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Abstract

We study the problem of identifying the best arm in a multi-armed bandit environment when each arm is a time-

homogeneous and ergodic discrete-time Markov process on a common, finite state space. The state evolution on each

arm is governed by the arm’s transition probability matrix (TPM). A decision entity that knows the set of arm TPMs

but not the exact mapping of the TPMs to the arms, wishes to find the index of the best arm as quickly as possible,

subject to an upper bound on the error probability. The decision entity selects one arm at a time sequentially, and all

the unselected arms continue to undergo state evolution (restless arms). For this problem, we derive the first-known

problem instance-dependent asymptotic lower bound on the growth rate of the expected time required to find the

index of the best arm, where the asymptotics is as the error probability vanishes. Further, we propose a sequential

policy that, for an input parameter R, forcibly selects an arm that has not been selected for R consecutive time

instants. We show that this policy achieves an upper bound that depends on R and is monotonically non-increasing

as R → ∞. The question of whether, in general, the limiting value of the upper bound as R → ∞ matches with the

lower bound, remains open. We identify a special case in which the upper and the lower bounds match. Prior works

on best arm identification have dealt with (a) independent and identically distributed observations from the arms, and

(b) rested Markov arms, whereas our work deals with the more difficult setting of restless Markov arms.

I. INTRODUCTION

Consider a multi-armed bandit with K ≥ 2 arms in which each arm is associated with a time-homogeneous and

ergodic discrete-time Markov process evolving on a common, finite state space. The state evolutions on each arm

are governed by the arm’s transition probability matrix (TPM). Given a function f on the common state space of

the arms, we define the best arm as the arm with the largest average value of f , averaged over the arm’s stationary

distribution. A decision entity that has knowledge of the set of TPMs of the arms, but does not know the exact

mapping of the TPMs to the arms, wishes to find the index of the best arm as quickly as possible, subject to an

upper bound on the error probability. Our interest is in the asymptotics as the error probability vanishes.

The above problem, known popularly in the literature as best arm identification, is an instance of an optimal

stopping problem in decision theory, and can be embedded within the framework of active sequential hypothesis

testing studied in the classical works of Chernoff [1] and Albert [2]. Prior works on best arm identification have

http://arxiv.org/abs/2203.15236v1
mailto:karthik@nus.edu.sg
mailto:ksreddy@nus.edu.sg
mailto:vtan@nus.edu.sg


2

dealt with (a) independent and identically distributed (i.i.d.) observations from the arms, as in [3], and (b) rested

Markov arms [4] in which the arms yield Markovian observations and an arm evolves only when selected, and

remains frozen otherwise. In this work, we extend the results of [3]–[5] to the more difficult setting when the

unselected arms continue to evolve (restless arms). An examination of the results in [3]–[5] shows that given an

error probability threshold ǫ > 0, the minimum expected expected time required to find the best arm (or, expected

stopping time) with an error probability no more than ǫ grows as O(log(1/ǫ)) in the limit as ǫ ↓ 0. We anticipate

a similar growth rate for the expected stopping time in the setting of restless arms. Our goal is to characterise or

bound the exact constant multiplying log(1/ǫ) for the setting of restless arms and attempt to achieve the lower

bound of O(log(1/ǫ)) in the limit as ǫ ↓ 0. Additionally, we aim to devise an efficient policy that achieves the

fundamental limit.

A. A Preliminary Trembling Hand Model

The continued evolution of the unselected arms in our work makes it necessary for the decision entity to keep

a record of (a) the time elapsed since each arm was previously selected (the arm’s delay), and (b) the state of

each arm recorded at its previous selection instant (the arm’s last observed state). The notion of arm delays is

superfluous when the arms are rested because the unobserved arms remain frozen. They are also redundant when

the arms yield i.i.d. observations because the observation from an arm at any given time is independent of all its

previous observations. When the arms are restless, the arm delays are non-negative, integer-valued, and introduce

a countably-infinite dimension to the problem. In a related problem of identifying an anomalous or odd arm in a

restless multi-armed bandit, Karthik and Sundaresan [6], [7] demonstrated that the arm delays and the last observed

states constitute a controlled Markov process. A key aspect of the works [6], [7] is the notion of a trembling

hand for selecting the arms that is defined in the system model. Probabilistically, a trembling hand with parameter

γ ∈ [0, 1] selects an arm uniformly at random with probability γ, and selects the intended arm with probability

1 − γ. As the authors note in [6], when γ > 0, the controlled Markov process (of arm delays and last observed

states) satisfies a key ergodicity property (see [6, Lemma 1]) which is pivotal in establishing matching upper and

lower bounds on the expected time to find the odd arm. An understanding of whether the lower bound for the case

γ = 0 admits a matching upper bound remains open.

B. Forgoing the Trembling Hand Model and Constraining the Maximum Delay of Each Arm

The trembling hand model of [6], [7] implies that at any given time, the probability of selecting any arm is at

least γ/K , irrespective of the arm selection scheme used. In this work, we forgo the trembling hand assumption and

allow for arm selection schemes to put zero mass on certain arms. We derive a lower bound on the expected time

to find the best arm over all arm selection schemes. However, such a generic lower bound may not be achievable.

In order to analyse the achievability of the lower bound, we restrict attention to those arm selection policies which,

for an input parameter R > K , forcefully select an arm if its delay is equal to R. For this class of policies, we

derive an upper bound in terms of R and show that the sequence of upper bounds, one for each value of R, is

monotonically non-increasing as R increases. An advantage of our method over the methods of [6], [7] is that while
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the arm selection schemes in [6], [7] are not practically implementable, the arm selection schemes we propose in

this paper are easy to implement.

The question of whether, in general, the limiting value of the upper bounds matches the generic lower bound

appears to be a difficult problem and remains open. Notwithstanding this, we identify some special cases when the

limiting value of the upper bounds matches with the generic lower bound.

C. Prior Works on Multi-Armed Bandits and Best Arm Identification

The problem of minimising regret for multi-armed bandits was introduced in the seminal work of Lai and

Robbins [8] when each arm yields i.i.d. observations. Anantharam et al. [9] extended the results of Lai and Robbins

to the setting of rested arms. We refer the reader to [10] for an extensive survey of regret minimization problems.

In [3], [11], the authors derived a lower bound on the sample complexity of best arm identification in multi-armed

bandits with i.i.d. observations from arms. Many follow-up works proposed algorithms to achieve the lower bounds;

notable among them are action-elimination algorithms [12], [13], upper confidence bound (UCB) algorithms [14],

[15], and lower and upper confidence bound (LUCB) algorithms [16], [17]. Several extensions to the classical setup

of best-arm identification in multi-armed bandits have appeared in the literature; notable among them are correlated

bandits [18], cascading bandits [19], bandits with switching costs [20], and bandits with corrupted rewards [21].

For the problem of finding the best arm as quickly as possible subject to an upper bound on the error probability,

the paper [3] provided a problem instance-dependent lower bound on the expected time required to find the best

arm for the setting of i.i.d. observations from the arms, and a track-and-stop scheme that meets the lower bound

asymptotically as the error probability vanishes. Moulos [4] extended the results of [3] to the setting of rested arms

with hidden Markov observations. However, the lower and the upper bounds in [4] differ by a constant multiplicative

factor; the achievability analysis therein uses novel concentration inequalities for Markov processes derived by the

author. For a related problem of finding the anomalous (or odd) arm in multi-armed bandits, the works [6], [7],

[22] obtain matching upper and lower bounds on the expected time required to find the odd arm subject to an

upper bound on the error probability. While [22] studies the setting of rested arms, the works [6], [7] focus on the

setting of restless arms. A key aspect of the works [6], [7] is a certain trembling hand model for selecting the arms,

motivated from a certain visual science experiment. The paper [6] assumes that the TPMs of the odd arm and the

non-odd arms are known beforehand to the decision entity, whereas the works [7], [22] deal with the case when

the arm TPMs are unknown.

The recent works [23]–[25] study a more general problem of sequential hypothesis testing in multi-armed bandits,

some special cases of which are the problems of best arm identification and odd arm identification, in the context

of i.i.d. observations from each arm. An extension of the results of [23]–[25] to the settings of rested and restless

arms is a possible direction of future work.

D. Contributions

In this paper, we study the problem of finding the best arm in a restless multi-armed bandit as quickly as possible,

subject to an upper bound on the error probability. Our technical contributions are as follows:
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– In Section V, we show that given any ǫ > 0, the expected time required to find the best arm with an error

probability no more than ǫ grows as O(log(1/ǫ)) in the limit as ǫ ↓ 0. We explicitly characterise the problem

instance-dependent constant multiplying log(1/ǫ) that is a function of the arm TPMs.

– For a problem instance C, the constant T ⋆(C) appearing in our lower bound is the solution of a sup-min

optimisation problem, where the supremum is over all possible state-action occupancy measures associated

with the countable-state controlled Markov process of arm delays and last observed states; see (21) for details.

The question of whether the supremum in the expression for T ⋆(C) lower bound is attained is still open.

The key difficulty in showing this is the presence of the countably-infinite valued arm delays appearing in the

expression for T ⋆(C), which makes further simplifications of the expression for T ⋆(C) difficult. In the prior

works [3]–[5], further simplification of the expression for the constants governing the lower bound is possible

because the notion of arm delays is superfluous in the settings of those works.

In a related problem of odd arm identification in restless multi-armed bandits, Karthik and Sundaresan [6],

[7] show that under a trembling hand model for arms selection, the supremum in the expression for the lower

bounds in these works may be further simplified by restricting the supremum to the class of all stationary arm

selection policies; see [6], [7] for more details. However, it is unclear if such a simplification is possible in

the absence of the trembling hand (as is the setting of this paper).

– In our achievability analysis presented in Section VI, to ameliorate the difficulty arising from the countably

infinite-valued arm delays, we constrain the maximum delay of each arm to be no more than R, and focus our

attention on those policies which select an arm forcibly if its delay equals R. This constraint on the maximum

delay of each arm makes the state-action space finite and amenable to further analyses. To the best of our

knowledge, this is the first work to analyse delay-constrained policies for restless multi-armed bandits.

It is worth noting that the achievability analyses in the works [6], [7] rely crucially on a key ergodicity property

(see [6, Lemma 1]) for the controlled Markov process of arm delays and last observed states that is satisfied

under a trembling hand model for arms selection. This ergodicity property is pivotal to the achievability analysis

in [6], [7], and it is unclear if the same property holds in the absence of the trembling hand.

– We devise a policy that, for an input parameter R, forcibly pulls an arm if its delay equals R, and achieves an

upper bound of the order Θ(log(1/ǫ)). We show that the best (smallest) constant multiplying log(1/ǫ) is equal

to 1/T ⋆R(C) under the problem instance C; see (27) for the exact expression of T ⋆R(C). Our results imply that

1/T ⋆R(C) is a valid asymptotic upper bound on the expected stopping time for all integers R.

– We show that T ⋆R(C) is non-decreasing in R, and that T ∗
R(C) ≤ T ⋆(C) for all R, thus implying that

limR→∞ T ⋆R(C) exists. Thus, the lower bound of our work is given by T ⋆(C)−1, whereas the upper bound

is governed by limR→∞ T ⋆R(C)
−1. While it is certainly true that limR→∞ T ⋆R(C) ≤ T ⋆(C), showing that, in

general, this inequality is an equality seems to be a difficult problem and remains open. In the special case

when the TPM of each arm has identical rows, which is akin to obtaining i.i.d. observations from the arms,

the above inequality is an equality, thus leading to matching upper and lower bounds in this special setting.

We are thus able to recover the results of the prior works [3], [5] for the case when the i.i.d. observations

from each arm come from a finite alphabet.
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E. Paper Organisation

The rest of this paper is organised as follows. In Section II, we setup the notations and state our central goal.

In Section III, we introduce the notions of arm delays, last observed states, and the Markov decision problem

arising from the arm delays and the last observed states. We provide expressions for the log-likelihoods and the

log-likelihood ratios, the basic quantities of analysis, in Section IV, and present the asymptotic lower bound on

the growth rate of the expected time required to find the best arm in Section V. In Section VI, we constrain the

maximum delay of each arm to be no more than R for some R ∈ N ∩ (K,∞), and describe a policy that forcibly

samples an arm whose delay equals R. We provide results on the performance of the policy in Section VII, and

state the main result in Section VIII. We discuss the convergence of T ⋆R(C) to T ⋆(C) as R → ∞ in Section IX,

where we show that the convergence takes place in the special case when the TPM of each arm has identical rows.

We conclude the paper in Section X. The proofs of all the results are contained in Appendices A-I.

II. NOTATIONS AND PRELIMINARIES

We consider a multi-armed bandit with K ≥ 2 arms, and define A := {1, . . . ,K} to be the set of arms. We

associate with each arm an ergodic discrete-time Markov process on a common, finite state space S. We assume

that the Markov process of each arm is independent of those of the other arms. We write {Xa
t : t ≥ 0} denote the

Markov process of arm a ∈ A.1 The state evolution on each arm is governed by its transition probability matrix

(TPM). Given TPMs P1, . . . , PK and a permutation σ : {1, . . . ,K} → {1, . . . ,K}, let C = (Pσ(1), . . . , Pσ(K))

denote an assignment of the TPMs to the arms in which the TPM assigned to arm a is Pσ(a). In the sequel, we

refer to C as an assignment of the TPMs, and we let C denote the collection of all possible assignments of the

TPMs, i.e.,

C = {(Pσ(1), . . . , Pσ(K)) : σ is a permutation on A}. (1)

For each k = 1, . . . ,K , let µk = {µk(i) : i ∈ S} denote the unique stationary distribution of the TPM Pk. Given

a function f : S → R, let

νa :=
∑

i∈S

f(i)µa(i), a ∈ A, (2)

denote the average value of f under µa. Define the best arm a⋆ ∈ A as

a⋆ := argmax
a∈A

νa = argmax
a∈A

∑

i∈S

f(i)µa(i). (3)

We assume throughout the paper that a⋆ is unique. Without loss of generality, let Pa⋆ = P1.
2

For an integer d ≥ 1 and a matrix P , let P d denote the matrix obtained by multiplying P with itself d times. For

i, j ∈ S and d ≥ 1, let P d(j|i) to denote the (i, j)th element of P d. For a ∈ A, let each row of Pa be mutually

absolutely continuous with the corresponding row of Pa′ for all a′ 6= a. It is easy to see that this implies that

for all d ≥ 1, each row of P da is mutually absolutely continuous with the corresponding row of P da′ . The above

1Throughout the paper, time t ∈ {0, 1, 2, . . .}.

2The reader may recognise that this does not necessarily imply a⋆ = 1.
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assumption implies that the decision entity cannot infer the best arm merely by observing certain specific state(s)

or state-transition(s) on the arm.

A decision entity that knows P1, . . . , PK only up to a permutation wishes to find the index of the best arm (i.e.,

the arm whose TPM is P1) as quickly as possible, subject to an upper bound on the error probability. Clearly, this

is accomplished if the decision entity finds C ∈ C that defines the problem instance. Given C ∈ C, we write Alt(C)

to denote the set of all assignments of the TPMs alternative to C, i.e., those assignments of the TPMs in which

the location of the best arm is different from the one in C. In order to find the index of the best arm in a problem

instance C, the decision entity selects the arms sequentially, one at each time t. Let At be the arm selected at time

t. The decision entity observes the state of the arm At, denoted by X̄t. In contrast to the previous works [3]–[5]

that deal with i.i.d. observations from the arms and rested arms, we assume that the unobserved arms continue to

undergo state evolution whether or not they are selected (restless arms). Let (A0:t, X̄0:t) := (A0, X̄0, . . . , At X̄t)

denote the history of all the arm selections and observations seen up to time t. All random variables are defined

on a common probability space (Ω,F ,P). Define the filtration

F0 := {Ω, ∅}, Ft := σ(A0:t−1, X̄0:t−1), t ≥ 1. (4)

A. Policy and Problem Definition

A policy π is defined by a collection of functions {πt : t ≥ 0}. At each time t, πt does one of the following

based on the history Ft:

• stop and declare the index of the best arm;

• choose to pull arm At according to a deterministic or a randomised rule.

Let π denote a generic policy, and let τ(π) denote the stopping time of policy π (defined with respect to the

filtration (4)). Let θ(τ(π)) denote the index of the best arm declared by the policy π at the stopping time.

Let P πC(·) denote the probability computed under the assignment of the TPMs C and under the policy π. For

a ∈ A, let Ca ⊂ C denote the collection of all permutations in which Pa = P1. Clearly, the collection {Ca : a ∈ A}
is a partition of C. Given an error probability threshold ǫ > 0, let

Π(ǫ) := {π : for all a ∈ A, P πC(θ(τ(π)) 6= a) ≤ ǫ ∀C ∈ Ca} (5)

denote the collection of all policies whose error probability at the stopping time is no more than ǫ for all possible

assignments of TPMs. We anticipate from similar results in the prior works [3]–[5] that

inf
π∈Π(ǫ)

E
π
C [τ(π)] = Θ(log(1/ǫ)).

Here, EπC [·] denotes the expectation under the assignment of the TPMs C and policy π. Our interest is in charac-

terising, or at least bounding, the value of

lim
ǫ↓0

inf
π∈Π(ǫ)

EπC [τ(π)]

log(1/ǫ)
. (6)

For simplicity, we assume that every policy starts by selecting arm 1 at time t = 0, arm 2 at time t = 1, etc., and

arm K at time t = K − 1. This ensures that the Markov process of each arm is observed at least once.
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III. DELAYS, LAST OBSERVED STATES, AND A MARKOV DECISION PROBLEM

The contents of this section are mostly borrowed from [6, Section II-B, II-C], but modified appropriately to reflect

the absence of the trembling hand assumption of [6], with an intent to keep the material in the paper self-contained.

Recall that the decision entity observes only one of the arms at each time t, while the unobserved arms continue to

undergo state evolution. This means that at any time t, the probability of the observation X̄t on the selected arm

At given the history Ft is a function of (a) the time elapsed since the previous time instant of selection of arm

At (called the delay of arm At), and (b) the state of arm At at its previous selection time instant (called the last

observed state of arm At). Notice that when the arms are rested, the notion of arm delays is superfluous since each

arm remains frozen at its previously observed state until its next selection time instant. Also, the notion of arm

delays is redundant in the setting of iid observations because the current state of the arm selected is independent of

the state at its previous selection. The notion of arm delays is a key distinguishing feature of the setting of restless

arms.

For t ≥ K , let da(t) and ia(t) respectively denote the delay and the last observed state of arm a at time t. Let

d(t) := (d1(t), . . . , dK(t)) and i(t) := (i1(t), . . . , iK(t)) denote the vectors of arm delays and the last observed

states at time t. Note that arm delays and last observed states are defined only for t ≥ K as these quantities are

well-defined only when at least one observation is available from each arm. Set d(K) = (K,K − 1, . . . , 1). Thus,

da(t) ≥ 1 for all t ≥ K , and that da(t) = 1 if and only if arm a is selected at time t− 1.

The rule for updating the arm delays and last observed states is as follows: if At = a′, then

da(t+ 1) =





da(t) + 1, a 6= a′,

1, a = a′,

ia(t+ 1) =





ia(t), a 6= a′,

Xa
t , a = a′,

(7)

where Xa
t = X̄t is the state of the arm At = a′ at time t. Thus, for all t ≥ K , based on {(d(s), i(s)) : K ≤ s ≤ t},

the decision entity chooses to pull At and observes X̄t.
3 It then form (d(t + 1), i(t + 1)). This repeats until the

stopping time, at which time it declares θ(τ(π)) (under policy π) as the candidate best arm.

From the update rule in (7), it is clear that the process {(d(t), i(t)) : t ≥ K} takes values in a subset S of the

countable set NK × SK , where N = {1, 2, . . .} denotes the set of natural numbers. The subset S is formed based

on the constraint that at any time t ≥ K , exactly one of the components of d(t) is equal to 1, and all the other

components are > 1. Given any assignment of the TPMs C ∈ C and policy π, note that for all (d′, i′) ∈ S and

t ≥ K ,

P πC(d(t+ 1) = d′, i(t+ 1) = i′ | {(d(s), i(s)), K ≤ s ≤ t}, A0:t)

= P πC(d(t+ 1) = d′, i(t+ 1) = i′ | (d(t), i(t)), At). (8)

On account of (8) being satisfied, we say that under any policy π, the evolution of the process {(d(t), i(t)) : t ≥ K}
is controlled by the sequence {At}t≥0 of intended arm selections under policy π. Alternatively, {(d(t), i(t)) : t ≥ K}
is a controlled Markov process, with {At}t≥0 being the sequence of controls.4 Thus, we are in a Markov decision

3Note that specifying {(d(s), i(s)) : K ≤ s ≤ t} is equivalent to specifying (A0:t−1, X̄0:t−1) for all t ≥ K .

4The terminology used here follows that of Borkar [26].
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problem (MDP) setting. We now make precise the state space, the action space, the transition probabilities and our

objective.

The state space of the MDP is S, with the state at time t denoted (d(t), i(t)). The action space of the MDP is

A, with action At at time t possibly depending on the history Ft. The transition probabilities for the MDP under

an assignment of the TPMs C ∈ C and a policy π are given by

P πC(d(t+ 1) = d′, i(t+ 1) = i′ | d(t) = d, i(t) = i, At = a)

=





(P aC)
da(i′a|ia), if d′a = 1 and d′ã = dã + 1 for all ã 6= a,

i′ã = iã for all ã 6= a,

0, otherwise,

(9)

where P aC denotes the TPM of arm a under the assignment of the TPMs C. For instance, if C = (P1, . . . , PK),

then P aC = Pa for all a ∈ A. Note that the right hand side of (9) is not a function of t or π. Let QC(d
′, i′|d, i, a)

denote the transition probabilities in (9).

IV. LOG-LIKELIHOODS AND LOG-LIKELIHOOD RATIOS

Given C ∈ C, let

ZπC(n) := logP πC(A0:n, X̄0:n) (10)

denote the log-likelihood of all the controls and observations seen up to time n under the policy π when C is the

assignment of the TPMs. Under the assumption that π selects arm 1 at time t = 0, arm 2 at time t = 1, etc., and

arm K at time K − 1, (10) may be expressed as

ZπC(n) =

K∑

a=1

logP πC(X
a
a−1) (11)

+

n∑

t=K

logP πC(At|A0:t−1, X̄0:t−1) (12)

+

n∑

t=K

logP πC(X̄t|A0:t, X̄0:t−1). (13)

Because π is oblivious to the assignment of the TPMs C, (12) does not depend on C. Furthermore, (13) may be

expressed as

n∑

t=K

logP πC(X̄t|A0:t, X̄0:t−1) =
n∑

t=K

K∑

a=1

I{At=a} logP πC(X̄t|A0:t−1, At = a, X̄0:t−1)

=

n∑

t=K

∑

(d,i)∈S

K∑

a=1

I{d(t)=d, i(t)=i, At=a} log(P aC)
da(X̄t|ia)

=

n∑

t=K

∑

(d,i)∈S

K∑

a=1

∑

j∈S

I{d(t)=d, i(t)=i, At=a, X̄t=j} log(P aC)
da(j|ia)

=
∑

(d,i)∈S

K∑

a=1

∑

j∈S

N(n, d, i, a, j) log(P aC)
da(j|ia), (14)
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where

N(n, d, i, a, j) :=

n∑

t=K

I{d(t)=d, i(t)=i, At=a, X̄t=j} (15)

denotes the number of times up to time n the process {(d(t), i(t)) : t ≥ K} is in the state (d, i), arm a is selected

subsequently, and the state of arm a is observed to be j. Let

N(n, d, i, a) :=
∑

j∈S

N(n, d, i, a, j), N(n, d, i) :=

K∑

a=1

∑

j∈S

N(n, d, i, a, j). (16)

Given C,C′ ∈ C, let

ZπCC′(n) := ZπC(n)− ZπC′(n) = log
P πC(A0:n, X̄0:n)

P πC′(A0:n, X̄0:n)
(17)

denote the log-likelihood ratio (LLR) of the controls and observations seen under the policy π when the assignment

of the TPMs is C with respect to that when the assignment of the TPMs is C′. Using (14) in conjunction with the

fact that (12) does not depend on C, we get

ZπCC′(n) =

K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

+
∑

(d,i)∈S

K∑

a=1

∑

j∈S

N(n, d, i, a, j) log
(P aC)

da(j|ia)
(P aC′)da(j|ia)

. (18)

V. LOWER BOUND

We now present a lower bound for (6). Given two probability distributions µ and ν on the finite state space S,

the Kullback–Leibler (KL) divergence (also called the relative entropy) between µ and ν is defined as

DKL(µ‖ν) :=
∑

i∈S

µ(i) log
µ(i)

ν(i)
, (19)

where, by convention, 0 log 0
0 = 0.

Proposition 1: Suppose C ∈ C is the underlying assignment of the TPMs. Then,

lim inf
ǫ↓0

inf
π∈Π(ǫ)

E
π
C [τ(π)]

log(1/ǫ)
≥ 1

T ⋆(C)
, (20)

where T ⋆(C) is given by

T ⋆(C) := sup
ν

min
C′∈Alt(C)

∑

(d,i)∈S

K∑

a=1

ν(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia)). (21)

In (21), the supremum is over all ν = {ν(d, i, a) : (d, i) ∈ S, a ∈ A} satisfying

∑

(d,i)∈S

K∑

a=1

ν(d, i, a) = 1, (22)

ν(d, i, a) ≥ 0 for all (d, i, a) ∈ S×A. (23)

Proof: The proof proceeds in several steps. First, we derive an analogue of the ubiquitous change-of-measure

result [5, Lemma 18] for the setting of restless arms. We then lower bound the expected LLR of any policy whose

stoppage error probability is at most ǫ by d(ǫ, 1 − ǫ), where d(x, y) denotes the relative entropy between two

Bernoulli distributions with parameters x and y. Next, we derive an upper bound on the expected LLR in terms of

the expected stopping time. This involves deriving an analogue of Wald’s identity for the setting of restless arms.

Combining the upper and the lower bounds for the expected LLR, we get (20). The details are in Appendix A.



10

A. A Flow Constraint

Notice that T ⋆(C) is the optimal value of an infinite-dimensional linear program (LP). The question of whether

there exists ν attaining the supremum in (21) remains open. The key difficulty in showing this is that because the

set S is countably infinite, it is not clear whether the set of all ν satisfying (22)-(23) (which is akin to the space of

all probability distributions on S×A) is compact. Also, because this supremum is over all probability distributions

on S×A which is a large class of distributions, the lower bound in (20) may not be achievable. It seems necessary

to introduce additional constraints on ν to render the lower bound achievable. Indeed, given δ > 0, suppose νδ is

a probability distribution on S×A such that

min
C′∈Alt(C)

∑

(d,i)∈S

K∑

a=1

νδ(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia)) ≥ T ⋆(C)− δ.

One way to achieve the quantity on the left hand side of the above equation is to ensure that for all (d, i, a) ∈ S×A,

the value of the fraction N(n, d, i, a)/n is close to νδ(d, i, a) for all n large (the regime of large n is akin to the

regime of vanishing error probabilities). It seems difficult to accomplish this in the absence of more structure on

νδ. It is worth noting here that in a related problem of odd arm identification, the authors of [6] are confronted

with a similar difficulty in showing the achievability of the lower bound therein. To ameliorate the difficulty, they

introduce a version of the following flow constraint on ν:

flow constraint :

K∑

a=1

ν(d′, i′, a) =
∑

(d,i)∈S

K∑

a=1

ν(d, i, a) QC(d
′, i′|d, i, a) for all (d′, i′) ∈ S. (24)

In (24), QC is the MDP transition matrix defined in (9). The flow constraint is, in fact, a global balance equation,

and dictates that for any (d′, i′) ∈ S, the long-term probability of a transition from (d′, i′) (the flow out of (d′, i′),

captured by the left hand side of (24)) is equal to the probability of a transition to (d′, i′) (the flow into (d′, i′),

captured by the right hand side of (24)). The authors of [6] show that their lower bound, after including the flow

constraint, can be achieved by a certain trembling hand-based policy; see [6, Section V] for a description of the

policy. However, the policy in [6] is not practically implementable.

With an end goal of showing achievability of our lower bound, we take (24) into consideration along with (22)-

(23) when evaluating the supremum in (21), and wish to design a policy that (a) is computationally feasible/tractable

and easy-to-implement, and (b) achieves the lower bound in (20). This forms the content of the next section.

VI. ACHIEVABILITY

As alluded to in the previous section, the trembling hand-based policy of [6] is not practically implementable.

One reason for this is that the arm delays (which appear in the policy of [6]) take countably infinitely many values

and therefore cannot be handled on a machine with finite-size memory. To alleviate the difficulty arising from

the countably infinite-valued arm delays, we study a simplified setting where the maximum delay of each arm is

restricted to be at most R for some R ∈ N ∩ (K,∞),5 and an arm whose delay is equal to R at any given time

is forcibly selected in the following time instant. Let SR denote the subset of S in which the delay of each arm is

5We consider R > K to be consistent with our assumption that each of the arms is sampled once in the first K time instants.
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no more than R. Further, for a ∈ A, let SR,a denote the subset of SR in which the delay of arm a is equal to R.

Notice that SR,a is a finite set for each a and that SR,a and SR,a′ are disjoint for all a′ 6= a.

A. Modifications to the MDP Transition Probabilities Under Maximum Delay Constraint

Recall that {(d(t), i(t)) : t ≥ K} and {At : t ≥ 0} together define a Markov decision problem (MDP) whose

state space is S, the action space is A, the state at time t is (d(t), i(t)), and the control (or action) at time t is At.

From Section III, we know that the transition probabilities of the MDP are given by (9). When the delay of each

arm is constrained to be no more than R, the modified state space of the MDP is SR, and the modified transition

probabilities for the MDP are as follows:

• Case 1: (d, i) /∈ ⋃Ka=1 SR,a. In this case, the transition probabilities are as in (9).

• Case 2: (d, i) ∈ SR,a for some a ∈ A. In this case, when At = a,

P πC(d(t+ 1) = d′, i(t+ 1) = i′ | d(t) = d, i(t) = i, At = a)

=






(P aC)
R(i′a|ia), if d′a = 1 and d′ã = dã + 1 for all ã 6= a,

i′ã = iã for all ã 6= a,

0, otherwise,

(25)

and when At 6= a, the transition probabilities are undefined.

We write QC,R(d
′, i′|d, i, a) to denote the transition probabilities in (25).

B. Capturing the Maximum Delay Constraint and a Finite Dimensional Linear Program

Recall that in the absence of any constraints on the maximum delay of each arm, the lower bound is as in (20),

with the constant T ⋆(C) in (20) as given in (21). Further, the supremum in (21) is over all ν satisfying (22)-(24).

When the delay of each arm is constrained to be no more than R, the following additional constraint on ν comes

into play:

R-max-delay-constraint : ν(d, i, a) =

K∑

a′=1

ν(d, i, a′) for all (d, i) ∈ SR,a. (26)

The condition in (26) captures the observation that any occurrence of the state (d, i) ∈ SR,a is followed by selecting

arm a forcibly (i.e., with probability 1), thus implying that ν(d, i, a′) = 0 for all a′ 6= a which is equivalent to (26).

Let T ⋆R(C) be the optimal value of the following optimisation problem:

sup
ν

min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia)), (27)

subject to

K∑

a=1

ν(d′, i′, a) =
∑

(d,i)∈SR

K∑

a=1

ν(d, i, a) QC,R(d
′, i′|d, i, a) for all (d′, i′) ∈ SR, (28)

∑

(d,i)∈SR

K∑

a=1

ν(d, i, a) = 1, (29)
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ν(d, i, a) ≥ 0 for all (d, i, a) ∈ SR ×A, (30)

ν(d, i, a) =

K∑

a′=1

ν(d, i, a′) for all (d, i) ∈ SR,a, a ∈ A. (31)

Notice that the above optimisation problem is a finite-dimensional LP, and is the analogue of the infinite-dimensional

LP in (21) with the additional condition in (31) to account for the case when an arm is forcibly selected if its delay

equals R. Because (a) SR ×A is finite, (b) the space of all probability distributions on SR ×A (say, P(SR ×A))

is compact with respect to the topology arising from the Euclidean metric in R|SR×A|, (c) the set of all ν satisfying

(28)-(31) is a closed subset of P(SR ×A) (and therefore compact), and (d) the expression

min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))

is continuous in ν, it follows by Weierstrass extreme value theorem that there exists ν⋆C,R = {ν⋆C,R(d, i, a) :

(d, i, a) ∈ SR×A} that attains the supremum in (27). Although a closed-form expression for ν⋆C,R is not currently

available, it can easily be evaluated numerically. In the next section, we fix R ∈ N ∩ (K,∞) and design a policy

for finding the best arm that samples an arm forcibly if its delay is equal to R. Additionally, we demonstrate

that our policy (a) stops in finite time almost surely, (b) satisfies the desired error probability, and (c) achieves an

upper bound of 1/T ⋆R(C) asymptotically as the error probability vanishes. We shall see that our policy is easy to

implement as it operates on the finite set SR instead of the countable set S.

C. A Policy for Finding the Best Arm Under a Maximum Delay Constraint

Fix an R ∈ N ∩ (K,∞). In this section, we design a policy for finding the best arm when the delay of each

arm is constrained to be no more than R. Towards this, we first analyse a uniform arm selection policy that, for

all t ≥ K , selects the arms uniformly whenever the delay of each arm is < R, and forcibly selects an arm whose

delay is equal to R. Let this policy be denoted πunif
R . It is clear that {(d(t), i(t)) : t ≥ K} is a Markov process

under πunif
R with SR as its state space. The following result shows that this Markov process is, in fact, ergodic.

Lemma 1: Fix R ∈ N∩ (K,∞). Under every assignment of the TPMs C ∈ C, the process {(d(t), i(t)) : t ≥ K}
is ergodic under the policy πunif

R .

Proof: See Appendix B.

As a consequence of Lemma 1, the process {(d(t), i(t)) : t ≥ K} has a unique stationary distribution, say

µunif
C,R = {µunif

C,R(d, i) : (d, i) ∈ SR}, under the policy πunif
R and under the assignment of the TPMs C. We note that

µunif
C,R(d, i) > 0 for all (d, i) ∈ SR. Let

νunif
C,R(d, i, a) :=






µunif
C,R(d,i)

K , (d, i) /∈ ⋃Ka′=1 SR,a′ ,

µunif
C,R(d, i), (d, i) ∈ SR,a,

0, (d, i) ∈ ⋃a′ 6=a SR,a′ .

(32)

denote the corresponding ergodic state-action occupancy measure. Observe that νunif
C,R satisfies (28)-(31).

For η ∈ (0, 1] and C ∈ C, let

νη,R,C(d, i, a) := η νunif
C,R(d, i, a) + (1− η) ν⋆C,R(d, i, a), (33)
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µη,R,C(d, i) :=

K∑

a=1

νη,R,C(d, i, a). (34)

Observe that µη,R,C(d, i) ≥ η
K µunif

C,R(d, i) > 0 for all (d, i) ∈ SR. Also, νη,R,C satisfies (28)-(31) by virtue of the

fact that both νunif
C,R and ν⋆C,R satisfy (28)-(31). Let λη,R,C = {λη,R,C(a|d, i) : a ∈ A, (d, i) ∈ SR} be defined as

λη,R,C(a|d, i) =
νη,R,C(d, i, a)

µη,R,C(d, i)
(d, i) ∈ SR, a ∈ A. (35)

Notice that for all (d, i) /∈ ⋃Ka′=1 SR,a′ ,

λη,R,C(a|d, i) ≥
η

K
µunif
C,R(d, i) ≥

η

K
µmin
R , (36)

where

µmin
R := min

C∈C
min

(d,i)∈SR

µunif
C,R(d, i) > 0. (37)

That is, whenever the delay of each arm is < R, the distribution λη,R,C(·|d, i) puts a strictly positive mass on each of

the arms. Using the arm selection rule in (35) instead of the uniform sampling rule and following the proof template

in Appendix B, it can be shown that the policy πλη,R,C , which selects the arms at each time instant according to the

rule in (35), renders the process {(d(t), i(t)) : t ≥ K} ergodic. We now claim that the stationary distribution of the

process {(d(t), i(t)) : t ≥ K} under πλη,R,C is µη,R,C . Indeed, suppose QC,R = {QC,R(d′, i′|d, i) : (d′, i′), (d, i) ∈
SR} denotes the transition probability matrix of the Markov process {(d(t), i(t)) : t ≥ K} under the policy πλη,R,C .

Then,

QC,R(d′, i′|d, i) =
K∑

a=1

λη,R,C(a|d, i) QC,R(d′, i′|d, i, a), (38)

from which it follows that for all (d′, i′) ∈ SR,

∑

(d,i)∈SR

µη,R,C(d, i) Q
C,R(d′, i′|d, i) =

∑

(d,i)∈SR

K∑

a=1

µη,R,C(d, i) λη,R,C(a|d, i) QC,R(d′, i′|d, i, a)

=
∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a) QC,R(d
′, i′|d, i, a)

(a)
=

K∑

a=1

νη,R,C(d
′, i′, a)

= µη,R,C(d
′, i′), (39)

thus proving the claim. In the above set of equations, (a) follows from the fact that νη,R,C satisfies (28).

Remark 1: Observe that νη,R,C in (33) is a mixture of two terms, one arising from the uniform arm selection

rule under maximum delay constraints (the term corresponding to νunif
C,R), and the other arising from the optimal

solution to the finite-dimensional LP under a constraint on the delay of each arm (the term corresponding to ν⋆C,R).

A similar, trembling hand-based mixture term appears in the works [6], [7]. While the mixtures in [6], [7] arise

from a restrictive system model that forces each arm to be selected with a strictly positive probability, the mixture

in (33) ensures that each arm is selected with a strictly positive probability (except when the delay of an arm is

equal to the maximum allowed delay R in which case it is forcibly selected) without any restrictions on the system
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model. It is also worth noting that the mixtures in [6], [7] give rise to a conditional probability distribution on the

arms, conditioned on the arm delays and the last observed states (a quantity akin to λ(a|d, i)), whereas the mixture

in (33) gives rise to a joint probability distribution on the set SR ×A (a quantity akin to ν(d, i, a)).

Our policy, which we call R-Delay-Constrained-Restless-BAI (or R-DCR-BAI in short) or alternatively as

π⋆(L, η,R), is then as follows. Here, L > 1, η ∈ (0, 1] and R ∈ N ∩ (K,∞) are parameters of the policy.

As we shall see, the parameter L controls the policy’s error probability. In fact, we will see from Lemma 3 that if

we set L = 1/ǫ, the error probability is bounded above by ǫ.

Policy R-DCR-BAI / π⋆(L, η,R):

Fix L > 1, η ∈ (0, 1], and R ∈ N ∩ (K,∞). Assume that A0 = 1, A1 = 2, . . . , AK−1 = K . Let

M
π⋆(L,η,R)
C (n) = min

C′∈Alt(C)
Z
π⋆(L,η,R)
CC′ (n), C ∈ C.

Implement the following steps for all n ≥ K .

(1) Compute C̄(n) ∈ argmaxC∈C M
π⋆(L,η,R)
C (n). Resolve ties uniformly at random.

(2) If M
π⋆(L,η,R)

C̄(n)
(n) ≥ log(L(K − 1)(K − 1)!), stop and declare the index of the best arm in C̄(n).

(3) If M
π⋆(L,η,R)

C̄(n)
(n) < log(L(K − 1)(K − 1)!), select arm An according to the distribution

P π
⋆(L,η,R)(An = a|A0:n−1, X̄0:n−1) = λη,R,C̄(n)(a|d(n), i(n)).

In item (1) in R-DCR-BAI, C̄(n) denotes the estimate of the underlying assignment of the TPMs based on

all the controls (arm selections) and observations seen up to time n. If the LLR between C̄(n) and its nearest

alternative assignment of the TPMs exceeds a certain threshold (i.e., ≥ log(L(K − 1)(K − 1)!)), then the policy is

sufficiently confident that C̄(n) is indeed the underlying assignment of the TPMs, and therefore stops and declares

the index of the best arm in C̄(n). Else, it samples the next arm based on the value of (d(n), i(n)) according to

the distribution λη,R,C̄(n)(·|d(n), i(n)).
In the following section, we demonstrate that for a suitable choice of L, the policy R-DCR-BAI achieves the

desired error probability. Further, letting L → ∞, we show that the growth rate of its expected stopping time

satisfies an asymptotic upper bound that is arbitrarily close to 1/T ⋆R(C) under the assignment of the TPMs C for

a suitable choice of η.

VII. RESULTS ON THE PERFORMANCE OF POLICY R-DCR-BAI

This section is organised as follows. In Section VII-A, we establish that for a given C ∈ C and any C′ ∈ Alt(C),

the LLR ZπCC′(n) has a strictly positive drift almost surely under the assignment of the TPMs C (Lemma 2), and

therefore the policy R-DCR-BAI stops in finite time almost surely. In Section VII-B, we show that R-DCR-BAI

satisfies any desired error probability for a suitable choice of L (Lemma 3). In Section VII-C, we strengthen the

result of Section VII-A by showing that the LLR of C with respect to its nearest alternative C′ ∈ Alt(C) is a

certain constant that, in the limit as η ↓ 0, converges to T ⋆R(C) (Lemma 2). In Section VII-D, we show that the

stopping time of R-DCR-BAI grows almost surely as L→ ∞ (Lemma 4). In Section VII-E, we derive an almost
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sure upper bound on the stopping time of R-DCR-BAI that, in the limit as η ↓ 0, converges to 1/T ⋆R(C). In

Section VII-F, we show that the expected stopping time of R-DCR-BAI satisfies the same upper bound as that

derived in Section VII-E. This is based on (a) showing that the family {τ(π⋆(L, η,R))/ logL : L > 1} is uniformly

integrable, and (b) combining the almost sure upper bound with the uniform integrability result to obtain an upper

bound in expectation. The proofs of all the results are relegated to the appendices.

A. Strictly Positive Drift for the LLRs

Let π⋆NS(L, η,R) denote a version of R-DCR-BAI that never stops, i.e., it does not check the second step in

R-DCR-BAI and continues to the last step indefinitely. We now show that under π⋆NS(L, η,R), the LLRs have a

strictly positive drift as the number of rounds of arm selection n→ ∞.

Lemma 2: Fix L > 1, η ∈ (0, 1], R ∈ N ∩ (K,∞), and C ∈ C. Under the assignment of the TPMs C and the

policy π = π⋆NS(L, η,R),

lim inf
n→∞

ZπCC′(n)

n
> 0 almost surely for all C′ ∈ Alt(C). (40)

Proof: See Appendix C.

Lemma 2 asserts that under the assignment of the TPMs C, we have

lim inf
n→∞

Mπ
C(n)

n
> 0 almost surely (41)

when π = π⋆NS(L, η,R). This means that Mπ
C(n) ≥ log(L(K − 1)(K − 1)!) for all n large, almost surely. This

proves that R-DCR-BAI stops in finite time with probability 1.

B. Desired Error Probability

In this section, we show that for an appropriate choice of the parameter L, the policy R-DCR-BAI achieves any

desired error probability.

Lemma 3: Fix an error probability threshold ǫ > 0. If L = 1/ǫ, then π⋆(L, η,R) ∈ Π(ǫ) for all η ∈ (0, 1] and

R ∈ N ∩ (K,∞). Here, Π(ǫ) is as defined in (5).

Proof: The proof uses the fact that the policy stops in finite time almost surely, and is given in Appendix D.

C. The Correct Asymptotic Drift of the LLRs

In this section, we strengthen the result of Section VII-A by showing that under the constraint that the delay of

each arm is at most R, the asymptotic drift of the LLRs is arbitrarily close to T ⋆R(C).

Proposition 2: Fix L > 1, η ∈ (0, 1], R ∈ N∩ (K,∞), and C ∈ C. Consider the policy π = π⋆NS(L, η,R). Under

the assignment of the TPMs C, for all C′ ∈ Alt(C),

lim
n→∞

ZπCC′(n)

n
=

∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia)) almost surely. (42)
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Consequently, it follows that

lim
n→∞

Mπ
C(n)

n
= min

C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia)) almost surely. (43)

Proof: See Appendix E.

From (33), we note that the right hand side of (43) may be lower bounded by

η min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

νunif
C,R(d, i, a) D((P aC)

da(·|ia)‖(P aC′)da(·|ia))

+ (1− η) min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν⋆C,R(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia))

= η min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

νunif
C,R(d, i, a) D((P aC)

da(·|ia)‖(P aC′)da(·|ia)) + (1− η) T ⋆R(C), (44)

which, as η ↓ 0, converges to T ⋆R(C). Using this observation, we shall show later that our policy achieves an upper

bound of 1/T ⋆R(C) in the limit as η ↓ 0.

D. Asymptotic Growth of Stopping Time

In this section, we demonstrate that τ(π⋆(L, η,R)) grows as L→ ∞ (equivalently ǫ ↓ 0).

Lemma 4: Fix η ∈ (0, 1], R ∈ N ∩ (K,∞), and C ∈ C. Under the assignment of the TPMs C,

lim inf
L→∞

τ(π⋆(L, η,R)) = ∞ almost surely. (45)

Proof: See Appendix F.

As a consequence of Lemma 4, we get that under the assignment of the TPMs C and under π = π⋆(L, η,R),

lim
L→∞

Mπ
C(τ(π))

τ(π)
=

∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia)) almost surely. (46)

E. Almost Sure Asymptotic Upper Bound on the Stopping Time

In this section, we derive an almost sure asymptotic upper bound on the stopping time of R-DCR-BAI as

L → ∞, and show that this upper bound is arbitrarily close to 1/T ⋆R(C) under the assignment of the TPMs C.

In the next section, we combine the almost sure upper bound of this section with a certain uniform integrability

result to claim that the expected stopping time of R-DCR-BAI satisfies the same upper bound as that derived in

this section.

Lemma 5: Fix η ∈ (0, 1], R ∈ N ∩ (K,∞), and C ∈ C. Under the assignment of the TPMs C and under the

policy π = π∗(L, η,R),

lim sup
L→∞

τ(π)

logL
≤ 1

min
C′∈Alt(C)

∑
(d,i)∈SR

K∑
a=1

νη,R,C(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia))

≤ 1

η T unif
R (C) + (1− η) T ⋆R(C)

almost surely, (47)
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where

T unif
R (C) := min

C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

νunif
C,R(d, i, a) D((P aC)

da(·|ia)‖(P aC′)da(·|ia)).

Proof: See Appendix G

F. Asymptotic Upper Bound on the Expected Stopping Time

In this section, we show that the expected value of the stopping time of policyR-DCR-BAI satisfies an asymptotic

upper bound that matches with the right hand side of (47) as L→ ∞.

Proposition 3: Fix η ∈ (0, 1], R ∈ N ∩ (K,∞), and C ∈ C. Under the assignment of the TPMs C, the policy

R-DCR-BAI satisfies

lim sup
L→∞

EπC [τ(π)]

logL
≤ 1

η T unif
R (C) + (1 − η) T ⋆R(C)

. (48)

Proof: In the proof, which we provide in Appendix H, we first show that the family {τ(π)/ logL : L > 1} is

uniformly integrable. Combining (47) with the uniform integrability result yields (48).

VIII. A KEY MONOTONICITY PROPERTY AND THE MAIN RESULT

In this section, we establish a key monotonicity property for T ⋆R(C), which is that T ⋆R(C) ≤ T ⋆R′(C) for all

R < R′. This, combined together with the fact that T ⋆R(C) ≤ T ⋆(C), implies that limR→∞ T ⋆R(C) exists. We

conclude the section by stating the main result of the paper.

A. A Key Monotonicity Property

The below result asserts that T ⋆R(C) is monotonically non-decreasing as R increases.

Lemma 6: T ⋆R(C) ≤ T ⋆R+1(C) for all R ∈ N ∩ (K,∞).

Proof: Fix R ∈ N∩ (K,∞). The key idea behind the proof is to note that (a) SR ⊂ SR+1, and (b) any ν that

satisfies (28)-(31) with parameter R also satisfies them with parameter R + 1. The details follow. Let ν⋆C,R and

ν⋆C,R+1 be the optimal state-action measures when the arm delays are constrained to no more than R and R + 1

respectively. Note that both ν⋆C,R and ν⋆C,R+1 satisfy (28)-(31) (with the corresponding parameters R and R + 1).

Further, ν⋆C,R satisfies (28)-(31) with parameter R+ 1. Define ν̃C,R+1 as

ν̃C,R+1(d, i, a) :=





ν⋆C,R(d, i, a) if (d, i) ∈ SR,

0, otherwise.

Clearly, ν̃C,R+1 satisfies (28)-(31) with parameter R+ 1. We therefore have

T ⋆R+1(C) = min
C′∈Alt(C)

∑

(d,i)∈SR+1

K∑

a=1

ν⋆C,R+1(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))

(a)

≥ min
C′∈Alt(C)

∑

(d,i)∈SR+1

K∑

a=1

ν̃C,R+1(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))

= min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν̃C,R+1(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))
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= min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν⋆C,R(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))

= T ⋆R(C),

thus establishing the desired result.

Lemma 6, in conjunction with the observation that T ⋆R(C) ≤ T ⋆(C) for all R, implies that limR→∞ T ⋆R(C) exists

and limR→∞ T ⋆R(C) ≤ T ⋆(C). The question of whether this inequality is an equality seems difficult to prove, and

is discussed in the next section.

B. Main Result

We are now ready to state the main result of the paper.

Theorem 4: Consider a multi-armed bandit with K ≥ 2 arms in which each arm is a time homogeneous and

ergodic discrete-time Markov process on the finite state space S. Given TPMs P1, . . . , PK and a permutation

σ : {1, . . . ,K} → {1, . . . ,K}, let C = (Pσ(1), . . . , Pσ(K)) be the underlying assignment of the TPMs where Pσ(a)

denotes the TPM of arm a. The growth rate of the expected time required to find the best arm in C satisfies the

lower bound

lim inf
ǫ↓0

inf
π∈Π(ǫ)

EπC [τ(π)]

log(1/ǫ)
≥ 1

T ⋆(C)
. (49)

Further, given any ǫ > 0, the policy π⋆(1/ǫ, η, R) ∈ Π(ǫ) for all η ∈ (0, 1] and R ∈ N ∩ (K,∞). Additionally,

lim sup
R→∞

lim sup
η↓0

lim sup
L→∞

E
π⋆(L,η,R)
C [τ(π⋆(L, η,R))]

logL
≤ 1

limR→∞ T ⋆R(C)
, (50)

thereby yielding

1

T ⋆(C)
≤ lim inf

ǫ↓0
inf

π∈Π(ǫ)

EπC [τ(π)]

log(1/ǫ)

≤ lim sup
ǫ↓0

inf
π∈Π(ǫ)

E
π
C [τ(π)]

log(1/ǫ)

≤ lim sup
R→∞

lim sup
η↓0

lim sup
L→∞

E
π⋆(L,η,R)
C [τ(π⋆(L, η,R))]

logL
≤ 1

limR→∞ T ⋆R(C)
. (51)

Thus, the lower bound on the growth rate of the expected stopping time is 1/T ⋆(C), and the upper bound is

1/(limR→∞ T ⋆R(C)).

Proof: The asymptotic lower bound in (49) follows from Proposition 1. From Lemma 3, we know that for any

ǫ > 0, the policy π⋆(1/ǫ, η, R) ∈ Π(ǫ) for all η ∈ (0, 1] and R ∈ N ∩ (K,∞). Therefore, it follows that

inf
π∈Π(ǫ)

EπC [τ(π)]

log (1/ǫ)
≤ Eπ

⋆(1/ǫ,η,R)[τ(π⋆(1/ǫ, η, R))]

log(1/ǫ)
. (52)

Fixing η, R, and letting ǫ ↓ 0 (or equivalently, substituting L = 1/ǫ and letting L → ∞) in (52), and using the

upper bound in (48), we get

lim sup
ǫ↓0

inf
π∈Π(ǫ)

EπC [τ(π)]

log(1/ǫ)
≤ lim sup

L→∞

E
π⋆(L,η,R)
C [τ(π⋆(L, η,R))]

logL
≤ 1

η T unif
R (C) + (1− η) T ⋆R(C)

. (53)
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Letting η ↓ 0 in (53) and noting that the leftmost term in (53) does not depend on η, we get

lim sup
ǫ↓0

inf
π∈Π(ǫ)

EπC [τ(π)]

log(1/ǫ)
≤ lim sup

η↓0
lim sup
L→∞

E
π⋆(L,η,R)
C [τ(π⋆(L, η,R))]

logL
≤ 1

T ⋆R(C)
. (54)

Finally, letting R → ∞ in (54), we arrive at (51).

IX. ON THE CONVERGENCE OF T ⋆R(C) TO T ⋆(C) AS R→ ∞

Recall that T ⋆(C) is the optimal value of the infinite-dimensional LP in (21), where the supremum in (21) is

over all ν satisfying (22)-(24), and T ⋆R(C) is the optimal value of the finite-dimensional LP in (27) that arises when

the the delay of each arm is constrained to be no more than R. From our exposition in Section VIII-A, we know

that limR→∞ T ⋆R(C) ≤ T ⋆(C). Showing that, in general, this inequality is an equality appears to be difficult. In

this section, we show that in the special case when the arm TPMs P1, . . . , PK have identical rows, which is akin

to obtaining i.i.d. observations from the arms, we have limR→∞ T ⋆R(C) = T ⋆(C), thus leading to matching upper

and lower bounds in this special setting.

Assume that the TPMs P1, . . . , PK have identical rows, and suppose that µ1, . . . , µK are the unique stationary

distributions associated with P1, . . . , PK respectively. Then, by the convergence result [27, Theorem 4.9] for finite-

state Markov processes, each row of Pk must be equal to µk, k = 1, . . . ,K . In this special setting, the below result

states that T ⋆R(C) = T ⋆(C) for all R ∈ N ∩ (K,∞), and therefore limR→∞ T ⋆R(C) = T ⋆(C).

Lemma 7: Suppose each row of Pk is equal to µk, k = 1, . . . ,K . In this special setting, T ⋆(C) = T ⋆R(C) for

all R ∈ N ∩ (K,∞). Consequently, limR→∞ T ⋆R(C) = T ⋆(C).

Proof: The proof uses the key idea that for a given C ∈ C and for all d ∈ N, i ∈ S, and C′ ∈ Alt(C),

DKL((P
a
C)

d(·|i)‖(P aC′)d(·|i)) = DKL(µ
a
C‖µaC′),

where µaC denotes the stationary distribution associated with the TPM P aC . The complete proof of Lemma 7 is

given in Appendix I.

As a consequence of Lemma 7, the common expressions for T ⋆(C) and T ⋆R(C) for all R ∈ N∩(K,∞) specialise

to the lower bounds of [3], [5] for the case when the i.i.d. observations from each arm come from a finite alphabet,

thus enabling us to recover the results of [3], [5]. For general arm TPMs with non-identical rows, we leave open

the question of whether limR→∞ T ⋆R(C) equals T ⋆(C) for future study.

X. CONCLUDING REMARKS AND DISCUSSION

1) We studied the problem of finding the best arm in a restless Markov multi-armed bandit as quickly as possible,

subject to an upper bound on the error probability. For this optimal stopping problem, we showed that under

the problem instance C, the expected time required to find the best arm with an error probability no more

than ǫ is lower bounded by log(1/ǫ)/T ⋆(C) in the limit as ǫ ↓ 0 (converse). Here, T ⋆(C) is a problem-

instance dependent constant that captures the hardness of the problem. We also devised a policy that, for an

input parameter R ∈ N∩ (K,∞), forcibly selects an arm which has not been selected for R consecutive time

instants, and finds the best arm in at most log(1/ǫ)/T ⋆R(C) time instants on the average as ǫ ↓ 0 (achievability).
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2) We showed that T ⋆R(C) is monotonically non-decreasing in R, and that limR→∞ T ⋆R(C) ≤ T ⋆(C). Showing

that, in general, this inequality is an equality appears to be a difficult problem and remains open. Notwith-

standing this, we showed that in the special case when the TPM of each arm has identical rows (which is

akin to obtaining i.i.d. observations from each arm), the above inequality is indeed an equality. We were thus

able to recover the results of [3], [5] for the case of arms with a common, finite alphabet.

3) The trembling hand-based policy of [6] is not practically implementable because it operates on the countable

set S of all delays and last observed states which cannot be handled on a machine with finite-size memory.

However, for any given R ∈ N∩ (K,∞), our policy operates on the finite set SR which can easily be stored

in finite-size memory on a machine, thereby making it practically implementable.

4) In our achievability analysis, we assumed that the initial state of each arm follows a certain distribution

φ that is independent of the underlying assignment of the TPMs. However, this may not actually be the

case. For instance, if the Markov process of each arm has evolved for a sufficiently long time and reached

stationarity before the decision entity begins sampling the arms at t = 0, then the initial state of each arm

follows the arm’s stationary distribution. This will lead to a mismatch between the LLR expressions in our

work (resulting from φ) and the actual LLR expressions (resulting from the stationary distributions). Suppose

Z̄πCC′(n) denotes the analogue of (18) resulting from using the stationary distributions in place of φ. Then,

fixing C ∈ C, it can be shown that

lim
n→∞

ZπCC′(n)

n
− Z̄πCC′(n)

n
= 0.

That is, the asymptotic drift of ZπCC′(n) is identical to that of Z̄πCC′(n), and therefore the assumption Xa
0 ∼ φ

does not affect the asymptotic analysis in any way.

5) It will be interesting to extend the results of our paper to the case when the arm TPMs P1, . . . , PK are not

known to the decision entity beforehand. The difficulty here is that for any given C ∈ C, the set of alternatives

Alt(C) is uncountably infinite. Also, the arm TPMs they must be estimated on-the-fly using the observations

from the arms. In this case, showing that the TPM estimates converge to their true values is the key challenge.

It will be interesting to explore these issues further.

6) The function f appearing in the definition of the best arm in (3), also appears implicitly in the analyses of

the lower and the upper bounds wherever one evaluates Alt(C) for any given C. A more realistic setting

where we anticipate that f will appear explicitly in the analyses of the lower and the upper bounds is one

in which the decision entity only observes Y at = f(Xa
t ) and not the underlying state Xa

t of arm a at time t,

i.e., the arms yield hidden Markov observations. More generally, suppose that Y at |Xa
t ∼ P a(·|Xa

t ) for some

conditional probability distribution P a, a ∈ A. Because {Y at : t ≥ 0} is not a Markov process in general, the

analyses of the lower and the upper bounds in this setting appear to be quite challenging. It will be interesting

to explore this setting in more detail.
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APPENDIX A

PROOF OF PROPOSITION 1

It suffices to prove (20) for all π such that EπC [τ(π)] <∞, as (20) trivially holds when EπC [τ(π)] = ∞. This proof

is organised as follows. In Section A-A, we derive a change-of-measure result that is the analogue of [5, Lemma 18]

for the setting of restless arms (see (56)). Using the change-of-measure result together with [5, Lemma 19], we

derive in Section A-B a lower bound for the expected LLR in terms of the error probability. In Section A-C, we

derive an upper bound for the expected LLR in terms of the expected stopping time (see (73)). Combining the

lower bound of Section A-B and the upper bound of Section A-C, and letting the error probability vanish, we arrive

at the lower bound (20).

A. A Change-of-Measure Result for Restless Arms

The following change-of-measure result is the analogue of [5, Lemma 18] for the setting of restless arms. The

proof technique is along the lines of the proof of [5, Lemma 18].

Lemma 8: Fix C,C′ ∈ C. Given a policy π with stopping time τ(π) such that P πC(τ(π) <∞) = 1, P πC′(τ(π) <

∞) = 1, let

Fτ(π) := {E ∈ F : E ∩ {τ(π) = t} ∈ Ft for all t ≥ 0}, (55)

where {Ft : t ≥ 0} is as defined in (4). Then,

P πC′(E) = E
π
C

[
IE exp

(
− ZπCC′(τ(π))

)]
, E ∈ Fτ(π). (56)

Proof of Lemma 8: We prove (56) by first demonstrating, through mathematical induction, that the relation

EC′ [g(A0:t, X̄0:t)] = E
π
C

[
g(A0:t, X̄0:t) exp

(
− ZπCC′(t)

)]
(57)

holds for all t ≥ 0 and for all measurable functions g : At+1 ×St+1 → R. Then, (56) follows from (57) by noting

that for any E ∈ Fτ(π),

P πC′(E) = E
π
C′ [IE ]

= E
π
C′

[∑

t≥0

IE∩{τ(π)=t}

]

(a)
=
∑

t≥0

E
π
C′

[
IE∩{τ(π)=t}

]

(b)
=
∑

t≥0

E
π
C

[
IE∩{τ(π)=t} exp

(
− ZπCC′(t)

)]

=
∑

t≥0

E
π
C

[
IE∩{τ(π)=t} exp

(
− ZπCC′(τ(π))

)]
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= E
π
C

[
IE exp

(
− ZπCC′(τ(π))

)]
, (58)

where (a) is due to the monotone convergence theorem, and (b) above follows from (57) and the fact that E ∈ Fτ(π)
implies that E ∩ {τ(π) = t} ∈ Ft for all t ≥ 0.

The proof of (57) for the case t = 0 may be obtained as follows: for any measurable g : A× S → R,

E
π
C′ [g(A0, X̄0)] =

K∑

a=1

∑

i∈S

g(a, i) P πC′(A0 = a, X̄0 = i)

=

K∑

a=1

∑

i∈S

g(a, i) P πC′(A0 = a) P πC′(X̄0 = i|A0 = a)

(a)
=

K∑

a=1

∑

i∈S

g(a, i) P πC(A0 = a) φ(i)

=

K∑

a=1

∑

i∈S

g(a, i) P πC(A0 = a) P πC(X
a
0 = i|A0 = a)

= E
π
C [g(A0, X̄0)]

(b)
= E

π
C

[
g(A0, X̄0) exp

(
− ZπCC′(0)

)]
, (59)

where in writing (a), we make use of (i) the fact that P πC′(A0 = a) = P πC(A0 = a) because the policy π selects

arms without the knowledge of the underlying assignment of the TPMs, and (ii) the assumption that Xa
0 ∼ φ for

all a ∈ A, where φ is a probability distribution on S that does not depend on the underlying assignment of the

TPMs. In writing (b) above, we make use of the observation that

ZπCC′(0) = log
P πC(A0, X̄0)

P πC′(A0, X̄0)
= 0. (60)

We now assume that (57) is true for some t > 0, and show that it also true for t + 1. By the law of iterated

expectations, EπC′ [g(A0:t+1, X̄0:t+1)] = E
π
C′ [EπC′ [g(A0:t+1, X̄0:t+1)|Ft+1]]. Because E

π
C′ [g(A0:t+1, X̄0:t+1)|Ft+1]

is a measurable function of (A0:t, X̄0:t), by the induction hypothesis, we have

E
π
C′ [g(A0:t+1, X̄0:t+1)|Ft+1] = E

π
C

[
E
π
C′ [g(A0:t+1, X̄0:t+1)

∣∣Ft+1] exp
(
− ZπCC′(t)

)]

= E
π
C

[
E
π
C′

[
g(A0:t+1, X̄0:t+1) exp

(
− ZπCC′(t)

) ∣∣ Ft+1

]]
, (61)

where the last line above follows by noting that ZπCC′(t) is measurable with respect to Ft+1. We now note that

E
π
C′

[
g(A0:t+1, X̄0:t+1) exp

(
− ZπCC′(t)

) ∣∣ Ft+1

]

=

K∑

a=1

∑

i∈S

g(A0:t, X̄0:t, a, i) P
π
C′(At+1 = a|Ft+1) P

π
C′(X̄t+1 = i|At+1 = a,Ft+1) exp

(
− ZπCC′(t)

)

(a)
=

K∑

a=1

∑

i∈S

g(A0:t, X̄0:t, a, i) P
π
C(At+1 = a|Ft+1) P

π
C′(X̄t+1 = i|At+1 = a,Ft+1) exp

(
− ZπCC′(t)

)
, (62)

where in writing (a) above, we make use of the fact that P πC′(At+1 = a|Ft+1) = P πC(At+1 = a|Ft+1) because π

selects arms without the knowledge of the underlying assignment of the TPMs. Also, we note that

P πC′(X̄t+1 = i|At+1 = a,Ft+1) exp
(
− ZπCC′(t)

)
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=
P πC′(X̄t+1 = i|At+1 = a,Ft+1)

P πC(X̄t+1 = i|At+1 = a,Ft+1)
exp

(
− ZπCC′(t)

)
P πC(X̄t+1 = i|At+1 = a,Ft+1)

= exp
(
− ZπCC′(t+ 1)

)
P πC(X̄t+1 = i|At+1 = a,Ft+1). (63)

Substituting (63) in (62) and simplifying, we get

E
π
C′

[
g(A0:t+1, X̄0:t+1) exp

(
− ZπCC′(t)

) ∣∣ Ft+1

]

=

K∑

a=1

∑

i∈S

g(A0:t, X̄0:t, a, i) P
π
C(At+1 = a|Ft+1) P

π
C(X̄t+1 = i|At+1 = a,Ft+1) exp

(
− ZπCC′(t+ 1)

)

= E
π
C

[
g(A0:t+1, X̄0:t+1) exp

(
− ZπCC′(t+ 1)

) ∣∣ Ft+1

]
. (64)

Substituting (64) in (61), we get

E
π
C′ [g(A0:t+1, X̄0:t+1)|Ft+1] = E

π
C

[
E
π
C

[
g(A0:t+1, X̄0:t+1) exp

(
− ZπCC′(t+ 1)

) ∣∣ Ft+1

]]

= E
π
C

[
g(A0:t+1, X̄0:t+1) exp

(
− ZπCC′(t+ 1)

)]
. (65)

Taking EπC′ [·] on both sides of (65), we get the desired result.

B. A Lower Bound for EπC [Z
π
CC′(τ(π))] when π ∈ Π(ǫ)

We note the following lower bound on the expected LLR. We omit the proof as it follows directly from the proof

of [5, Lemma 19].

Lemma 9: Fix C ∈ C, C′ ∈ Alt(C), and π such that P πC(τ(π) <∞) = 1, P πC′(τ(π) <∞) = 1. Then,

1) P πC and P πC′ are mutually absolutely continuous, and

2) for all E ∈ Fτ(π) such that P πC(E) > 0, P πC′(E) > 0,

E
π
C [Z

π
CC′(τ(π))] ≥ d(P πC(E), P πC′(E)), (66)

where d(x, y) denotes the relative entropy between two Bernoulli distributions with parameters x and y.

Fix ǫ > 0. Recall the set Π(ǫ) in (5). A direct consequence of Lemma 9 is that for any π ∈ Π(ǫ), setting

E = {ω ∈ Ω : θ(τ(π)) = a⋆(C)}, where a⋆(C) is the index of the best arm in C, noting that P πC(E) ≥ 1 − ǫ,

P πC′(E) ≤ ǫ for all C′ ∈ Alt(C), and using the fact that x 7→ d(x, y) is monotone increasing for x < y and the

y 7→ d(x, y) is monotone decreasing for any fixed x, we get

E
π
C [Z

π
CC′(τ(π))] ≥ d(ǫ, 1− ǫ) (67)

for all C′ ∈ Alt(C). Thus, it follows that minC′∈Alt(C) EπC [Z
π
CC′(τ(π))] ≥ d(ǫ, 1− ǫ) whenever π ∈ Π(ǫ).

C. An Upper Bound for E
π
C [Z

π
CC′(τ(π))] in terms of EπC [τ(π)]

We first note the following result.

Lemma 10: Fix π and C ∈ C. For all (d, i) ∈ S, a ∈ A, and j ∈ S,

E
π
C

[
N(τ(π), d, i, a, j)

]
= (P aC)

da(j|ia) EπC
[
N(τ(π), d, i, a)

]
. (68)
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Proof of Lemma 10: We note that

E
π
C [E

π
C [N(τ(π), d, i, a, j)|Xa

a−1]|τ(π)] = E
π
C

[
E
π
C

[ τ(π)∑

t=K

1{d(t)=d,i(t)=i,At=a,Xa
t =j}

∣∣∣∣X
a
a−1

]∣∣∣∣τ(π)
]

= E
π
C

[ τ(π)∑

t=K

P πC(d(t) = d, i(t) = i, At = a,Xa
t = j|Xa

a−1)

∣∣∣∣τ(π)
]
. (69)

For each t in the range of the summation in (69), the conditional probability term for t may be expressed as

P πC(d(t) = d, i(t) = i, At = a,Xa
t = j|Xa

a−1)

= P πC(d(t) = d, i(t) = i, At = a|Xa
a−1) · P πC(Xa

t = j|At = a, d(t) = d, i(t) = i,Xa
a−1)

= P πC(d(t) = d, i(t) = i, At = a|Xa
a−1) · (P aC)da(j|ia). (70)

Plugging (70) back in (69) and taking EπC [·] on both sides of (69), we arrive at (68).

From (18), we note that for all C′ ∈ Alt(C),

E
π
C [Z

π
CC′(τ(π))]

(a)
= E

π
C

[ K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

]
+ E

π
C

[ ∑

(d,i)∈S

K∑

a=1

∑

j∈S

N(τ(π), d, i, a, j) log
(P aC)

da(j|ia)
(P aC′)da(j|ia)

]

= E
π
C

[ K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

]
+
∑

(d,i)∈S

K∑

a=1

∑

j∈S

E
π
C

[
N(τ(π), d, i, a, j)

]
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

(b)
= E

π
C

[ K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

]
+
∑

(d,i)∈S

K∑

a=1

∑

j∈S

E
π
C

[
N(τ(π), d, i, a)

]
(P aC)

da(j|ia) log
(P aC)

da(j|ia)
(P aC′)da(j|ia)

= E
π
C

[ K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

]
+
∑

(d,i)∈S

K∑

a=1

E
π
C

[
N(τ(π), d, i, a)

]
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia)). (71)

In the above chain of equations, (a) follows from the dominated convergence theorem (noting that each row of

(P aC)
d is mutually absolutely continuous with respect to the corresponding row of (P aC′)d for all d ≥ 1), and (b)

follows from Lemma 10. Continuing with (71), we have

E
π
C [Z

π
CC′(τ(π))] ≤ E

π
C

[ K∑

a=1

log
1

P πC′(Xa
a−1)

]

+
∑

(d,i)∈S

K∑

a=1

E
π
C

[
N(τ(π), d, i, a)

]
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia))

≤ E
π
C

[ K∑

a=1

log
1

P πC′(Xa
a−1)

]

+ (EπC [τ(π) −K + 1])
∑

(d,i)∈S

K∑

a=1

EπC

[
N(τ(π), d, i, a)

]

EπC [τ(π) −K + 1]
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia)), (72)

for all C′ ∈ Alt(C), from which it follows that

min
C′∈Alt(C)

E
π
C [Z

π
CC′(τ(π))] ≤ min

C′∈Alt(C)
E
π
C

[ K∑

a=1

log
1

P πC′(Xa
a−1)

]
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+ (EπC [τ(π) −K + 1]) min
C′∈Alt(C)

∑

(d,i)∈S

K∑

a=1

E
π
C

[
N(τ(π), d, i, a)

]

EπC [τ(π) −K + 1]
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia))

≤ min
C′∈Alt(C)

E
π
C

[ K∑

a=1

log
1

P πC′(Xa
a−1)

]

+ (EπC [τ(π) −K + 1])

{
sup
ν

min
C′∈Alt(C)

∑

(d,i)∈S

K∑

a=1

ν(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(j|ia))
}
, (73)

where the supremum in (73) is over all ν that satisfy (22)-(23). The expression within braces in (73) is T ⋆(C).

D. The Final Steps

Combining the results of Sections A-B and A-C, we get

d(ǫ, 1− ǫ) ≤ min
C′∈Alt(C)

E
π
C

[ K∑

a=1

log
1

P πC′(Xa
a−1)

]
+ (EπC [τ(π) −K + 1]) T ⋆(C). (74)

Noting that (a) d(ǫ, 1− ǫ)/ log(1/ǫ) → 1 as ǫ ↓ 0, and (b) the first term on the right hand side of (74) is bounded

from above, by dividing (74) throughout by d(ǫ, 1− ǫ) and letting ǫ ↓ 0, we arrive at the lower bound (20).

APPENDIX B

PROOF OF LEMMA 1

Fix an assignment of the TPMs C ∈ C. In this proof, we establish that under the policy πunif
R , the process

{(d(t), i(t)) : t ≥ K} is irreducible, aperiodic, positive recurrent, and therefore ergodic.

Proof of Irreducibility: Consider any two states (d, i), (d′, i′) ∈ SR, and suppose that the process {(d(t), i(t)) :
t ≥ K} is in the state (d, i) at time t = T0. We now demonstrate that there exists an integer N (possibly depending

on (d, i) and (d′, i′)) such that

P
πunif
R

C (d(T0 +N) = d′, i(T0 +N) = i′|d(T0) = d, i(T0) = i) > 0.

Assume without loss of generality that d′, the vector of arm delays in the destination state (d′, i′), is such that

d′1 > d′2 > · · · > d′K = 1. Noting that P1, . . . , PK are TPMs on the finite set S, we use [27, Proposition 1.7]

for finite state Markov processes to deduce that there exist integers M1, . . . ,MK such that for all m ≥ M :=

max{M1, . . . ,MK},

Pm1 (j|i) > 0, . . . , PmK (j|i) > 0 for all i, j ∈ S. (75)

Order the components of d, the vector of arm delays in the starting state (d, i), in decreasing order. Under πunif
R ,

consider the sequence of arm selections and observations as follows: for a total of M time instants, from t = T0

to t = T0 +M − 1, select the arms in a round robin fashion in the decreasing order of their component values in

d. At time t = T0 +M , select arm 1 and observe the state i′1 on it. Thereafter, select arms 2, . . . ,K in a round

robin fashion in the decreasing order of their component values in d until time t = T0 +M + d′1 − d′2 − 1. At time

t = T0 +M + d′1 − d′2, select arm 2 and observe the state i′2 on it. Continue the round robin sampling on arms

3, . . . ,K till time t = T0 +M + d′1 − d′3 − 1. At time t = T0 +M + d′1 − d′3, select arm 3 and observe the state i′3

on it. Continue this process till arm K is selected at time t = T0 +M + d′1 − 1 and the state i′K is observed on it.
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Clearly, because of the round robin selection procedure, the delay of each arm at any time is no more than K .

Also, the above sequence of arm selections and observations leads to the state (d′, i′) at time t = T0 +M + d′1.

Thus, the probability of starting from the state (d, i) and reaching the state (d′, i′) may be lower bounded by the

probability that the above sequence of actions and observations occur under πunif
R , which in turn may be lower

bounded by

(
1

K

)M+d′1

·
[
K∏

a=1

(P aC)
M+da+d

′

1−d
′

a(i′a|ia)
]
. (76)

Noting that M ≤M + d1 + d′1 − d′a ≤M + 2R− 1, let

ε̄ := min
{
(P aC)

m(j|i) : i, j ∈ S, a ∈ A, M ≤ m ≤M + 2R− 1
}
. (77)

It is clear that ε̄ > 0, and (76) may further be lower bounded by

(
1

K

)M+d′1

ε̄K > 0. (78)

Thus, we see that the Markov process {(d(t), i(t) : t ≥ K)} is in the state (d′, i′) after N =M + d′1 time instants

with a strictly positive probability. This establishes irreducibility.

Proof of Aperiodicity: It suffices to show that for each (d, i) ∈ SR, there exists N (possibly depending on

(d, i)) such that the probability of the process {(d(t), i(t)) : t ≥ K} starting from the state (d, i) at some time

t = T0 and returning to the state (d, i) after N time instants and also after N + 1 time instants is strictly positive.

This follows directly from the proof of irreducibility presented above by setting (d′, i′) = (d, i) and N =M + d1,

where M is such that (75) holds for all m ≥M .

Proof of positive recurrence: This follows from the facts that (a) SR is finite, (b) {(d(t), i(t)) : t ≥ K} is

irreducible under πunif
R , and (c) an irreducible Markov process evolving on a finite state space is positive recurrent.

APPENDIX C

PROOF OF LEMMA 2

This proof is organised as follows. First, we show in Section C-A that for all (d, i) ∈ SR,

lim inf
n→∞

N(n, d, i)

n
> 0 almost surely. (79)

Next, we show in Section C-B that almost surely,

lim inf
n→∞

N(n, d, i, a)

n





> 0, if (d, i) ∈ SR,a or (d, i) /∈ ⋃Ka′=1 SR,a′ ,

= 0, if (d, i) ∈ SR,a′ for some a′ 6= a.

(80)

Using the above results, we establish (40) in Section C-C.



27

A. Limiting Drift of N(n, d, i)

Let M be sufficiently large so that (75) holds for all m ≥M . Fix an arbitrary (d, i) ∈ SR, and assume without

loss of generality that d is such that d1 > d2 > · · · > dK = 1. Let pC(d, i) denote the probability of the

process {(d(t), i(t)) : t ≥ K} starting in the state (d, i) and returning back to the state (d, i) under the assignment

of the TPMs C. Following the exposition in Appendix B, it can be shown that pC(d, i) > 0. Now, the term

N(n, d, i) may be lower bounded almost surely by the number of visits to the state (d, i) measured only at times

t = K +M + d1,K + 2(M + d1),K + 3(M + d1) and so on until time t = n. At each of these time instants,

the probability that the process {(d(t), i(t)) : t ≥ K} is in the state (d, i) under the assignment of the TPMs C is

equal to pC(d, i). Thus, we have

N(n, d, i) ≥ Bin

(
n−K + 1

M + d1
, pC(d, i)

)
almost surely, (81)

where the notation Bin(m, q) denotes a Binomial random variable with parameters m and q. It then follows that,

almost surely,

lim inf
n→∞

N(n, d, i)

n
≥ lim inf

n→∞

Bin
(
n−K+1
M+d1

, pC(d, i)
)

n

= lim inf
n→∞

Bin
(
n−K+1
M+d1

, pC(d, i)
)

n−K+1
M+d1

· n−K + 1

n
· 1

M + d1

(a)
=

pC(d, i)

M + d1

> 0, (82)

where (a) above is due to the strong law of large numbers. This establishes (79).

B. Limiting Drift of N(n, d, i, a)

If (d, i) ∈ SR,a, then N(n, d, i, a) = N(n, d, i), and consequently

lim inf
n→∞

N(n, d, i, a)

n
= lim inf

n→∞

N(n, d, i)

n
> 0 almost surely.

If (d, i) ∈ SR,a′ for some a′ 6= a, then N(n, d, i, a) = 0 for all n ≥ K . Thus, it remains to show (80) for

(d, i) /∈ ⋃Ka′=1 SR,a′ . Fix one such arbitrary (d, i) and define

S(n, d, i, a) :=

n∑

t=K

[
I{At=a, d(t)=d, i(t)=i} − P πC(At = a, d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)

]
. (83)

For each t ≥ K , because |I{At=a,d(t)=d, i(t)=i} − P πC(At = a, d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)| ≤ 2 almost

surely, and EπC [I{At=a, d(t)=d, i(t)=i} − P πC(At = a, d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)|A0:t−1, X̄0:t−1] = 0 almost

surely, the collection {I{At=a, d(t)=d, i(t)=i} − P πC(At = a, d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)}t≥K is a bounded

martingale difference sequence. Using the concentration result [28, Theorem 1.2A] for bounded martingale difference

sequences, and subsequently applying the Borel–Cantelli lemma, we get that

S(n, d, i, a)

n
−→ 0 as n→ ∞, almost surely. (84)
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This implies that for every choice of ε > 0, there exists Nε = Nε(d, i, a) sufficiently large such that

N(n, d, i, a)

n
≥ 1

n

n∑

t=K

P πC(At = a, d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)− ε ∀ n ≥ Nε, almost surely. (85)

Now, for each t ≥ K , under π = π⋆(L, η,R),

P πC(At = a, d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)

= P πC(At = a|d(t) = d, i(t) = i, A0:t−1, X̄0:t−1) · P πC(d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)

= λη,R,C̄(t)(a|d, i) · P πC(d(t) = d, i(t) = i|A0:t−1, X̄0:t−1)

(a)
=

η νunif
C̄(t),R

(d, i, a) + (1 − η) ν⋆
C̄(t),R

(d, i, a)

η µunif
C̄(t),R

(d, i) + (1 − η)
∑K

a′=1 ν⋆
C̄(t),R

(d, i, a′)
· I{(d(t)=d, i(t)=i}

≥ η

K
· µunif

C̄(t),R(d, i) · I{(d(t)=d,i(t)=i}

≥ η

K
· µmin

R · I{(d(t)=d,i(t)=i}, (86)

where in writing (a) above, we use the fact that (d(t), i(t)) is measurable with respect to the history (A0:t−1, X̄0:t−1),

and µmin
R in (86) is as defined in (37).

Plugging (86) in (85), we get

N(n, d, i, a)

n
≥ η

K
· µmin

R · N(n, d, i)

n
− ε ∀ n ≥ Nε, almost surely. (87)

Using (82) in (87), we get that
N(n, d, i, a)

n−K + 1
≥ η

K
· µmin

R · pC(d, i)

2(M + d1)
− ε (88)

for all n large, almost surely. Setting ε = η
2K · µmin

R · pC(d,i)
2(M+d1)

establishes (80).

C. Completing the Proof of Lemma 2

From (80), it follows that whenever lim infn→∞ N(n, d, i, a)/n > 0 almost surely, we may apply the ergodic

theorem to deduce that under the assignment of the TPMs C,

N(n, d, i, a, j)

N(n, d, i, a)
−→ (P aC)

da(j|ia) as n→ ∞, almost surely. (89)

Under the constraint that the delay of each arm is at most R,

ZπCC′(n)

n
=

1

n

K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

+
∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)
. (90)

The first term in (90) may be lower bounded as follows: assuming that Xa
0 ∼ φ for all a ∈ A, where φ is a

probability distribution on S that is independent of the underlying TPMs C and puts a strictly positive mass on

each state in S, it follows that

1

n

K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

≥ 1

n

K∑

a=1

logP πC(X
a
a−1)

=
1

n

∑

j∈S

I{Xa
a−1=j}

K∑

a=1

log

(
∑

i∈S

φ(i) (P aC)
a−1(j|i)

)
. (91)
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Because the right hand side of (91) converges to 0 as n→ ∞, given any ε > 0, there exists N1 = N1(ε) such that

1

n

K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

≥ −ε for all n ≥ N1, almost surely (92)

The second term in (90) may be expressed as

∑

(d,i)/∈
⋃

K
a′=1

SR,a′

K∑

a=1

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)
+

K∑

a=1

∑

(d,i)∈SR,a

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)
.

(93)

Using the convergence in (89) and noting that SR ×A is finite, we get that there exists N2 = N2(ε) such that for

all n ≥ N2, (93) is almost surely lower bounded by

∑

(d,i)/∈
⋃

K
a′=1

SR,a′

K∑

a=1

N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia))

+

K∑

a=1

∑

(d,i)∈SR,a

N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia))− ε. (94)

Combining (92) and (93), we get that

ZπCC′(n)

n
≥ −2ε+

∑

(d,i)/∈
⋃

K
a′=1

SR,a′

K∑

a=1

N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia))

+

K∑

a=1

∑

(d,i)∈SR,a

N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(j|ia)) (95)

for all n ≥ max{N1, N2}, almost surely. Using the results in (79) and (80), we see that the limit infimum of the

last two terms in (95) is strictly positive, almost surely. Because ε > 0 is arbitrary, the desired result follows.

APPENDIX D

PROOF OF LEMMA 3

The policy π = π⋆(L, η,R) commits an error if one of the following events is true:

1) The policy does not stop in finite time.

2) The policy stops in finite time and declares an incorrect best arm index.

The event in item 1 above has zero probability, thanks to Lemma 2. Thus, the probability of error of policy

π⋆(L, η,R) may be evaluated as follows: for C ∈ C, recall that a⋆(C) is the index of the best arm in C. Then,

under the assignment of the TPMs C, the error probability of π⋆(L, η,R) is given by

P πC(θ(τ(π)) 6= a)

= P πC

(
∃ n and a′ 6= a such that τ(π) = n and θ(n) = a′

)

= P πC

(
∃ n and C′ ∈ Alt(C) such that τ(π) = n and θ(n) = a⋆(C′)

)
. (96)
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Let Ra(n) := {ω ∈ Ω : τ(π)(ω) = n, θ(n)(ω) = a}, a ∈ A, denote the set of all sample paths for which the

policy stops at time n and declares a as the index of the best arm. Clearly, {Ra(n) : a ∈ A, n ≥ 0} is a collection

of mutually disjoint sets. Therefore, we have

P πC(θ(τ(π)) 6= a)

= P πC



⋃

a′ 6=a

∞⋃

n=0

Ra′(n)




=
∑

a′ 6=a

∞∑

n=0

P πC(τ(π) = n, θ(n) = a′)

=
∑

C′∈Alt(C)

∞∑

n=0

P πC(τ(π) = n, θ(n) = a⋆(C′))

=
∑

C′∈Alt(C)

∞∑

n=0

∫

Ra⋆(C′)(n)

dP πC(ω)

=
∑

C′∈Alt(C)

∞∑

n=0

∫

Ra⋆(C′)(n)

exp(ZπC(n, ω)) d(A0:n(ω), X̄0:n(ω))

=
∑

C′∈Alt(C)

∞∑

n=0

∫

Ra⋆(C′)(n)

exp(−ZπC′C(n, ω)) exp(ZπC′(n, ω)) d(A0:n(ω), X̄0:n(ω))

(a)

≤
∑

C′∈Alt(C)

∞∑

n=0

∫

Ra⋆(C′)(n)

1

L(K − 1)(K − 1)!
dP πC′(ω)

=
∑

C′∈Alt(C)

1

L(K − 1)(K − 1)!
P πC′

(
∞⋃

n=0

Ra⋆(C′)(n)

)

≤ 1

L
, (97)

where (a) above follows by noting that for any C′ ∈ Alt(C), the condition Mπ
C′(n) ≥ log(L(K−1)(K−1)!) holds

at the stopping time τ(π) = n on the set Ra⋆(C′). In particular, this implies that ZπC′C(n) ≥ log(L(K−1)(K−1)!).

Setting L = 1/ǫ in (97) yields the desired result.

APPENDIX E

PROOF OF PROPOSITION 2

We note that for all C′ ∈ Alt(C), under the policy π = π⋆NS(L, η,R), almost surely,

lim sup
n→∞

Mπ
C′(n) = lim sup

n→∞
min

C′′∈Alt(C′)
ZπC′C′′(n)

≤ lim sup
n→∞

ZπC′C(n)

= lim sup
n→∞

−ZπCC′(n)

= − lim inf
n→∞

ZπCC′(n)

≤ − lim inf
n→∞

Mπ
C(n)

< 0, (98)
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where the last line above is due to Lemma 2. Furthermore, for any C̄ 6= C such that a⋆(C̄) = a⋆(C),6 following

the exposition in Appendix C-C with C′ replaced by C̄, we get that lim infn→∞ Zπ
CC̄

(n)/n > 0 almost surely, and

therefore lim infn→∞ Zπ
CC̄

(n) > 0 almost surely. This implies that lim infn→∞ ZπCC′(n) − Zπ
C̄C′

(n) > 0 almost

surely for all C′ ∈ Alt(C), which in turn implies that lim infn→∞ ZπCC′(n) > lim supn→∞ Zπ
C̄C′

(n) almost surely

for all C′ ∈ Alt(C). Noting that Alt(C) = Alt(C̄), it follows that

lim inf
n→∞

Mπ
C(n) > lim sup

n→∞
Mπ
C̄(n) almost surely (99)

for all C̄ 6= C such that a⋆(C̄) = a⋆(C). Combining (99) and (98), we get that under π = π⋆NS(L, η,R),

C̄(n) = C for all n large, almost surely, (100)

when the underlying assignment of the TPMs is C, from which we may deduce that under π = π⋆NS(L, η,R),

lim
n→∞

P π(An = a|A0:n−1, {(d(s), i(s)) : K ≤ s ≤ n− 1}, d(n) = d, i(n) = i)

= lim
n→∞

λη,R,C̄(n)(a|d, i)

= λη,R,C(a|d, i) (101)

almost surely. This shows that π⋆NS(L, η,R) eventually makes the process {(d(t), i(t)) : t ≥ K} ergodic with νη,R,C

as its ergodic state-action occupancy measure. As a consequence, for all (d, i) ∈ SR and a ∈ A, it follows that

lim
n→∞

N(n, d, i, a)

n
= νη,R,C(d, i, a) almost surely. (102)

Therefore, under π = π⋆NS(L, η,R), we have

lim
n→∞

ZπCC′(n)

n
= lim
n→∞

∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

=
∑

(d,i)∈SR

K∑

a=1

∑

j∈S

lim
n→∞

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

(a)
=

∑

(d,i)∈SR

K∑

a=1

∑

j∈S

νη,R,C(d, i, a) · (P aC)da(j|ia) · log
(P aC)

da(j|ia)
(P aC′)da(j|ia)

=
∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a)D((P aC)
da(·|ia)‖(P aC′)da(·|ia)) almost surely, (103)

where (a) follows from (89). Eq. (43) is then immediate from (103).

APPENDIX F

PROOF OF LEMMA 4

Because π = π⋆(L, η,R) selects arm 1 at time t = 0, arm 2 at time t = 1, etc., and arm K at time t = K − 1,

in order to prove the lemma, it suffices to prove that for all m ≥ K ,

lim
L→∞

P πC(τ(π) ≤ m) = 0. (104)

6Recall that a⋆(C) denotes the index of the best arm in C.



32

Fix an arbitrary m ≥ K . Then,

lim sup
L→∞

P πC(τ(π) ≤ m)

= lim sup
L→∞

P πC

(
∃ K ≤ n ≤ m and C′ ∈ C such that Mπ

C′(n) ≥ log(L(K − 1)(K − 1)!)

)

≤ lim sup
L→∞

∑

C′∈C

m∑

n=K

P πC(M
π
C′(n) ≥ log(L(K − 1)(K − 1)!))

≤ lim sup
L→∞

1

log(L(K − 1)(K − 1)!)

∑

C′∈C

m∑

n=K

E
π
C [M

π
C′(n)], (105)

where the first and the second inequalities above follow from the union bound and Markov’s inequality respectively.

We now show that for each n ∈ {K, . . . ,m}, the expectation term inside the summation in (105) is finite. This will

then imply that the limit supremum on the right-hand side of (105) is equal to 0, thus proving the desired result.

Note that

Mπ
C′(n) = min

C̃∈Alt(C′)
Zπ
C′C̃

(n) ≤ Zπ
C′C̃

(n) for all C̃ ∈ Alt(C′). (106)

Fix an arbitrary C̃ ∈ Alt(C′) and recall that

Zπ
C′C̃

(n) =

K∑

a=1

log
P πC′(Xa

a−1)

P π
C̃
(Xa

a−1)
+

∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j) log
(P aC′)da(j|ia)
(P a
C̃
)da(j|ia)

. (107)

Because each row of (P aC′)d is mutually absolutely continuous with the corresponding row of (P a
C̃
)d for all d ≥ 1,

we may upper bound the second term in (107) as

∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j) log
(P aC′)da(j|ia)
(P a
C̃
)da(j|ia)

≤ A ·




∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j)




= A · (n−K + 1) almost surely, (108)

where

A = max

{
log

P da (j|i)
P da′(j|i)

: P da (j|i) 6= 0, P da′(j|i) 6= 0, d ∈ N, i, j ∈ S, a, a′ ∈ A
}
<∞. (109)

Furthermore, suppose that Xa
0 ∼ φ for all a ∈ A, where φ is a probability distribution on S that is independent of

a and the underlying assignment of the TPMs C. Without loss of generality, let φ(i) > 0 for all i ∈ S. Then, the

first term in (107) may be upper bounded as

K∑

a=1

log
P πC′(Xa

a−1)

P π
C̃
(Xa

a−1)
= log

P πC′(X1
0 )

P π
C̃
(X1

0 )
+

K∑

a=2

log
P πC′(Xa

a−1)

P π
C̃
(Xa

a−1)

=

K∑

a=2

∑

j∈S

I{Xa
a−1=j}

log
P πC′(Xa

a−1 = j)

P π
C̃
(Xa

a−1 = j)

=

K∑

a=2

∑

j∈S

I{Xa
a−1=j}

log

∑
i∈S φ(i) · (P aC′)a−1(j|i)∑
i∈S φ(i) · (P a

C̃
)a−1(j|i)

(a)

≤
K∑

a=2

∑

j∈S

I{Xa
a−1=j}

∑

i∈S

φ(i) (P aC′)a−1(j|i)∑
i′∈S φ(i

′) (P aC′)a−1(j|i′) log
(P aC′)a−1(j|i)
(P a
C̃
)a−1(j|i)
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≤ A (K − 1) almost surely, (110)

where (a) above follows from the log-sum inequality [29, Theorem 2.7.1]. Combining (108) and (110), we get

Zπ
C′C̃

(n) ≤ A · n almost surely, (111)

from which it follows that EπC [Z
π
C′C̃

(n)] ≤ A · n.

APPENDIX G

PROOF OF LEMMA 5

By the definition of τ(π), we know that under the assignment of the TPMs C,

Mπ
C(τ(π) − 1) < log(L(K − 1)(K − 1)!).

Therefore, almost surely,

1 = lim sup
L→∞

log(L(K − 1)(K − 1)!)

logL

≥ lim sup
L→∞

Mπ
C(τ(π) − 1)

logL

= lim sup
L→∞

Mπ
C(τ(π) − 1)

τ(π) − 1
· τ(π) − 1

logL

≥
(
lim sup
L→∞

τ(π) − 1

logL

)
·



 min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia))



 , (112)

where the last line above is due to (46) and the fact that the increment Mπ
C(n) −Mπ

C(n − 1) is bounded for all

n ≥ K . We then note that

min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

νη,R,C(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia))

≥ η min
C′∈Alt(C)




∑

(d,i)∈SR

K∑

a=1

νunif
C,R(d, i, a) D((P aC)

da(·|ia)‖(P aC′)da(·|ia))




+ (1− η) min
C′∈Alt(C)




∑

(d,i)∈SR

K∑

a=1

ν⋆C,R(d, i, a) D((P aC)
da(·|ia)‖(P aC′)da(·|ia))




≥ η T unif
R (C) + (1− η) T ⋆R(C), (113)

thus establishing the desired result.

APPENDIX H

PROOF OF PROPOSITION 3

We prove here that the family {τ(π)/ logL : L > 1}, where π = π⋆(L, η,R), is uniformly integrable. Towards

this, we show that

lim sup
L→∞

E
π
C

[(
τ(π)

logL

)2]
<∞. (114)
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Then, [30, Lemma 3, pp. 227] implies the desired uniform integrability result from (114) (by using G(t) = t2 in

[30, Lemma 3, pp. 227]). Let

ψ(L) :=
log(L(K − 1)(K − 1)!)

logL
, (115)

and let π⋆C = π⋆C(L, η,R) denote the version of the policy R-DCR-BAI that stops only when the event

M
π⋆
C

C (n) ≥ log(L(K − 1)(K − 1)!)

occurs. Clearly, τ(π⋆C) ≥ τ(π) almost surely. Then,

lim sup
L→∞

E
π
C

[(
τ(π)

logL

)2]

= lim sup
L→∞

∫ ∞

0

P πC

((
τ(π)

logL

)2

> x

)
dx

= lim sup
L→∞

∫ ∞

0

P πC

(
τ(π) > (

√
x)(logL)

)
dx

≤ lim sup
L→∞

∫ ∞

0

P πC

(
τ(π⋆C) > (

√
x)(logL)

)
dx

(a)

≤ lim sup
L→∞

{
ψ(L) +

∫ ∞

ψ(L)

P πC

(
τ(π⋆C) > (

√
x)(logL)

)
dx

}

≤ lim sup
L→∞

ψ(L) + lim sup
L→∞

∞∑

n≥
√
ψ(L) logL

2n+ 1

(logL)2
P πC(τ(π

⋆
C) > n)

≤ 1 + lim sup
L→∞

∞∑

n≥
√
ψ(L) logL

2n+ 1

(logL)2
P πC(M

π
C(n) < log(L(K − 1)(K − 1)!)), (116)

where (a) above follows by upper bounding the probability term by 1 for all x ≤ ψ(L). Below, we show that

P πC(M
π
C(n) < log(L(K − 1)(K − 1)!)) is O(1/n3), which implies that the infinite sum in (116) is finite. This will

then prove that the right-hand side of (116) is finite. Note that

P πC(M
π
C(n) < log(L(K − 1)(K − 1)!)) = P πC

(
min

C′∈Alt(C)
ZπCC′(n) < log(L(K − 1)(K − 1)!)

)

≤
∑

C′∈Alt(C)

P πC (ZπCC′(n) < log(L(K − 1)(K − 1)!)) , (117)

where the last line above follows from the union bound.

We now show that each term inside the summation in (117) is O(1/n3). Fix C′ ∈ Alt(C) and observe that

P πC (ZπCC′(n) < log(L(K − 1)(K − 1)!))

= P πC

(
ZπCC′(n)

n
<

log(L(K − 1)(K − 1)!)

n

)

= P πC

(
1

n

K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

+
∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)
<

log(L(K − 1)(K − 1)!)

n

)
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≤ P πC

(
1

n

K∑

a=1

log
P πC(X

a
a−1)

P πC′(Xa
a−1)

< −ε
)

(118)

+ P πC

( ∑

(d,i)∈SR

K∑

a=1

∑

j∈S

N(n, d, i, a, j)

n
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

−
∑

(d,i)∈SR

K∑

a=1

N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(·|ia)) < −ε
)

(119)

+ P πC

( ∑

(d,i)∈SR

K∑

a=1

N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(·|ia))− 2ε <
log(L(K − 1)(K − 1)!)

n

)
(120)

for all ε > 0. Fixing ε, we handle (118)-(120) individually. We also show how to choose ε (later in (130)).

1) Handling (118): This term is equal to 0 for all sufficiently large values of n because the left hand side inside

the probability term converges almost surely to 0, whereas the right hand side is negative.

2) Handling (119): This term may be expressed as

P πC

( ∑

(d,i)∈SR

K∑

a=1

∑

j∈S

[
N(n, d, i, a, j)

n
− N(n, d, i, a)

n
(P aC)

da(j|ia)
]

log
(P aC)

da(j|ia)
(P aC′)da(j|ia)

< −ε
)

(121)

We note that

Mn :=





∑

(d,i)∈SR

K∑

a=1

∑

j∈S

[
N(n, d, i, a, j)−N(n, d, i, a) (P aC)

da(j|ia)
]

log
(P aC)

da(j|ia)
(P aC′)da(j|ia)




n≥K

is a martingale. Indeed, because each row of (P aC)
d is mutually absolutely continuous with respect to the

corresponding row of (P aC′)d for all d ≥ 1,

E
π
C

[ ∑

(d,i)∈SR

K∑

a=1

∑

j∈S

(
N(n, d, i, h, j)−N(n, d, i, a) (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

∣∣∣∣ A0:n−1, X̄0:n−1

]

=
∑

(d,i)∈SR

K∑

a=1

∑

j∈S

(
N(n− 1, d, i, a, j)−N(n− 1, d, i, a) (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

+
∑

(d,i)∈SR

K∑

a=1

∑

j∈S

[
I{d(n)=d, i(n)=i}

(
P πC(An = a, X̄n = j|A0:n−1, X̄0:n−1)

− P πC(An = a|A0:n−1, X̄0:n−1) (P
a
C)

da(j|ia)
)

log
(P aC)

da(j|ia)
(P aC′)da(j|ia)

]

=
∑

(d,i)∈SR

K∑

a=1

∑

j∈S

(
N(n− 1, d, i, a, j)−N(n− 1, d, i, a) (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)
, (122)

where the last line follows by noting that when (d(n), i(n)) = (d, i), under the assignment of the TPMs C,

P πC(X̄n = j|An = a,A0:n−1, X̄0:n−1) = (P aC)
da(j|ia).

Further, the above martingale is bounded, and its quadratic variation 〈Mn〉 satisfies

〈Mn〉

:=

n∑

t=K

E
π
C

[( ∑

(d,i)∈SR

K∑

a=1

∑

j∈S

I{d(t)=d, i(t)=i, At=a}

(
I{X̄t=j} − (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

)2∣∣∣∣Ft
]
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≤
n∑

t=K

E
π
C

[ ∑

(d,i)∈SR

K∑

a=1

∑

j∈S

I{d(t)=d, i(t)=i, At=a}

(
I{X̄t=j} − (P aC)

da(j|ia)
)2
(
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

)2∣∣∣∣Ft
]

(a)

≤ 4A2
n∑

t=K

E
π
C

[ ∑

(d,i)∈SR

K∑

a=1

∑

j∈S

I{d(t)=d, i(t)=i, At=a}

∣∣∣∣Ft
]

≤ n (4A2|S|) (123)

almost surely, where A above is as defined in (109). We then have

P πC




∑

(d,i)∈SR

K∑

a=1

∑

j∈S

(
N(n, d, i, a, j)−N(n, d, i, a) (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)
< −nε




≤ P πC




∣∣∣∣∣∣

∑

(d,i)∈SR

K∑

a=1

∑

j∈S

(
N(n, d, i, a, j)−N(n, d, i, a) (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

∣∣∣∣∣∣
> nε




≤ P π



 sup
K≤t≤n

∣∣∣∣∣∣

∑

(d,i)∈SR

K∑

a=1

∑

j∈S

(
N(n, d, i, a, j)−N(n, d, i, a) (P aC)

da(j|ia)
)
log

(P aC)
da(j|ia)

(P aC′)da(j|ia)

∣∣∣∣∣∣
> nε





(a)

≤

EπC




(

sup
K≤t≤n

∣∣∣∣∣
∑

(d,i)∈SR

K∑
a=1

∑
j∈S

(
N(n, d, i, a, j)−N(n, d, i, a) (P aC)

da(j|ia)
)
log

(Pa
C)da (j|ia)

(Pa
C′

)da (j|ia)

∣∣∣∣∣

)6




n6 ε6

(b)

≤ B

n6 ε6
E
π
C [|〈Mn〉|3]

(c)

≤ B

n6 ε6
· n3 ·

(
4A2|S|

)3

=
A′

n3
, (124)

where (a) above is due to Markov’s inequality, (b) is due to Burkholder’s inequality [31, pp. 414], and (c)

follows from (123). We have thus shown that (119) is O(1/n3).

3) Handling (120): Observe that (120) may be upper bounded by

P πC

(
N(n, d, i, a)

n
DKL((P

a
C)

da(·|ia)‖(P aC′)da(·|ia))− 2ε <
log(L(K − 1)(K − 1)!)

n

)
(125)

for all (d, i) ∈ SR and a ∈ A. Fix d = d⋆ = (K,K − 1, . . . , 1), i = i⋆ ∈ SK , and a ∈ A. Using the

convergence in (102), we get that for every ǫ′ > 0, under the policy π⋆NS(L, η,R),

N(n, d⋆, i⋆, a)

n
≥ νη,R,C(d

⋆, i⋆, a)(1− ǫ′) (126)

for all n large, almost surely. Leveraging this, we define

En :=

{
ω ∈ Ω :

N(n, d⋆, i⋆, a, ω)

n
≥ νη,R,C(d

⋆, i⋆, a)(1 − ǫ′)

}
, (127)

and write (125) as the sum of two terms, one of which is

P πC

(
En
⋂{

N(n, d⋆, i⋆, a)

n
DKL((P

a
C)

d⋆a(·|i⋆a)‖(P aC′)d
⋆
a(·|i⋆a))− 2ε <

log(L(K − 1)(K − 1)!)

n

})

≤ P πC

(
(1 − ǫ′) νη,R,C(d

⋆, i⋆, a) DKL((P
a
C)

d⋆a(·|i⋆a)‖(P aC′)d
⋆
a(·|i⋆a))− 2ε <

log(L(K − 1)(K − 1)!)

n

)
,

(128)
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and the other is

P πC

(
Ecn
⋂{

N(n, d⋆, i⋆, a)

n
DKL((P

a
C)

d⋆a(·|i⋆a)‖(P aC′)d
⋆
a(·|i⋆a))− 2ε <

log(L(K − 1)(K − 1)!)

n

})

≤ P πC

(
N(n, d⋆, i⋆, a)

n
< νη,R,C(d

⋆, i⋆, a)(1 − ǫ′)

)
. (129)

We shall see how to choose ǫ′ (later in (136)). Choosing ε such that

(1− ǫ′) νη,R,C(d
⋆, i⋆, a) DKL((P

a
C)

d⋆a(·|i⋆a)‖(P aC′)d
⋆
a(·|i⋆a))− 2ε > 0, (130)

we see that the left hand side of the probability term in (128) is strictly positive, whereas the right hand side

goes to 0 as n→ ∞. Thus, for all sufficiently large values of n, (128) equals 0.

It now remains to show that (129) is O(1/n3).

Showing that (129) is O(1/n3):

Let M be a large, positive integer such that (75) holds for all m ≥ M . Along the lines of the proof of

irreducibility presented in Appendix B, it can be shown that for all (d, i) ∈ SR and T0,

P πC(d(T0 +N) = d⋆, i(T0 +N) = i⋆|d(T0) = d, i(T0) = i) ≥
( η
K

µmin
R

)M+K

ε̄K (131)

for N = M +K , where µmin
R is as defined in (37), and ε̄ is as defined in (77). Eq. (131) states that under

the policy R-DCR-BAI, the probability of starting from any (d, i) ∈ SR and reaching the state (d⋆, i⋆)

after N = M + K time instants may be lower bounded uniformly over all starting states. In the literature

on controlled Markov processes, such a phenomenon is referred to as Doeblin’s minorisation condition [32,

Eq. (5)]. Writing ρ to denote the constant on the right hand side of (131), we get that for all n ≥M +K ,

P πC(d(n) = d⋆, i(n) = i⋆)

=
∑

(d,i)∈SR

[
P πC(d(n) = d⋆, i(n) = i⋆|d(n−M −K) = d, i(n−M −K) = i)

· P πC(d(n−M −K) = d, i(n−M −K) = i)
]

≥ ρ ·
∑

(d,i)∈SR

P πC(d(n−M −K) = d, i(n−M −K) = i)

= ρ. (132)

We now note that for all n ≥M +K ,

N(n, d⋆, i⋆, a) =
n∑

t=K

I{d(t)=d⋆, i(t)=i⋆, At=a}

≥
n∑

t=M+K

I{d(t)=d⋆, i(t)=i⋆, At=a} almost surely. (133)

Denoting the right hand side of (133) by N ′(n, d⋆, i⋆, a), we note that

E
π
C [N

′(n, d⋆, i⋆, a)] =

n∑

t=M+K

P πC(d(t) = d⋆, i(t) = i⋆, At = a)
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≥
n∑

t=M+K

ρ · P πC(At = a|d(t) = d⋆, i(t) = i⋆)

=

n∑

t=M+K

ρ · λη,R,C̄(t)(a|d⋆, i⋆)

≥ (n−M −K + 1) · ρ ·
( η
K

µmin
R

)
, (134)

where µmin
R is as defined in (37).

For all n ≥M +K , we then have

P πC

(
N(n, d⋆, i⋆, a) < nνη,R,C(d

⋆, i⋆, a)(1− ǫ′)

)

≤ P πC

(
N ′(n, d⋆, i⋆, a) < nνη,R,C(d

⋆, i⋆, a)(1− ǫ′)

)

= P πC

(
N ′(n, d⋆, i⋆, a)− E

π
C [N

′(n, d⋆, i⋆, a)] < nνη,R,C(d
⋆, i⋆, a)(1− ǫ′)− E

π
C [N

′(n, d⋆, i⋆, a)]

)

≤ P πC

(
N ′(n, d⋆, i⋆, a)− E

π
C [N

′(n, d⋆, i⋆, a)] < nνη,R,C(d
⋆, i⋆, a)(1− ǫ′)

− (n−M −K + 1) · ρ · η
K

· µmin
R

)

≤ P πC

(
N ′(n, d⋆, i⋆, a)− E

π
C [N

′(n, d⋆, i⋆, a)] < n

{
νη,R,C(d

⋆, i⋆, a)(1 − ǫ′)

−
(
n−M −K + 1

n

)
· ρ η µ

min
R

K

})
. (135)

Noting that
n−M −K + 1

n
≥ 1

2

for all n sufficiently large, we choose ǫ′ such that

νη,R,C(d
⋆, i⋆, a)(1− ǫ′)− ρ η µmin

R

2K
< 0.

For instance, it suffices to set

ǫ′ = 1− 1

2

ρ η µmin
R

2K νη,R,C(d
⋆, i⋆, a)

. (136)

For this choice of ǫ′, it follows that the probability term in (135) may be bounded above exponentially by

using concentration inequalities for sub-gaussian random variables [33, p. 25]; here, N ′(n, d⋆, i⋆, a) is a sum

of (not necessarily independent) indicator random variables, each of which is sub-gaussian with variance factor

1/4. This implies that N ′(n, d⋆, i⋆, a) is also sub-gaussian [7, Lemma 17]. Therefore, for all sufficiently large

n, the probability term in (135) is O(1/n3).

APPENDIX I

PROOF OF LEMMA 7

Suppose that Pk(·|i) = µk(·) for all k = 1, . . . ,K and i ∈ S. Fixing C ∈ C, it follows that for all d ∈ N, i ∈ S,

and C′ ∈ Alt(C),

DKL((P
a
C)

d(·|i)‖(P aC′)d(·|i)) = DKL(µ
a
C‖µaC′), (137)
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where µaC denotes the stationary distribution associated with the TPM P aC . As a consequence of (137), we have

T ⋆(C) = sup
ν

min
C′∈Alt(C)

∑

(d,i)∈S

K∑

a=1

ν(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))

= sup
ν

min
C′∈Alt(C)

∑

(d,i)∈S

K∑

a=1

ν(d, i, a) DKL(µ
a
C‖µaC′)

= sup
κ

min
C′∈Alt(C)

K∑

a=1

κ(a) DKL(µ
a
C‖µaC′), (138)

where κ(a) :=
∑

(d,i)∈S
ν(d, i, a) for all a ∈ A, and the supremum in (138) is over all κ which are probability

distributions on the set of arms A.

For a fixed R ∈ N ∩ (K,∞), suppose that

S1 =

K⋃

a=1

SR,a, S2 = SR \ S1.

Then,

T ⋆R(C)

= sup
ν

min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν(d, i, a) DKL((P
a
C)

da(·|ia)‖(P aC′)da(·|ia))

= sup
ν

min
C′∈Alt(C)

∑

(d,i)∈SR

K∑

a=1

ν(d, i, a) DKL(µ
a
C‖µaC′)

= sup
ν

min
C′∈Alt(C)

{ ∑

(d,i)∈S1

K∑

a=1

ν(d, i, a) DKL(µ
a
C‖µaC′) +

∑

(d,i)∈S2

K∑

a=1

ν(d, i, a) DKL(µ
a
C‖µaC′)

}

= sup
ν

min
C′∈Alt(C)

{ K∑

a=1

∑

(d,i)∈SR,a

ν(d, i, a) DKL(µ
a
C‖µaC′) +

∑

(d,i)∈S2

K∑

a=1

ν(d, i, a) DKL(µ
a
C‖µaC′)

}

= sup
ν

min
C′∈Alt(C)

{ K∑

a=1

DKL(µ
a
C‖µaC′)

( ∑

(d,i)∈SR,a

ν(d, i, a) +
∑

(d,i)∈S2

ν(d, i, a)

)}

(a)
= sup

ν
min

C′∈Alt(C)

{ K∑

a=1

DKL(µ
a
C‖µaC′)

( ∑

(d,i)∈SR,a

ν(d, i, a) +
∑

a′ 6=a

∑

(d,i)∈SR,a′

ν(d, i, a) +
∑

(d,i)∈S2

ν(d, i, a)

)}

= sup
ν

min
C′∈Alt(C)

{ K∑

a=1

DKL(µ
a
C‖µaC′)

( ∑

(d,i)∈SR

ν(d, i, a)

)}

= sup
κ

min
C′∈Alt(C)

K∑

a=1

κ(a) DKL(µ
a
C‖µaC′), (139)

where (a) above follows from the observation that any ν participating in the supremum in (a) meets the R-max-

delay constraint in (26), and therefore satisfies ν(d, i, a) = 0 for all (d, i) ∈ SR,a′ , a
′ 6= a. From (138) and (139),

we see that T ⋆R(C) = T ⋆(C) for all R, thus proving that limR→∞ T ⋆R(C) = T ⋆(C) in the special case when each

of the arm TPMs have identical rows.
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