Ω − tP ≥ 0 by
Ref. [3]. By Lemma 2, (normalized) σ = 1

1−Λ+t ((1−Λ)ρOS+

tP ) is finer than ρ. Since ρOS is the optimal separable state
of ρ, ρOS is finer than σ = 1

1−Λ+t ((1 − Λ)ρOS + tP ). By
Corollary 2, there does not exist any Θ′ = Θ′† such that
tr(σΘ′) < 0 with tr(ρOSΘ′) ≥ 0, and there must exist at
least one Θ to satisfy tr(ΘρOS) < 0 and tr(Θσ) ≥ 0. We
can obtain tr(ΘP ) > 0, and tr((rΘ + (1 − r)P )P ) ≥ 0 for
any 0 ≤ r ≤ 1. Let Θ̃r = −(rΘ + (1 − r)P ). There must
exist a r0 such that tr(Θ̃r0P ) < 0 with tr(Θ̃r0ρ

OS) ≥ 0. It
is impossible because ρOS is optimal. Therefore, Ω ≡ ρOE .

Case (ii): ρ is entangled. By the BSA decomposition
[3, 30], ρ = λρBSA + (1 − λ)ρOE , where λ denotes the
maximal number such that ρBSA is separable. By case (i),
ρBSA = Λ0(ρ

BSA)OE + (1 − Λ0)(ρ
BSA)OS since ρBSA is

separable. Therefore, ρ = (1 − λ)ρOE + λΛ0(ρ
BSA)OE +

λ(1 − Λ0)(ρ
BSA)OS . We can conclude that (1 − λ)ρOE +

λΛ0(ρ
BSA)OE must be an optimal unnormalized entangled

state, otherwise λρOE can be “consumed” and λ is not the
maximal number such that ρBSA is separable. That is, despite
the case the mixture of two different single optimal entangled
states might not be an optimal entangled state, it is not the
case here. By the uniqueness of the optimal entangled state
of an entangled state [3], (ρBSA)OE ≡ ρOE . By Case (i),
(ρBSA)OS ≡ ρOS . Therefore, ρ = ΛρOE+(1−Λ)ρOS , where
Λ = 1− λ(1− Λ0).

By Case (i) and Case (ii), we draw our conclusion. □
Remark 1. This result means that bipartite quantum states

can be classified into optimal entangled states, optimal sepa-
rable states, and their convex mixtures. The set of bipartite
quantum states is decomposed into families. Each family

contains a single optimal entangled state and a single optimal
separable state, and the other members of the family are
obtained by mixing this optimal entangled state with this
optimal separable state, as shown in Fig. 2. Note that if a
single optimal entangled state is mixed with a single optimal
separable state, usually the optimal entangled state (the optimal
separable state) of the resulting state is not the original optimal
entangled state (the optimal separable state). Consider mixing
an optimal entangled state |ψ+⟩ = 1√

2
(|00⟩ + |11⟩) with

an optimal separable state |ϕ⟩ = 1√
2
(|10⟩ + |11⟩), ρm =

1
2 |ψ

+⟩⟨ψ+|+ 1
2 |ϕ⟩⟨ϕ|. The optimal entangled state of ρm reads

ρOEm = |φ⟩⟨φ| with the weight 3
4 and the optimal separable

state of ρm reads ρOSm = |φ′⟩⟨φ′| with the weight 1
4 , where

|φ⟩ =
√
6
6 (|00⟩+ |10⟩+ 2|11⟩) and |φ′⟩ =

√
2
2 (−|00⟩+ |10⟩).
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Optimal Separable States Mixtures Optimal Entangled States

Quantum States

PPT(Positive Partial Transposition) States *

Fig. 2. (Color online) The blue area on the far left denotes the optimal
separable state, and the red area on the far right denotes the optimal entangled
state. Bipartite quantum states can be classified into optimal entangled states,
optimal separable states, and their convex mixtures. The boundary between
separable states and entangled states is marked as a white line and the
boundary between PPT states and non-PPT states is marked as a yellow line.
The threshold from separability to entanglement TS and the threshold from
PPT to non-PPT TPPT are marked as “◦” and “□”, respectively. The overlap
of “◦” and “□” denotes the overlap of TS and TPPT , and also denotes the
overlap of the boundary between separable states and entangled states and
the boundary between PPT states and non-PPT states. The overlap of “∗” and
“□” depicts that there exist bound optimal entangled states.

IV. WHAT DETERMINES WHETHER AN ARBITRARY
QUANTUM STATE IS ENTANGLED OR SEPARABLE?

Given a quantum state ρ, consider its family—all convex
mixtures of its optimal entangled state ρOE and its optimal
separable state ρOS ,

ρt = tρOE + (1− t)ρOS (12)

with the weight t varying from 0 to 1.
Lemma 3. An arbitrary entangled state ρ has the BSA

decomposition

ρ = Λrρ
OE + (1− Λr)ρ

BSA, (13)

where ρBSA = Λ−Λr

1−Λr
ρOE + 1−Λ

1−Λr
ρOS for ρ = ΛρOE + (1−

Λ)ρOS , and the remainder weight of the optimal entangled
state Λr is the threshold (the minimum real number, and 1−Λr
is maximal) such that ρBSA is separable.
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Proof.— By Ref. [3], ρOE (with different weight) is just the
remainder of the BSA decomposition of ρ. It is clear that ρBSA

is separable because tS = Λ − Λr is the threshold to which
ρt = tρOE+(1−t)ρOS is just separable with t increasing from
0 to tS . If we subtract any projector onto a product vector after
we subtract (1−Λr)ρ

BSA from ρ, then the resulting operator
is no longer an entangled state. By the Lemma 1 in Ref. [16],
any product vector in the decomposition of separability on
ρBSA must belong to the range of ρ. By the uniqueness of
the BSA decomposition [3, 30], we know Eq. (13) is the BSA
decomposition of ρ. □

Remark 2. The family member will be entangled when the
weight of its optimal entangled state t goes beyond a threshold
tS , while the family member will be separable when t is within
the threshold, as shown in Fig. 2.

To illustrate this result, we sketch the proof (calculation) of
the well-known threshold p = 1

3 for the Werner state

ρp = p|ψ+⟩⟨ψ+|+ (1− p)
I
4
, (14)

where |ψ+⟩ = 1√
2
(|00⟩+ |11⟩) and 0 ≤ p ≤ 1 [9].

Proof (Calculation).— By Ref. [3], |ψ+⟩⟨ψ+| is the optimal
entangled state of ρp. Suppose the Hermitian operator Θ
satisfies tr(ρpΘ) < 0 and tr(|ψ+⟩⟨ψ+|Θ) ≥ 0. Therefore,
tr( I

4Θ) < 0, and tr(Θ) < 0. Without loss of generality, sup-
pose Θ = t|ψ+⟩⟨ψ+|+ (−t− ϵ)T , where T ∈ {|ψ+⟩⟨ψ+|}⊥
and {|ψ+⟩⟨ψ+|}⊥ denotes the (orthogonal) complementary
subspace of {|ψ+⟩⟨ψ+|}. We can obtain t > 0 and ϵ > 0
since tr(Θ) < 0. Thus, tr(ρpΘ) = pt + 1−p

4 (−t − ϵ) =
( 3p4 − 1

4 )t −
1−p
4 ϵ < 0 for any t > 0 and ϵ > 0. Therefore,

3p
4 − 1

4 ≤ 0, and 1 ≤ p ≤ 1
3 . In other words, I

4 is finer
(more separable) than ρp for 0 ≤ p ≤ 1

3 . Similarly, we can
also conclude that ρq is finer (more separable) than ρp for
0 ≤ q ≤ p ≤ 1

3 , but ρq is finer (more entangled) than ρp for
1
3 < q ≤ p ≤ 1 from Ref. [3]. □

Let τ and σ be the quantum states acting on a bipartite
system H = Cd1 ⊗ Cd2 . Vidal and Tarrach [58] defined the
robustness of τ relative to σ, R(τ ||σ), to be the minimum
nonnegative number t such that the state ρ = 1

1+tτ + t
1+tσ

is separable. Interestingly, to get the BSA of a quantum state,
we can employ results about the robustness of entanglement.

Theorem 2. An arbitrary bipartite density matrix ρ has the
BSA decomposition

ρ = ΛρOE + (1− Λ)ρOS , (15)

if R(ρOE ∥ ρOS) is infinite, otherwise

ρ = Λrρ
OE + (1− Λr)ρ

BSA, (16)

where ρBSA = 1
1+R(ρOE∥ρOS)

ρOE + R(ρOE∥ρOS)
1+R(ρOE∥ρOS)

ρOS ,

Λr = Λ(1+R(ρOE∥ρOS))−1
R(ρOE∥ρOS)

, and R(ρOE ∥ ρOS) denotes the
robustness of ρOE relative to ρOS [58].

Therefore, to get the BSA of a quantum state, we can use
results about the robustness of entanglement.

Lemma 4 [59]. The random robustness of a pure entangled
state |ψ⟩ acting on a bipartite system Cd1 ⊗ Cd2 ,

Rr(|ψ⟩) ≡ R(|ψ⟩⟨ψ||| I
d1d2

) = r1r2d1d2, (17)

where |ψ⟩ =
∑
j rj |j⟩|j⟩ is the Schmidt decomposition of |ψ⟩

with r1 ≥ r2 ≥ ... ≥ 0.
Corollary 4. For an arbitrary bipartite density matrix ρ =

Λ|ψ⟩⟨ψ|+ (1− Λ) I
d1d2

, the BSA decomposition

ρ = Λr|ψ⟩⟨ψ|+ (1− Λr)ρ
BSA, (18)

where |ψ⟩⟨ψ| is a pure entangled state, d1d2 is the dimension
of the state space, Λr = Λ(1+r1r2d1d2)−1

r1r2d1d2
, and ρBSA =

1
1+r1r2d1d2

|ψ⟩⟨ψ|+ r1r2d1d2
1+r1r2d1d2

I
d1d2

.

V. WHAT DETERMINES WHETHER AN ENTANGLED STATE
IS FREE OR PPT?

Similar to the BSA, we can define the best positive partial
transposition approximation (BPPTA) [60, 61]. In analogy to
the analysis of the BSA, we can describe the properties and
characterization of the BPPTA. The BPPTA can naturally serve
as a quantification of entanglement. We can easily conclude
that the boundary between the PPT states and the non-PPT
states overlaps with the boundary of the BPPTA. Moreover,
the separable boundary and the PPT boundary, overlap in some
cases. In particular, the two boundaries completely overlap in
the case of low dimension (no PPT entangled state and no
BPTTA).

Theorem 3. An arbitrary (normalized) density matrix ρ with
ρ = ΛρOE + (1 − Λ)ρOS has a unique decomposition in the
form of

ρ = ΛRρ
OE + (1− ΛR)ρ

BPPTA; ΛR ∈ [0, 1], (19)

where ρBPPTA = Λ−ΛR

1−ΛR
ρOE+ 1−Λ

1−ΛR
ρOS is the BPPTA of ρ,

and the remainder weight of the optimal entangled state ΛR is
the threshold (the minimum number, and 1−ΛR is maximal)
such that ρBPPTA is PPT, ΛR ≤ Λr, tS ≤ tPPT = Λ − ΛR
for the same family, and Λr is the weight in Eq. (13), tPPT
denotes the threshold from PPT to non-PPT.

Remark 3. As the weight of the optimal entangled state
t increases from 0 to 1 in Eq. (12), the separability of ρt
changes. A quantitative change of the weight t in the mixture
produces a qualitative change of the resulting state. When the
weight t is beyond a threshold tS (marked as “◦”, as shown
in Fig. 2), ρt changes from a separable state to an entangled
state. When the weight t is beyond another threshold tPPT
(marked as “□”, as shown in Fig. 2), ρt changes from a PPT
state to a non-PPT state.

A fact worth mentioning is that PPT optimal entangled
states exist. Since an unextendible product basis (UPB)
[55, 62] for a quantum system is an incomplete orthogonal
product basis whose complementary subspace contains no
product state, we can construct optimal entangled states by
the complementary subspace of UPB.

Corollary 5. The state that corresponds to the uniform mix-
ture on the space complementary to a UPB {ψi : i = 1, . . . , n}
in a Hilbert space of total dimension D

ρ̄ =
1

D − n
(1−

n∑
j=1

|ψj⟩⟨ψj |), (20)

is a PPT optimal (bound) entangled state.
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VI. THE MULTIPARTITE SCENARIO

Multipartite entanglement plays a key role in quantum
computing [63, 64], measurement based quantum computing
[65], quantum phase transition [66], and even in transport
efficiency in biological systems [67]. Investigating quantum
many-body systems has become a fundament task [68, 69].
Consider a finite-dimensional composite Hilbert space H =
H1 ⊗ H2 · · ·Hn. The quantum state σ in such a system is
called fully separable if it can be written as

σ =
∑
k

pk|φk1⟩⟨φk1 | ⊗ φk2⟩⟨φk2 | ⊗ · · ·φkn⟩⟨φkn|, (21)

where pk is a probability distribution and each ⟨φki | is a
pure state of Hi, for i = 1, 2, · · · , n. If a quantum state ρ
cannot be written as the form of Eq. (21), it is referred to as
multipartite entangled. There are many categories of partial
separability and there is a plethora of m-sparable definitions
in the multipartite case where the state is the product of m
terms. For more richer definitions of m-partite separabilitiy
and entanglement of m systems A1 · · ·Am, we refer the reader
to [4, 5, 70].

While the BSA of the multipartite diagonal symmetric state
has been analytically expressed [36], the general multipartite
setting remains quite unexplored. Our results on the internal
structure of entanglement and separability in bipartite systems
can naturally be extended to the multipartite setting. However,
the internal structure and decomposition of a quantum state
in multipartite systems is much richer than the bipartite
systems, and the complexity of the internal structure and
separability problem increases substantially when we study
multipartite systems. Since the definition and characterization
of m−partite (full) separability in terms of positive, but
not completely positive, maps and entanglement witnesses
were generalized in a natural way [70], we can naturally
introduce the concept of m−partite (full) finer and optimal
entangled states as well as m−partite (full) finer and optimal
separable states. However, it is not a trivial extension of the
internal structure of entanglement and separability of bipartite
systems. Without loss of generality, here we consider finite-
dimensional three systems A,B,C, i.e., HABC = HA⊗HB⊗
Hc, there exist seven categories of optimal entangled states
(AB,BC,AC,AB|C,A|BC,B|AC,ABC), as shown in Fig.
3.

Theorem 4. An arbitrary tripartite density matrix ρ acting
on HABC has a unique general decomposition in the form

ρ = Λ0ρ
OS
ABC + Λ1ρ

OS
AB + Λ2ρ

OS
BC + Λ3ρ

OS
AC +

Λ4ρ
OS
AB|C + Λ5ρ

OS
A|BC + Λ6ρ

OS
B|AC + Λ7ρ

OE
AB +

Λ8ρ
OE
BC + Λ9ρ

OE
AC + Λ10ρ

OE
AB|C + Λ11ρ

OE
A|BC +

Λ12ρ
OE
B|AC + (1−

12∑
i=0

Λi)ρ
OE
ABC , (22)

where {Λi}12i=0 ∈ [0, 1], ρOSABC denotes the (full) tripartite
optimal separable state of ρ, ρOEABC denotes the (genuinely)
tripartite optimal entangled state of ρ, ρOSAB , ρ

OS
BC , and ρOSAC

denotes the bipartite optimal separable state of ρ, ρOEAB , ρ
OE
BC ,

and ρOEAC denotes the bipartite optimal entangled state of ρ,

ρOSAB|C , ρ
OS
A|BC , and ρOSC|AB denote tripartite bipartite-separable

optimal separable states of ρ, and ρOEAB|C , ρ
OE
A|BC , and ρOEC|AB

denote tripartite bipartite-entangled optimal entangled states of
ρ.

We sketch the proof of Theorem 4.
Proof.— (i) According to the above analysis, for finite-

dimensional HABC , there exists a category of full (tripar-
tite) separable states and a category of the corresponding
full (tripartite) optimal separable states, which is denoted as
ρOSABC . And there also exists a category of entangled states
which cannot be written as a convex sum of projectors onto
tripartite or bipartite product vectors and a category of the
corresponding optimal entangled states, which is denoted as
ρOEABC .

(ii) Referring to Ref. [72], for finite-dimensional HABC ,
there exist 6 categories (AB,BC,AC,AB|C,A|BC,B|AC)
of bipartite separable (bipartite entangled) states, and 6
categories of the corresponding optimal bipartite separable
(optimal bipartite entangled) states, which are denoted as
ρOSAB , ρ

OS
BC , ρOSAC , ρOSAB|C , ρ

OS
A|BC , and ρOSC|AB (ρOEAB , ρ

OE
BC , ρOEAC ,

ρOEAB|C , ρ
OE
A|BC , and ρOEC|AB), respectively.

By (i), (ii), and Theorem 1, we draw our conclusion. □
Note that ρOSAB|C and ρOEAB|C overlap because a quantum

state ρAB|C might be optimal separable for system AB and
system C, but it might also be optimal entangled for system
A and system B, as shown in Fig. 3.
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Fig. 3. (Color online) Schematic structure of the tripartite scenario. The blue
triangle depicts (full) tripartite optimal separable states. Right next to them are
full separable states. Parts marked as A-BC&B-AC&C-AB denote states that
belong to all kinds of bipartite entangled states and that do not belong to full
separable states [71]. The outside of 3 overlapping circles denotes (genuinely)
tripartite entangled states. The tripartite bipartite-separable optimal separable
state and the tripartite bipartite-entangled optimal entangled state overlap.
Note that the decomposition of the tripartite state isn’t depicted and partial
geometry properties of the tripartite state aren’t shown here.
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VII. ALGORITHMS AND ILLUSTRATIONS

A. A general method for an arbitrary quantum state

Before we proceed, we need a Lemma.
Lemma 5. For an orthogonal (partially or completely)

entangled basis [55] {|ψi⟩}mi=1, if the convex mixture ρ =∑m
i=1 ki|ψi⟩⟨ψi| is separable for any {ki > 0}mi=1 and∑m
i=1 ki = 1, ρ is (separable) optimal.
To prove Lemma 5, we need another Lemma.
Lemma 6 [3, 52]. There exists an (common) entanglement

witness W detected by an entangled state ρ1 and an entangled
state ρ2 if and only if for any k ∈ [0, 1], ρ = kρ1 +(1− k)ρ2
is an entangled state.

Proof.— Without loss of generality, suppose m equals 2. By
Lemma 6, there exists a k > 0 such that ρk = k|ψ1⟩⟨ψ1| +
(1− k)|ψ2⟩⟨ψ2| is separable.

Suppose k0 is the minimum number such that ρk0 =
k0|ψ1⟩⟨ψ1| + (1 − k0)|ψ2⟩⟨ψ2| is separable. Let us assume
that ρk0 is not optimal. So there exists at least a Ω > 0 such
that (unnormalized) ρΩk0 = k0|ψ1⟩⟨ψ1|+(1−k0)|ψ2⟩⟨ψ2|−ϵΩ
is finer (separable) than ρk0 by Corollary 2, and there exists
a Θ = Θ† such that tr(ρΩk0Θ) < 0 for all tr(ρk0Θ) < 0.

Without loss of generality, suppose Θ = t0ρk0+t1T1, where
T1 is contained in {ρk0}⊥. By tr(ρk0Θ) < 0, t0 < 0 and t1
is any real number. There must exists at least one Θ with
tr(T1Ω) ̸= 0 such that tr(ρΩk0Θ) ≥ 0. ρΩk0 is not finer than
ρk0 . Therefore, ρk0 is separable optimal by Corollary 2. □

For a given quantum state, neither its optimal entangled
state nor its optimal separable state is easy to obtain. The
weight of the optimal entangled state cannot easily be known
because it is not the maximum number to keep the positivity of
the resulting operator even if the subtracted optimal entangled
state is known. Fortunately, we have a method to obtain its
optimal separable state and its optimal entangled state for an
arbitrary state, as shown in Algorithm 1.

From Algorithm 1, we can know that it is not easy for
Step (iv) in Algorithm 1 because it is the procedure that, by
“consuming” entangled eigen-ensembles without any common
entanglement witness, produces optimal separable states and
leaves the entangled eigen-ensembles being optimal entangled
states which cannot “counteract” each other’s entanglement
into separability. Note that if the eigenvalues of a density
matrix are degenerate, its spectral decomposition is not unique.
However, the eigenspace of degenerate eigenvalues is unique.
Therefore, the result of Algorithm 1 is unique.

A fact worth discussing is what the complexity of Algorithm
1 is. Before we proceed, we need a result from Brandão and
Vianna [74].

Lemma 7 [74]. The determination of the optimal entan-
glement witness for an arbitrary state is a nondeterministic
polynomial-time (NP) hard problem.

We have the following result.
Theorem 5 The determination of the optimal entangled state

(for an arbitrary entanglement witness) is a nondeterministic
polynomial-time (NP) hard problem.

Proof.— By Lemma 7, the determination of the optimal
entanglement witness for an arbitrary state is a NP hard
problem. According to the duality of the entangled state and

the entanglement witness and entangled states in the role of
high-level witnesses [3], we conclude our result. □

Algorithm 1 A general method for the optimal entangled
state and the optimal separable state of an arbitrary
quantum state
(i) Split the eigen-ensemble [73] of ρ into two parts, the en-
tangled eigenvectors (marked as {|ψEi ⟩}

n1
i=1 with eigenvalues

{λEi }
n1
i=1, respectively) and the separable eigenvectors (marked

as {|ψSi ⟩}
n2
i=1 with eigenvalues {λSi }

n2
i=1, respectively).

(ii) If there exists at least one common entanglement witness
for all entangled eigenvectors, the (unnormalized) optimal
entangled state of ρ is ρOE =

∑nE

i=1 λ
E
i |ψEi ⟩⟨ψEi | and

the (unnormalized) optimal separable state of ρ is ρOS =∑nS

i=1 λ
S
i |ψSi ⟩⟨ψSi |.

(iii) Divide all the entangled eigenvectors into subsets, each
containing all entangled eigenvectors without any common
entanglement witness (some subsets probably contain only one
entangled eigenvector)2.
(iv) Split each subset into the optimal entangled part and the
optimal separable part.
Without loss of generality, suppose there are two (normal-
ized) eigenvectors |ψE1 ⟩, |ψE2 ⟩ with eigenvalues λE1 , λ

E
2 , re-

spectively in a certain subset. Suppose t0 is the minimum
number such that ρt0 = t0|ψE1 ⟩⟨ψE1 | + (1 − t0)|ψE2 ⟩⟨ψE2 |
is separable. According to Lemma 5, if λE

1

λE
2

> t0
1−t0 ,

{(λE1 − t0
1−t0λ

E
2 )|ψE1 ⟩⟨ψE1 |} is the optimal entangled part

of the subset and { t0
1−t0λ

E
2 |ψE1 ⟩⟨ψE1 | + λE2 |ψE2 ⟩⟨ψE2 |} is the

optimal separable part of the subset, else if λE
1

λE
2

< t0
1−t0 ,

{(λE2 − 1−t0
t0

λE1 )|ψE2 ⟩⟨ψE2 |} is the optimal entangled part of the
subset and {λE1 |ψE1 ⟩⟨ψE1 |+ 1−t0

t0
λE1 |ψE2 ⟩⟨ψE2 |} is the optimal

separable part of the subset, else (λ
E
1

λE
2

≡ t0
1−t0 ) there is no

optimal entangled part and {λE1 |ψE1 ⟩⟨ψE1 |+ λE2 |ψE2 ⟩⟨ψE2 |} is
the optimal separable part.
(v) Mix all the optimal entangled parts of all subsets. The
mixture just denotes the optimal entangled part of the state
ρ. Mix all the optimal separable parts of all subsets and all
separable eigenvectors in Step (i) into the optimal separable
part of the state ρ.

To illustrate the algorithm, consider the Werner state. The
spectral decomposition for

ρp = p|ψ+⟩⟨ψ+|+ (1− p)
I
4
, (23)

reads

ρp =
1− p

4
|ψ0⟩⟨ψ0|+

1− p

4
|ψ1⟩⟨ψ1|

+
1− p

4
|ψ2⟩⟨ψ2|+

1 + 3p

4
|ψ3⟩⟨ψ3|, (24)

where 0 ≤ p ≤ 1, |ψ+⟩ = 1√
2
(|00⟩+ |11⟩), |ψ0⟩ = |10⟩ and

|ψ1⟩ = |01⟩ are separable, while |ψ2⟩ = 1√
2
(|00⟩ − |11⟩) and

2Note that there exists at least one common entanglement witness for
the eigenvectors in different subsets. In other words, eigenvectors within the
same subset have no common entanglement witness, but eigenvectors within
different subsets have at least one common entanglement witness.



9

|ψ3⟩ = 1√
2
(|00⟩+|11⟩) are entangled. However, |ψ2⟩ and |ψ3⟩

do not have any common entanglement witness since

1

2
·|ψ2⟩⟨ψ2|+

1

2
·|ψ3⟩⟨ψ3| =

1

2
(|0⟩⟨0|⊗|0⟩⟨0|+|1⟩⟨1|⊗|1⟩⟨1|)

is separable. The latter half of the Eq. (24) on the
right, 1−p

4 |ψ2⟩⟨ψ2| + 1+3p
4 |ψ3⟩⟨ψ3|, can be decomposed into

( 1−p4 |ψ2⟩⟨ψ2|+ 1−p
4 |ψ3⟩⟨ψ3| = 1−p

4 (|00⟩⟨00|+|11⟩⟨11|)) (the
optimal separable)+p|ψ3⟩⟨ψ3| (the optimal entangled). Thus,
Eq. (24) can be decomposed into

ρp =
1− p

4
|ψ0⟩⟨ψ0|+

1− p

4
|ψ1⟩⟨ψ1|

+(
1− p

4
|ψ2⟩⟨ψ2|+

1− p

4
|ψ3⟩⟨ψ3|) + p|ψ3⟩⟨ψ3|

= (1− p)
I
4
+ p|ψ3⟩⟨ψ3|, (25)

where I
4 is the optimal separable state with the weight 1− p

and |ψ3⟩⟨ψ3| ≡ |ψ+⟩⟨ψ+| is the optimal entangled with the
weight p.

B. A general method for the BSA decomposition

Now, we can get an operational method for the exact BSA
decomposition, as shown in Algorithm 2.

Algorithm 2 A general method for the BSA decomposition
(i) Obtain its optimal entangled state and its optimal separable
state for the given quantum state by Algorithm 1.
(ii) Calculate the threshold between the separable states and
the entangled states by other separability criteria (such as
PPT criterion [14], the cross-norm or realignment (CCNR)
criterion [20, 21], and so on) or directly obtain the threshold
by the robustness of its optimal entangled state to its optimal
separable state for a given entangled state as Lemma 4.
(iii) Obtain the BSA decomposition.

We fully illustrate our results using the Horodecki states
[26]. It is known that

σα =
2

7
|Ψ+⟩⟨Ψ+|+

α

7
σ+ +

5− α

7
σ−, (26)

are separable for 2 ≤ α ≤ 3, bound entan-
gled for 3 < α ≤ 4 and free entangled for
4 < α ≤ 5, where |Ψ+⟩ = 1√

3
(|00⟩ + |11⟩ +

|22⟩), σ+ = 1
3 (|0⟩|1⟩⟨0|⟨1|+ |1⟩|2⟩⟨1|⟨2|+ |2⟩|0⟩⟨2|⟨0|), σ− =

1
3 (|1⟩|0⟩⟨1|⟨0|+ |2⟩|1⟩⟨2|⟨1|+ |0⟩|2⟩⟨0|⟨2|).

Rewriting Eq. (26), we have

σα =
2

7
P|Ψ+⟩ +

5

7
Ωα, (27)

where P|Ψ+⟩ = |Ψ+⟩⟨Ψ+| and Ωα = α
5 σ+ + 5−α

5 σ−. It is
clear that P|Ψ+⟩ is just the optimal entangled state of σα, and
Ωα is the optimal separable states of σα.

Considering the “big” family

σtα = tP|Ψ+⟩ + (1− t)Ωα, t ∈ [0, 1], (28)

which include the Horodecki states, we can compute the two
boundaries (thresholds) at t1,2 = 2α2−10α−25±5

√
4α2−20α+25

2(α2−5α−50)

for 0 ≤ α ≤ 5 by realigning σtα according to the CCNR

[20, 21] and the PPT boundary at t = α2−5α+5
√
α(5−α)

α2−5α+25 by
positive partial transposing σtα according to the PPT criterion
[14] (codes available [75]). Note that from the perspective
of the optimal entangled state, all states in Eq. (28) belong
to the family of the optimal entangled state P|Ψ+⟩, but from
the perspective of the optimal separable states, states in Eq.
(28) belong to different families with the different optimal
separable states Ωα for different variables α.

The big Family of Horodecki States

2

2.5

3

3.5

4

4.5

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Free Entangled States
PPT Entangled States
Separalbe States
Boundary Between PPT and NonPPT
Boundary Between Separability and Entanglement
Horodecki States

Fig. 4. (Color online) The separability-entanglement boundary and the PPT-
NotPPT boundary in the big Family of Horodecki States. Quantum States with
the weight t = 2

7
of their optimal entangled state correspond to Horodecki

states. The Horodecki states are separable for 2 ≤ α ≤ 3, bound entangled for
3 < α ≤ 4 and free entangled for 4 < α ≤ 5. Whether the other members of
the big family of Horodecki states entangled or not (PPT or not) can refer to
the boundary between separability and entanglement (the boundary between
PPT and NonPPT). The separability-entanglement boundary and the PPT-
NotPPT boundary overlap at the point t = 1

3
when α = 2.5. The threshold

from separability to entanglement tS = 2
7

, and the threshold from PPT to
NonPPT tPPT = 3

8
when α = 3. All the members of the big family of

Horodecki states are entangled when α = 5.

Letting α = 2.5, the separable boundary overlaps with the
PPT boundary, and both the BSA and the BPPTA of σt2.5
are σ

1
3
2.5 = 1

3P|Ψ+⟩ +
2
3Ω2.5 for all t ≥ 1

3 . Letting α = 3,

t1(tS) =
2
7 and t2(tPPT ) =

3
8 , the BSA of σt3 is just σ

2
7
3 =

2
7P|Ψ+⟩ +

5
7Ω3 (one of the Horodecki states, as shown in Fig.

4) for t ≥ 2
7 , and the BPPTA of σt3 is σ

3
8
3 = 3

8P|Ψ+⟩+
5
8Ω3 for

t ≥ 3
8 . Letting α = 5, σt5 = t|Ψ+⟩⟨Ψ+|+(1−t)σ+ is not only

the BSA decomposition but also the BPPTA decomposition
of σt5 because the robustness of |Ψ+⟩⟨Ψ+| relative to σ+ is
infinite. Fig. 4 illustrates the schematic picture (codes available
[75]).

VIII. CONCLUSION

In summary, we showed that all quantum states, entangled
or separable, can be decomposed into two parts in the style
of seminal Werner states, one part being its optimal entangled
state, and the other part, its optimal separable state. Once a
quantum state is decomposed to this form, it will be as easy
as it is the case for the Werner state to determine whether it is
entangled or not, and whether it is PPT or not. In other words,
the separability or entanglement, as well as the PPT property,
of a quantum state can only be determined by comparing the
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weight of its optimal entangled state with a crucial threshold.
That the separability or entanglement of all quantum states
only needs to refer to the key minority greatly promotes
the separability criterion [4, 5], though it didn’t change the
fact that the determination of any quantum state entangled or
not is a nondeterministic polynomial-time (NP) hard problem
[76, 77]. Furthermore, we provided an operational method
to obtain its optimal entangled state, its optimal separable
state, its BSA decomposition, and its best PPT approximation
decomposition for any finite-dimensional bipartite quantum
state. How to calculate the BSA in high-dimension systems
was an open question. Our results can be naturally generalized
to general convex resource theories [78, 79].

Here we mainly considered the case of discrete systems on
the finite-dimensional Hilbert space. Our results in infinite-
dimensional systems might be significantly different from the
case of the discrete systems because there is no separable
neighbourhood of any mixed state in infinite-dimensional
systems [80]. Our results in continuous variable systems
also might be significantly different from the case of the
discrete systems, because the precondition of the Hahn-Banach
theorem continuous variable systems is different from the one
in discrete systems [3, 81]. These systems have not been
discussed here. Quantum entanglement lies at the centre of
quantum information and quantum computation [4, 5]. We
hope that our findings will stimulate further investigation on
quantum theory and practical applications in other fields.
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