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Abstract

We study a general setting of status updating systems in which a set of source nodes provide status

updates about some physical process(es) to a set of monitors. The freshness of information available at

each monitor is quantified in terms of the Age of Information (AoI), and the vector of AoI processes

at the monitors (or equivalently the age vector) models the continuous state of the system. While the

marginal distributional properties of each AoI process have been studied for a variety of settings using

the stochastic hybrid system (SHS) approach, we lack a counterpart of this approach to systematically

study their joint distributional properties. Developing such a framework is the main contribution of

this paper. In particular, we model the discrete state of the system as a finite-state continuous-time

Markov chain, and describe the coupled evolution of the continuous and discrete states of the system

by a piecewise linear SHS with linear reset maps. Using the notion of tensors, we first derive first-

order linear differential equations for the temporal evolution of both the joint moments and the joint

moment generating function (MGF) for an arbitrary set of age processes. We then characterize the

conditions under which the derived differential equations are asymptotically stable. The generality of

our framework is demonstrated by recovering several existing results as its special cases. Finally, we

apply our framework to derive closed-form expressions of the stationary joint MGF in a multi-source

updating system under non-preemptive and source-agnostic/source-aware preemptive in service queueing

disciplines.
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I. INTRODUCTION

The ongoing massive deployment of the Internet of Things (IoT) will enable many critical real-

time status updating systems that fundamentally rely on the timely delivery of status updates [2].

The authors of [3] introduced the concept of AoI which provides a rigorous way of quantifying

the freshness of information at a destination node as a result of receiving status updates over time

from a transmitter node. In particular, for a single-source queueing-theoretic model in which

status updates are generated randomly at a transmitter with a single source of information and

a single server, the AoI at the destination was defined in [3] as the following random process:

x(t) = t− u(t), where u(t) is the generation time instant of the latest status update received at

the destination by time t. A key assumption in the analysis of [3] was the ergodicity of the AoI

process. This allowed the authors to derive the stationary average value of AoI under first-come-

first-served (FCFS) queueing discipline by leveraging the properties of its sample functions

and applying appropriate geometric arguments. Although this geometric approach has been

considered in a series of subsequent prior works to analyze the marginal distributional properties

of AoI for adaptations of the queueing model studied in [3], it often requires tedious calculations

of joint moments. Thus, it is very challenging (if not intractable) to use such geometric arguments

in the AoI analysis of more sophisticated queueing models/disciplines including the ones that

allow preemption between the status updates in service/waiting. Motivated by this, the authors

of [4] and [5] have developed an SHS-based framework (building on [6]) for characterizing the

marginal distributional properties of each AoI process in a network with multiple AoI processes.

The results of [4] and [5] have then been applied to characterize the marginal distributional

properties of AoI under a variety of queueing disciplines. On the other hand, a systematic

approach to the joint analysis of an arbitrary set of AoI processes in a network is an open

problem. In this paper, we develop an SHS-based general framework to facilitate the analysis

of the joint distributional properties of an arbitrary set of AoI processes in a network through

the characterization of their stationary joint moments and MGFs. Therefore, this paper can be

thought of as the joint distributional counterpart of [4] and [5]. We demonstrate the generality

of our framework by recovering several existing results as its special cases.

A. Related Work

The relevant literature to this paper can be categorized into the following three categories: i)

prior analyses of AoI applying the geometric approach, ii) prior analyses of AoI applying the
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SHS approach, and iii) prior analysis of the joint distributional properties of AoI processes. Each

of these categories is discussed next.

Geometric approach to the AoI analysis. Following [3], the geometric approach has been

widely adopted to analyze AoI or peak AoI (an AoI-related metric introduced in [7] to capture

the peak values of AoI over time) in a series of subsequent prior works [7]–[29]. In particular, the

average of AoI or peak AoI in single-source systems was characterized under several queueing

disciplines in [7]–[13]. Further, a handful of recent works aimed to characterize the distribution

(or some distributional properties) of AoI/peak AoI in single-source systems [14]–[19]. On the

other hand, the AoI analysis in multi-source systems is quite challenging, and hence the prior

work in this direction is relatively sparse [20]–[29]. Note that a multi-source system refers to

the setup where a transmitter has multiple sources generating status updates about multiple

physical processes. For the multi-source systems, the average AoI was characterized for the

M/M/1 FCFS queueing model in [20], the M/G/1 FCFS queueing model in [21], and the M/M/1

FCFS with preemption in waiting queueing model (where the transmitter has a buffer that only

keeps the latest generated status update from each source) in [22]. The authors of [23] and [24]

analyzed the average AoI under scheduled and random multiaccess strategies for delivering the

status updates generated from different sources at the transmitter. The average peak AoI was

derived for the M/G/1 last-come-first-served (LCFS) queueing model with (without) preemption

in service in [25] (in [26]), and for the priority FCFS and LCFS queueing models (where the

sources of information are prioritized at the transmitter) in [27]. Further, the distributions of

AoI and PAoI were numerically characterized for various discrete time queues in [28], and for a

probabilistically preemptive queueing model in [29] where a new arriving status update preempts

the one in service with some probability. Note that the analyses of the above works studying

multi-source system settings (i.e., there are multiple AoI or age processes in the system) have

been limited to the characterization of the marginal distributional properties of the AoI process

of each source.

SHS approach to the AoI analysis. The SHS approach has been applied to characterize the

marginal distributional properties of AoI under a variety of system settings/queueing disciplines

[30]–[42]. In particular, the average AoI was characterized for single-source systems in [30], [31]

and multi-source systems in [32]–[36], whereas the MGF of AoI was derived for single-source

systems in [37], [38], two-source systems in [39], and multi-source systems in [40]–[42]. The

authors of [30] derived the average AoI under the LCFS with preemption in service queueing
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TABLE I

A SUMMARY OF THE QUEUEING THEORY-BASED ANALYSES OF AOI IN THE EXISTING LITERATURE.

The geometric approach The SHS approach

Marginal distributional properties of AoI/peak AoI [3], [7]–[29] [4], [5], [30]–[42]

Joint distributional properties of AoI/peak AoI [43], [44] This paper

discipline when the transmitter contains multiple parallel servers. Further, the authors of [31]

derived the average AoI under the LCFS with preemption in service queueing discipline when

the transmitter contains multiple servers in series or there exists a series of nodes between

the transmitter and destination nodes. In [32], the average AoI was characterized under the

priority LCFS with preemption in service/waiting queueing model. The authors of [33] derived

the average AoI in the presence of packet delivery errors under stationary randomized and

round-robin scheduling policies. In [34], the average AoI was characterized under the LCFS

with preemption in service queueing discipline when the transmitter contains multiple parallel

servers. The authors of [35] analyzed the average AoI for a network in which multiple transmitter-

destination pairs contend for the channel using the carrier sense multiple access scheme. In

[36] (In [39]), the average AoI (the MGF of AoI) was derived under several source-aware

packet management scheduling policies at the transmitter. For the case where the transmitter is

powered by energy harvesting (EH), the authors of [37] and [40] derived the MGF of AoI under

several queueing disciplines including the LCFS with and without preemption in service/waiting

strategies.

Joint analysis of AoI processes. A very recent prior work [43], [44] has also analyzed the joint

distributional properties of all the AoI processes in a particular bufferless multi-source single-

server system setting using tools from Palm calculus. In contrast, our framework: i) enables one

to analyze the joint distributional properties of an arbitrary set of AoI processes in a network,

and ii) is applicable to any generic queuing discipline including the ones with buffers and/or

multiple servers. In fact, we will recover a key result of [43] as a special case of our analysis in

Section IV. Table I further highlights the gap in the literature that we aim to fill in this paper.

Before going into more details about our contributions, it is worth noting that besides the

above queueing theory-based analyses of AoI, there have been efforts to evaluate and optimize

AoI or some other AoI-related metrics in a variety of communication systems that deal with time-
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sensitive information (see [45] for a comprehensive survey). For instance, AoI has been studied in

the context of age-optimal transmission scheduling policies [46]–[54], multi-hop networks [55]–

[57], broadcast networks [58], [59], ultra-reliable low-latency vehicular networks [60], unmanned

aerial vehicle (UAV)-assisted communication systems [61]–[63], Internet of Underwater Things

networks [64], reconfigurable intelligent surface (RIS)-assisted communication systems [65],

[66], EH systems [67]–[76], large-scale analysis of IoT networks [77]–[79], remote estimation

[80], [81], information-theoretic analysis [82]–[85], timely source coding [86], [87], cache updat-

ing systems [88]–[90], economic systems [91], and timely communication in federated learning

[92], [93].

B. Contributions

A general setting of status updating systems is studied in this paper, where a set of source

nodes provide status updates about some physical process(es) to a set of monitors. We quantify

the freshness of information available at each monitor in terms of AoI. The continuous state of

the system is then formed by the AoI/age processes at different monitors, and the discrete state

of the system is modeled using a finite-state continuous-time Markov chain. For this setup, our

main contributions are listed next.

An SHS-based framework for the joint analysis of AoI processes in networks. We formulate

the coupled evolution of the continuous and discrete states of the system as a piecewise linear

SHS with linear reset maps. We then define two classes of test functions which account for the

correlation between an arbitrary set K of AoI processes of interest and the state of the Markov

chain. By applying Dynkin’s formula to each test function and using the notion of tensors, we

derive a system of first-order ordinary differential equations characterizing the temporal evolution

of the joint moments and MGFs for K. Afterwards, we characterize the conditions for asymptotic

stability of the differential equations, which in turn enables the characterization of the stationary

joint moments and joint MGFs for the AoI processes forming set K. An interesting insight

obtained from our analysis is that the existence of the stationary joint first moments guarantees

the existence of the stationary joint higher order moments and MGFs. Further, when K is a

singleton set, we recover the results of [4] and [5]. We will also elaborate shortly on the precise

technical challenges involved in generalizing the SHS approach to the joint analysis of age

processes, specifically with respect to [4] and [5] where it was developed for the analysis of the

marginal distributional properties of each AoI process.
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Analysis of the stationary joint MGF in multi-source updating systems. We apply our devel-

oped SHS-based framework to study the joint distributional properties in multi-source updating

systems. The status updates generated from each source are assumed to arrive at the transmitter

according to a Poisson process, and the service time of each status update is assumed to be

exponentially distributed. We derive closed-form expressions of the stationary MGF for an

arbitrary set K of AoI processes under several queueing disciplines including non-preemptive and

source-agnostic/source-aware preemptive in service queueing disciplines. It is worth emphasizing

that our paper is the first to derive the stationary joint MGF expressions for these queueing

disciplines, which is a key outcome of the proposed framework.

System design insights. Using the MGF expression derived for each queueing discipline consid-

ered in this paper, we obtain a closed-form expression of the correlation coefficient between any

two arbitrary AoI processes. A key insight drawn from the correlation coefficient expressions is

that while any two AoI processes are negatively correlated under (source-agnostic/source-aware)

preemptive in service queueing disciplines for any choice of values of the system parameters,

they may be positively correlated under the non-preemptive queueing discipline. In particular,

for a two-source updating system, there exists a threshold value of server utilization above which

the two age processes are positively correlated under the non-preemptive queueing discipline.

Further, we numerically demonstrate that the source-aware preemption in service slightly reduces

the negative correlation of the two age processes compared to the source-agnostic one.

C. Challenges in Generalizing the SHS-based Framework for the Joint Analysis of Age Processes

As already conveyed above, the marginal distributional properties of each age/AoI process in

a network have been studied for a variety of settings using the SHS-based framework developed

in [4] and [5]. However, we lack a counterpart of this framework to systematically study the joint

distributional properties for an arbitrary set of age processes. Since the current paper solves this

open problem, it is obvious to wonder about the technical challenges involved in generalizing the

SHS-based framework of [4] and [5] to the joint analysis for an arbitrary set of age processes.

In order to understand these challenges, it is useful to first recall that an SHS models the

coupled evolution over time between the discrete and continuous states of the system. In the

context of the AoI analysis in this paper, the discrete state of the system is modeled using a

finite-state continuous-time Markov chain and the continuous state of the system is modeled by

a vector containing the age processes in the network. To derive a system of differential equations
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using the SHS framework for the characterization of the temporal evolution of elements in the

continuous state vector (i.e., the age/AoI processes), a key step in the analysis is to carefully

construct an appropriate set of test functions (i.e., functions whose expected values are quantities

of interest) and then apply Dynkin’s formula [6]. For the purpose of characterizing the marginal

moments/MGF of each age process in [4] and [5], it was sufficient that each test function includes

only a single age process from the continuous state vector. In other words, it was not required

to capture higher-order dependencies between the age processes in this analysis. Consequently,

the results of [4] and [5] are not applicable to the joint analysis of two or more age processes

in a network.

As will be evident from the technical discussion shortly, the analysis of joint moments/MGFs

for an arbitrary set of age processes requires us to explicitly consider higher-order dependencies

by constructing test functions that depend on all the age processes, which complicates the SHS

analysis significantly. Under these dependencies, it becomes challenging to keep track of the

updated values of each test function (resulting from updating each age process inside it) after

each transition in the Markov chain modeling the system discrete state. Therefore, we need to

devise a new way that facilitates expressing the updated value of each test function in closed-

form. We achieve this by introducing the idea of tensors in this framework, which naturally

departs from the framework of [4] and [5] where such higher-order dependencies did not appear

(because the focus was on the marginal analysis). Using the proposed tensor notations, we also

express the differential equations appearing in the SHS framework in closed-form, which further

allows us to characterize the conditions for their asymptotic stability. Interestingly, the use of

tensors also enables us to present a unified SHS-based framework for the AoI analysis in the

sense that when the set of age processes is a singleton set, the tensors will become vectors and

the results of [4] and [5] can be recovered.

D. Organization

The rest of the paper is organized as follows. Section II presents the system model, the

SHS-based formulation, and the problem statement. Afterwards, in Section III, we develop the

SHS-based framework for the joint analysis of an arbitrary set of age processes in a network

through the characterization of their stationary joint moments and MGFs. In particular, we start

by deriving a system of differential equations for the characterization of the temporal evolution of

the joint moments and MGFs, and then characterize the conditions under which these differential
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equations are asymptotically stable. Section IV applies the SHS-based framework developed in

Section III to derive the joint MGF in a multi-source updating system under both non-preemptive

and preemptive in service queueing disciplines. Finally, Section V concludes the paper.

E. Notations

A set X ∈ Rn has a cardinality of |X| = n and its j-th element is denoted by X(j), where

1 ≤ j ≤ n. A vector x ∈ R1×n is a 1×n row vector with [x]j or [x]K={j} denoting its j-th element

(1 ≤ j ≤ n). A matrix X ∈ Rn1×n2 has (i, j)-th element [X]i,j or [X]K={i,j}, and j-th column

[X]j , where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. The vectors 0n and 1n are the row vectors containing

all zeros and ones in R1×n, respectively, the vector Tra(x) or xT is the transpose of x, the matrix

Tra(X) or XT is the transpose of X, and In is the n × n identity matrix. Whenever subscript

n is dropped, the dimensions of 0, 1, and I will be clear from the context. The Kronecker

delta function δi,j equals 1 if i = j and 0 otherwise. The vector ei denotes the i-th Cartesian

unit vector satisfying [ei]j = δi,j . A tensor is a multi-dimensional array whose order defines the

number of dimensions of the array. For instance, a vector is a one-dimensional array or first-

order tensor, and a matrix is a two-dimensional array or second-order tensor. An I-th order tensor

X ∈ Rn1×n2×···×nI has K-th element [X ]K, where |K| = I and 1 ≤ K(j) ≤ nj for all 1 ≤ j ≤ I .

The product of the tensor X and a matrix along its j-th dimension is denoted by ×j and known

as the j-mode product. In particular, the j-mode product of X and a matrix X ∈ Rm×nj is

represented as: Y = X ×j X, where Y ∈ Rn1×···×nj−1×m×nj+1×···×nI . For a process x(t), X(t) or

X (t), ẋ(t), Ẋ(t) or Ẋ (t) denote the derivative dx(t)/dt, dX(t)/dt or dX (t)/dt. For a scalar

function f(·) and a vector x = [x1 x2 · · · xn], f(x) = [f(x1) f(x2) · · · f(xn)]. For integers

m ≤ n,m : n is the set {m,m+ 1, · · · , n}, and X(m : n) = {X(m),X(m+ 1), · · · ,X(n)}. The

set of all permutations of a set X is denoted by P(X), and the set of all subsets of a set X is

denoted by 2X. For instance, when X = {x1, x2, x3}, we have:

P(X) = {{x1, x2, x3}, {x1, x3, x2}, {x2, x1, x3}, {x2, x3, x1}, {x3, x1, x2}, {x3, x2, x1}},

2X = {∅, {x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}},

where the symbol ∅ denotes the empty set. The indicator function 1(·) is 1 if the condition

inside the brackets is satisfied and 0 otherwise.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Model

We consider a general setting of status updating systems where a set of source nodes provide

status updates about some physical process(es) to a set of monitors. The freshness of information

available at each monitor is quantified in terms of AoI. The AoI processes (or equivalently the

age processes) in the system are modeled using the row vector x(t) = [x1(t) · · · xn(t)], which

is also referred to as the continuous state of the system. In particular, xj(t) is the age process

at monitor j, which may refer to a node, a position in a queue, or a server in a multi-server

system. Further, the discrete state of the system is modeled using a finite-state continuous-time

Markov chain q(t) ∈ Q = {0, · · · , qmax}, where Q is the discrete state space. This Markov chain

governs the dynamics of the system discrete state, e.g., q(t) may describe the system occupancy

with respect to the status updates generated by each source node. In the graphical representation

of the Markov chain q(t), each state q ∈ Q is a node and each transition l is a directed edge

(ql, q
′
l) with fixed transition rate λ(l)(q(t)) = λ(l)δql,q(t), where the Kronecker delta function δql,q(t)

ensures that transition l occurs only in state ql. We denote the set of all transitions {l} by L,

and the sets of incoming and outgoing transitions for state q̄ ∈ Q by L′q̄ = {l ∈ L : q′l = q̄} and

Lq̄ = {l ∈ L : ql = q̄}, respectively.

B. An SHS-based Formulation and Problem Statement

The coupled evolution of the continuous state x(t) and the discrete state q(t) is modeled using

a piecewise linear SHS with linear reset maps [5]. In particular, when a transition l occurs in

the Markov chain q(t), the continuous state x is reset to x′ according to a reset map matrix Al

as x′ = xAl. Further, as long as the state q(t) is unchanged, each element in the age vector

x(t) grows at a unit rate with time (which yields piecewise linear age processes over time), i.e.,
·
x(t) ,

dx(t)

dt
= 1. To capture the temporal evolution of the age processes, it is sufficient to

assume that Al is a binary matrix with no more than a single 1 in a column. Since column

[Al]j determines the value that will be assigned to x′j , we have two different cases given the

assumed structure of Al. In the first case, [Al]j = 0T and so x′j = 0, whereas the second case

corresponds to [Al]j = eT
i where x′j is reset to xi. Different from ordinary continuous-time

Markov chains, an inherent feature of SHS is the possibility of having self-transitions in the

Markov chain q(t) modeling the system discrete state. In particular, although a self-transition
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keeps q(t) unchanged, it causes a change in the continuous state x(t). Further, there may be

multiple transitions between any two states in Q such that their associated reset map matrices

are different.

For the above SHS formulation, our prime objective in this paper is to develop a framework that

allows understanding/analyzing the joint distributional properties of an arbitrary set of elements

in the age vector x(t). Formally, we aim at characterizing the stationary joint moments and joint

MGFs for an arbitrary set K ⊆ 1 : n of age processes, which are respectively of the following

forms: lim
t→∞

E
[∏|K|

j=1 x
[m]j
K(j)(t)

]
and lim

t→∞
E
[
exp
[∑|K|

j=1 [s]jxK(j)(t)
]]

, where the length of vector

m or s is |K|, [m]j ∈ {0, 1, 2, · · · }, and [s]j ∈ R, ∀j ∈ 1 : |K|. As already discussed in Section

I, when |K| = 1, the problem at hand reduces to the one studied in [4] and [5], where the goal

was to characterize the marginal distributional properties of each age element in x(t). Clearly,

the characterization of such joint moments and joint MGFs allows one to derive the correlation

coefficient between all possible pairwise combinations of the age vector elements. Towards this

objective, we first derive a system of first-order ordinary differential equations for the temporal

evolution of both the joint moments and joint MGFs. We then derive the conditions under which

these differential equations are stable, which in turn enables the evaluation of the stationary joint

moments and joint MGFs. Given the generality of the system setting considered in this paper,

the importance of our framework lies in the fact that it is applicable to the joint analysis of AoIs

in a broad range of status updating system setups under arbitrary queueing disciplines.

III. JOINT ANALYSIS OF AGE PROCESSES IN NETWORKS

A. Differential Equations for the Temporal Evolution of the Joint Moments and Joint MGFs

In order to characterize the temporal evolution of the joint moments and joint MGFs for a

set K of age processes, E
[∏|K|

j=1 x
[m]j
K(j)(t)

]
and E

[
exp
[∑|K|

j=1 [s]jxK(j)(t)
]]

, it is useful to define

the following quantities that express different forms of correlation between q(t) and the age

processes in x(t):

v
(m)
q̄,K (t) = E

 |K|∏
j=1

x
[m]j
K(j)(t)δq̄,q(t)

 , (1)

v
(s)
q̄,K(t) = E

exp
[ |K|∑
j=1

[s]jxK(j)(t)
]
δq̄,q(t)

 , (2)
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for all states q̄ ∈ Q and K ⊆ {1, 2, · · · , N}. To see this, note that we have

E

 |K|∏
j=1

x
[m]j
K(j)(t)

 =
∑
q̄∈Q

E

 |K|∏
j=1

x
[m]j
K(j)(t)δq̄,q(t)

 =
∑
q̄∈Q

v
(m)
q̄,K (t), (3)

E

exp
[ |K|∑
j=1

[s]jxK(j)(t)
] =

∑
q̄∈Q

E

exp
[ |K|∑
j=1

[s]jxK(j)(t)
]
δq̄,q(t)

 =
∑
q̄∈Q

v
(s)
q̄,K(t). (4)

Thus, according to (3) and (4), characterizing the temporal evolution of v(m)
q̄,K (t) and v(s)

q̄,K(t) di-

rectly characterizes the temporal evolution of E
[∏|K|

j=1 x
[m]j
K(j)(t)

]
and E

[
exp
[∑|K|

j=1 [s]jxK(j)(t)
]]

,

respectively. Some key notes about the notations in (1) and (2) are provided next. First, v(1)
q̄,K(t)

may generally refer to v(m)
q̄,K (t)|m=1 or v(s)

q̄,K(t)|s=1. To eliminate this conflict, the convention that

v
(i)
q̄,K, for any set of integers {[i]j ≥ 1}j∈1:|K|, refers to v(m)

q̄,K at m = i is maintained here. Further,

we have v(m)
q̄,K (t)|m=0 = v

(s)
q̄,K(t)|s=0 = E[δq̄,q(t)] = P[q(t) = q̄], i.e., v(0)

q̄,K(t) = P[q(t) = q̄] (the

probability that q(t) is equal to q̄) regardless of K. For q̄ ∈ Q, we define v
(0)
q̄ (t) ∈ R1×n as:

[v
(0)
q̄ (t)]k = v

(0)
q̄ (t) = P[q(t) = q̄],∀k ∈ 1 : n. (5)

It will also be useful in our subsequent analysis and exposition to define the following tensors in

Rn1×n2×···×n|K|(nj = n,∀j ∈ 1 : |K|) containing the scalars in (1) and (2):
[
V(m)
q̄,|K|(t)

]
K

= v
(m)
q̄,K (t)

and
[
V(s)
q̄,|K|(t)

]
K

= v
(s)
q̄,K(t),∀q̄ ∈ Q. In other words, the tensors V(m)

q̄,|K|(t) and V(s)
q̄,|K|(t) contain the

scalars {v(m)
q̄,M (t)}M⊆1:n,|M|=|K| and {v(s)

q̄,M(t)}M⊆1:n,|M|=|K|, respectively. For instance, V(m)
q̄,1 (t) and

V(m)
q̄,2 (t) can be respectively expressed as:

V(m)
q̄,1 (t) = [v

(m)
q̄,{1}(t) v

(m)
q̄,{2}(t) · · · v

(m)
q̄,{n}(t)], ∀q̄ ∈ Q, (6)

V(m)
q̄,2 (t) =


v

(m)
q̄,{1,1}(t) v

(m)
q̄,{1,2}(t) . . . v

(m)
q̄,{1,n}(t)

v
(m)
q̄,{2,1}(t) v

(m)
q̄,{2,2}(t) . . . v

(m)
q̄,{2,n}(t)

...
... . . . ...

v
(m)
q̄,{n,1}(t) v

(m)
q̄,{n,2}(t) . . . v

(m)
q̄,{n,n}(t)

 , ∀q̄ ∈ Q. (7)

The following Lemma shows that {v(m)
q̄,K (t)}q̄∈Q and {v(s)

q̄,K(t)}q̄∈Q obey a system of first-order

ordinary differential equations.
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Lemma 1. For state q̄ ∈ Q in the piecewise linear SHS with linear reset maps under consider-

ation,

v̇
(m)
q̄,K (t) =

|K|∑
j=1

[m]jv
(m−ej)
q̄,K (t) +

∑
l∈L′q̄

λ(l)
[
V(m)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K
− v(m)

q̄,K (t)
∑
l∈Lq̄

λ(l),

(8)

v̇
(s)
q̄,K(t) =

 |K|∑
j=1

[s]j −
∑
l∈Lq̄

λ(l)

 v(s)
q̄,K(t) +

∑
l∈L′q̄

λ(l)
[
V(s)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K

+ cq̄,K(t),

(9)

such that cq̄,K(t) is defined as

cq̄,K(t) =
∑
l∈L′q̄

λ(l)
∑

Z∈2K\∅

1
(
Zl = Z

)[
V(s′)
q̄l,|K\Zl|(t)×1 Al ×2 Al · · · ×|K\Zl| Al

]
K\Zl

, (10)

where the set Zl = {j ∈ K : [Al]j = 0T}, the vector s′ =
[
[s]Il(1) [s]Il(2) · · · [s]Il(|K\Zl|)

]
, and the

set Il contains the indices of the elements of K \ Zl inside K. When Zl = K, we also define:[
V(s′)
q̄l,|K\Zl|(t)×1 Al ×2 Al · · · ×|K\Zl| Al

]
K\Zl

= v
(0)
q̄l (t). (11)

Proof: See Appendix A.

It is worth noting that (8) and (9) in Lemma 1 can be expressed in a tensor form as

V̇(m)
q̄,|K|(t) =

|K|∑
j=1

[m]jV
(m−ej)

q̄,|K| (t) +
∑
l∈L′q̄

λ(l)
[
V(m)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
− V(m)

q̄,|K|(t)
∑
l∈Lq̄

λ(l),

(12)

V̇(s)
q̄,|K|(t) =

 |K|∑
j=1

[s]j −
∑
l∈Lq̄

λ(l)

V(s)
q̄,|K|(t) +

∑
l∈L′q̄

λ(l)
[
V(s)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
+ Cq̄,|K|(t),

(13)

where Cq̄,|K|(t) ∈ Rn1×n2×···×n|K|(nj = n,∀j ∈ 1 : |K|) such that [Cq̄,|K|(t)]K = cq̄,K(t). In order

to clearly see that Lemma 1 characterizes the trajectories of v(m)
q̄,K (t) and v(s)

q̄,K(t) over time, it is

useful to first state the following Corollaries.

Corollary 1. When K = {k}, m = [m1] and s = [s1], the system of first-order ordinary

differential equations in Lemma 1 reduces to:

v̇
([m1])
q̄,{k} (t) = m1v

([m1−1])
q̄,{k} (t) +

∑
l∈L′q̄

λ(l)
[
v

(m1)
q̄l (t)Al

]
k
− v([m1])

q̄,{k} (t)
∑
l∈Lq̄

λ(l), (14)
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v̇
([s1])
q̄,{k}(t) =

[
s1 −

∑
l∈Lq̄

λ(l)
]
v

([s1])
q̄,{k}(t) +

∑
l∈L′q̄

λ(l)
[
v

(s1)
q̄l (t)Al + 1

(
Zl = {k}

)
v

(0)
q̄l (t)

]
k
. (15)

Proof: The expressions in (14) and (15) directly follow from Lemma 1 along with noting

that V(m)
q̄l,|K|(t) and V(s)

q̄l,|K|(t) are vectors in R1×n when |K| = 1, and hence we define v
(m1)
q̄l (t) =

V([m1])
q̄l,1

(t) and v
(s1)
q̄l (t) = V([s1])

q̄l,1
(t).

Remark 1. Note that the system of differential equations in Corollary 1 is identical to the one

derived in [5, Lemma 1] for the temporal evolution of the marginal moments and MGF of each

age element in x(t).

Corollary 2. When K = {k1, k2}, m = [m1 m2] and s = [s1 s2], the system of first-order

ordinary differential equations in Lemma 1 reduces to:

v̇
([m1 m2])
q̄,{k1,k2} (t) = m1v

([m1−1 m2])
q̄,{k1,k2} (t) +m2v

([m1 m2−1])
q̄,{k1,k2} (t) +

∑
l∈L′q̄

λ(l)
[
AT
l V

(m1,m2)
ql

(t)Al

]
k1,k2

− v([m1 m2])
q̄,{k1,k2} (t)

∑
l∈Lq̄

λ(l), (16)

v̇
([s1 s2])
q̄,{k1,k2}(t) =

[
s1 + s2 −

∑
l∈Lq̄

λ(l)
]
v

([s1 s2])
q̄,{k1,k2}(t) +

∑
l∈L′q̄

λ(l)[AT
l V

(s1,s2)
q̄l (t)Al]k1,k2 + cq̄,{k1,k2}(t),

(17)

where cq̄,{k1,k2}(t) is given by

cq̄,{k1,k2}(t) =
∑
l∈L′q̄

λ(l)

[
1
(

Zl = {k2}
)[

v(s1)
ql

(t)Al

]
k1

+ 1
(

Zl = {k1}
)[

v(s2)
ql

(t)Al

]
k2

+ 1
(

Zl = {k1, k2}
)
v(0)
ql

(t)

]
, (18)

Proof: The expressions in (16) and (17) directly follow from Lemma 1 along with noting that

V(m)
q̄l,|K|(t) and V(s)

q̄l,|K|(t) are matrices in Rn×n when |K| = 2, and hence we define V
(m1,m2)
q̄l (t) =

V([m1 m2])
q̄l,2

(t) and V
(s1,s2)
q̄l (t) = V([s1 s2])

q̄l,2
(t).

We are now ready to elaborate on the use of Lemma 1 to obtain the trajectories of V(m)
q̄,|K|(t) and

V(s)
q̄,|K|(t) for an arbitrary set K starting from a given initial condition at t = 0. We start this dis-

cussion with the case of |K| = 2 for which the trajectories can be characterized using Corollaries

1 and 2. When |K| = 2 and for all q̄ ∈ Q, we observe from Corollary 2 that V([m1 m2])
q̄,2 (t) =

V
(m1,m2)
q̄ (t) and V([s1 s2])

q̄,2 (t) = V
(s1,s2)
q̄ (t) can be evaluated using (16) and (17), respectively.
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In particular, we note from (16) that in order to compute V
(1,1)
q̄ (t), we need to first compute

V
(0,1)
q̄ (t) = Tra

(
V

(1,0)
q̄ (t)

)
and V

(1,0)
q̄ (t) =

[
Tra
(
v

(1)
q̄ (t)

)
Tra
(
v

(1)
q̄ (t)

)
· · · Tra

(
v

(1)
q̄ (t)

)]
by

using (14) in Corollary 1 to evaluate v
(1)
q̄ . From (14), we note that v(1)

q̄ is obtained from v
(0)
q̄ (t),

which can be computed from [5, Lemma 1] as:

v̇
(0)
q̄ (t) =

∑
l∈L′q̄

λ(l)v(0)
ql

(t)− v
(0)
q̄ (t)

∑
l∈Lq̄

λ(l), ∀q̄ ∈ Q. (19)

Afterwards, V(2,1)
q̄ (t) is computed from V

(2,0)
q̄ (t) =

[
Tra
(
v

(2)
q̄ (t)

)
Tra
(
v

(2)
q̄ (t)

)
· · · Tra

(
v

(2)
q̄ (t)

)]
and V

(1,1)
q̄ (t) such that v

(2)
q̄ (t) can be evaluated from v

(1)
q̄ (t) using (14). The process can

be repeated to compute V
(m1,m2)
q̄ (t) for the desired m1,m2 ≥ 2 using V

(m1−1,m2)
q̄ (t) and

V
(m1,m2−1)
q̄ (t) evaluated in the previous steps. Further, by inspecting the structure of cq̄,{k1,k2}(t)

in (18), we note that V(s1,s2)
q̄ (t) can be computed from v

(sk)
q̄ (t) and v

(0)
q̄ (t), where v

(sk)
q̄ (t) can be

evaluated from v
(0)
q̄ (t) using (15). Now, one can clearly see from Lemma 1 that V([m1 m2 m3])

q̄,3 (t)

can be computed from V([m1 m2])
q̄,2 (t) = V

(m1,m2)
q̄ (t), and V([s1 s2 s3])

q̄,3 (t) can be computed from

V([s1 s2])
q̄,2 (t) = V

(s1,s2)
q̄ (t) and V([s1])

q̄,1 (t) = v
(s1)
q̄ (t). Thus, through the repeated application of

Lemma 1, we can evaluate V(m)
q̄,|K| and V(s)

q̄,|K| for an arbitrary set K with |K| ≥ 3.

B. Stationary Joint Moments and Joint MGFs

While Lemma 1 holds for any collection of reset map matrices {Al}l∈L, the set of differential

equations in Lemma 1 can be unstable for some choices of {Al}l∈L. Thus, it is essential to

investigate the conditions under which the differential equations in Lemma 1 are stable. While

there are several notions of stability including Lyapunov, Lagrange, and exponential stability,

we are interested here in the asymptotic stability under which v
(m)
q̄,K (t) and v

(s)
q̄,K(t) respectively

converge to the limits v̄(m)
q̄,K and v̄(s)

q̄,K as t→∞. The limiting values can then be evaluated as the

solution of the equations resulting from setting the derivatives in Lemma 1 to zero. To clearly

see why we are concerned about the asymptotic stability in this paper, recall that our prime

objective is to characterize the stationary joint moments and joint MGFs: lim
t→∞

E
[∏|K|

j=1 x
[m]j
K(j)(t)

]
and lim

t→∞
E
[
exp
[∑|K|

j=1 [s]jxK(j)(t)
]]

. Under the asymptotic stability, these quantities can simply

be evaluated from (3) and (4) as

lim
t→∞

E
[ |K|∏
j=1

x
[m]j
K(j)(t)

]
=
∑
q̄∈Q

lim
t→∞

v
(m)
q̄,K (t) =

∑
q̄∈Q

v̄
(m)
q̄,K , (20)
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lim
t→∞

E

exp
[ |K|∑
j=1

[s]jxK(j)(t)
] =

∑
q̄∈Q

lim
t→∞

v
(s)
q̄,K(t) =

∑
q̄∈Q

v̄
(s)
q̄,K. (21)

We now proceed to characterizing the conditions under which the differential equations in

Lemma 1 are asymptotically stable. Let us first recall the asymptotic stability theorem for linear

systems. The linear system

v̇(t) = v(t)P, v(0) = v0 (22)

is asymptotically stable if and only if the eigenvalues of P have strictly negative real parts. Thus,

according to (22), it is always useful to write the differential equations at hand in a vector form

to test the asymptotic stability. For all q̄ ∈ Q, let v̄(0)
q̄ , V̄(m)

q̄,|K| and V̄(s)
q̄,|K| respectively denote the

limiting values of v
(0)
q̄ (t), V(m)

q̄,|K|(t) and V(s)
q̄,|K|(t), when t → ∞. Clearly, v̄(0)

q̄ , V̄(m)
q̄,|K| and V̄(s)

q̄,|K|

are the fixed points of (19), (8) and (9), respectively, which can be obtained after setting the

derivatives to zero. The next theorem characterizes the conditions for asymptotic stability for

the differential equations in Lemma 1, which in turn enables the characterization of stationary

joint moments and joint MGFs for an arbitrary set K.

Theorem 1. If the Markov chain q(t) is ergodic with stationary distribution {v̄(0)
q̄ > 0 : q̄ ∈ Q},

and there exist positive fixed points {V̄(1|Z|)

q̄,|Z| : q̄ ∈ Q}|Z|∈{1,2,··· ,|K|} of (8), then:

• (i) For all q̄ ∈ Q, v(m)
q̄,K (t) converges to v̄(m)

q̄,K satisfying

v̄
(m)
q̄,K

∑
l∈Lq̄

λ(l) =

|K|∑
j=1

[m]j v̄
(m−ej)
q̄,K +

∑
l∈L′q̄

λ(l)
[
V̄(m)
q̄l,|K| ×1 Al ×2 Al · · · ×|K| Al

]
K
. (23)

• (ii) There exists s0 > 0 such that for all s ∈ S = {s :
∑|K|

j=1 [s]j < s0} and q̄ ∈ Q, v(s)
q̄,K(t)

and cq̄,K(t) respectively converge to v̄(s)
q̄,K and c̄q̄,K satisfying

v̄
(s)
q̄,K

∑
l∈Lq̄

λ(l) = v̄
(s)
q̄,K

|K|∑
j=1

[s]j +
∑
l∈L′q̄

λ(l)
[
V̄(s)
q̄l,|K| ×1 Al ×2 Al · · · ×|K| Al

]
K

+ c̄q̄,K, (24)

where c̄q̄,K is given by

c̄q̄,K =
∑
l∈L′q̄

λ(l)
∑

Z∈2K\∅

1
(
Zl = Z

)[
V̄(s′)
q̄l,|K\Zl| ×1 Al ×2 Al · · · ×|K\Zl| Al

]
K\Zl

. (25)

Proof: See Appendix B.

Theorem 1 is a generalization of [5, Theorem 1] which was focused on the characterization

of the marginal stationary moments and MGFs, i.e., the fixed points of the differential equations
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in Corollary 1. In particular, when |K| = 1, Theorem 1 directly reduces to [5, Theorem 1]. A

useful insight provided by Theorem 1 is that the existence of the stationary joint first moments

guarantees the existence of the stationary joint higher order moments and MGFs. It is worth

emphasizing that the generality of Theorem 1 lies in the fact that it allows the investigation of

the stationary joint moments and MGFs for an arbitrary set of age processes under any arbitrary

queueing discipline. This opens the door for the use of Theorem 1 to study the joint analysis

of age processes in networks for different queueing disciplines/status updating system settings

in the literature, which have only been analyzed in terms of the marginal moments and MGFs

until now.

IV. STATIONARY JOINT MGF IN MULTI-SOURCE UPDATING SYSTEMS

In this section, we use Theorem 1 to analyze the stationary joint MGF of the age processes

in a multi-source status updating system, where a transmitter monitors N physical processes,

and sends its measurements to a destination in the form of status updates. As shown in Fig. 1,

the transmitter consists of N sources and a single server; each source generates status updates

about one physical process, and the server delivers the status updates generated from the sources

to the destination. Status updates generated by the i-th source are assumed to follow a Poisson

process with rate λi. Further, the time needed by the server to send a status update is assumed

to be a rate µ exponential random variable. Let ρ = λ
µ

denote the server utilization factor,

where λ =
∑N

j=1 λj . Further, we define λZ =
∑|Z|

j=1 λZ(j), λ−Z =
∑N

j=1, j /∈Z λZ(j), ρZ = λZ

µ
and

ρ−Z = λ−Z

µ
. Thus, we have ρi = λi

µ
, λ−i =

∑N
j=1, j 6=i λj , and ρ−i = λ−i

µ
. To maintain generality,

we derive the joint MGF of an arbitrary set K ⊆ {1, 2, · · · , N} of age processes (associated with

the observed N physical processes) at the destination under three different queueing disciplines

for managing status update arrivals at the transmitter, which are described next.

• LCFS with no preemption (LCFS-NP): Under this queueing discipline, a new arriving status

update at the transmitter (from any of the sources) enters service upon its arrival if the server

is idle (i.e., there is no status update in service); otherwise, the new arriving status update

is discarded.

• LCFS with source-agnostic preemption in service (LCFS-PS): When the server is idle, the

management of a new arriving status update under this queueing discipline is similar to the

LCFS-NP one. However, when the server is busy, a new arriving status update replaces the



17

Fig. 1. An illustration of a multi-source status updating system.

current update being served (regardless of the index of its generating source) and the old

update in service is discarded.

• LCFS with source-aware preemption in service (LCFS-SA): This queueing discipline is

similar to the LCFS-PS one with the only difference being that a new arriving status update

preempts the update in service only if the two updates (the new arriving update and the

one in service) are generated from the same source.

Using the notations of the SHS framework, the continuous state x(t) in each queueing

discipline is given by x(t) = [x0(t) x1(t) · · ·xN(t)], where xi(t), i ∈ 1 : N , represents the value

of the source i’s AoI at the destination node, and x0(t) is the age of the status update in service.

Further, the discrete state space in each queueing discipline is given byQ = {0, 1, · · · , N}, where

q(t) = 0 indicates that the system is empty and hence the server is idle, and q(t) = i, i ∈ 1 : N ,

indicates that the server is serving a status update generated from the i-th source. Further, the

continuous-time Markov chain modeling the system discrete state q(t) ∈ Q under each of the

queueing disciplines is depicted in Fig. 2.

A. LCFS-NP Queueing Discipline

Table II presents the set of transitions L and their impact on the values of both q(t) and x(t).

Before proceeding into evaluating v̄
(s)
q̄,K, ∀q̄ ∈ Q, satisfying (24), we first describe the set of

transitions as follows:

l = 2i − 1: This transition occurs if there is a new arriving status update of source i at the

transmitter node when the server is idle. Note that the age of this new arriving status update is

0 and it does not have any impact on the AoI processes of the N sources at the destination.
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v

Fig. 2. Markov chains modeling the system discrete state q(t) for N = 2 under different queueing disciplines: (a) LCFS-NP,

(b) LCFS-PS, and (c) LCFS-SA.

TABLE II

TRANSITIONS OF THE LCFS-NP QUEUEING DISCIPLINE IN FIG. 2A (2 ≤ i ≤ N).

l ql → q′l λ(l) xAl Al

1 0 → 1 λ1 [0 x1 x2 · · · xN ]



0 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1



2 1 → 0 µ [0 x0 x2 · · · xN ]



0 1 0 . . . 0

0 0 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


2i− 1 0 → i λi [0 x1 x2 · · · xN ] [0T

N+1 eT
2 eT

3 · · · eT
N+1]

2i i → 0 µ [0 x1 x2 · · · xi−1 x0 · · · xN ] [0T
N+1 eT

2 eT
3 · · · eT

i eT
1 · · · eT

N+1]

Thus, as a result of this transition, the age process x0 in the updated age vector is reset to 0

(i.e., [xA2i−1]1 = 0) whereas the other age processes remain the same.

l = 2i: This transition occurs when the source i’s status update in service is delivered to

the destination. Thus, as a result of this transition, the source i’s AoI is reset to the age of the

status update received at the destination whereas the AoI values of the other sources do not

change. In addition, since the system becomes empty after the occurrence of this transition, the

first element of the age vector x(t) becomes irrelevant. Following the convention of [4], we set

the value corresponding to such irrelevant elements in the updated age value to 0, and thus we

observe that [xA2i]1 = 0.

Using Table II, we are now ready to derive {v̄(s)
q̄,K}q̄∈Q satisfying (24), from which the stationary

joint MGF of set K is characterized in the following theorem.
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Theorem 2. Under the LCFS-NP queueing discipline and for s = [sK(1) sK(2) · · · sK(|K|)], the

stationary joint MGF of a set K ⊆ {1, 2, · · · , N} of age processes is given by

NP

M(s) =
∑
q̄∈Q

v̄
(s)
q̄,K = µ|K|

 |K|∏
i=1

λK(i)

( µ

λ+ µ

)(
1 +

λ

µ−
∑|K|

j=1 sK(j)

) ∑
P∈P(K)

1

C(P)
, (26)

where C(P) =
∏|P|

i=1 cP(i:|P|) such that cZ is defined for a set Z ⊆ {1, 2, · · · , N} as

cZ =

λ− |Z|∑
j=1

sZ(j)

µ− |Z|∑
j=1

sZ(j)

− µ N∑
j=1,j /∈Z

λj. (27)

Proof: See Appendix C.

Corollary 3. Under the LCFS-NP queueing discipline, the marginal stationary MGF of source

k’s AoI is given by
NP

M(s̄k) =
ρk (1 + ρ− s̄k)

(1 + ρ) (1− s̄k) [(1− s̄k) (ρ− s̄k)− ρ−k]
, (28)

where k ∈ 1 : N and s̄k = sk
µ

.

Proof: This result follows from Theorem 2 by setting K = {k}.

Corollary 4. For k1, k2 ∈ 1 : N , the stationary joint MGF of the two AoI processes xk1(t) and

xk2(t) under the LCFS-NP queueing discipline is given by
NP

M(s̄k1 , s̄k2) =
ρk1ρk2

[
1 + ρ− (s̄k1 + s̄k2)

]
(1 + ρ)

[[
ρ− (s̄k1 + s̄k2)

][
1− (s̄k1 + s̄k2)

]
− ρ−{k1,k2}

][
1− (s̄k1 + s̄k2)

]
×

∑
i∈{k1,k2}

1

(1− s̄i)(ρ− s̄i)− ρ−i
. (29)

Proof: This result follows from Theorem 2 by setting K = {k1, k2}.

Proposition 1. For k1, k2 ∈ 1 : N , the correlation coefficient of the two AoI processes xk1(t)

and xk2(t) under the LCFS-NP queueing discipline is given by
NP

Cor =
ρ (ρk1 + ρk2)

[
ρk1ρk2 (ρ+ 2)− ρ−{k1,k2} (1 + ρ)2]− 2ρk1ρk2 (1 + ρ)2

(ρk1 + ρk2)
∏

i∈{k1,k2}

√
(1 + ρ)2[ρ2 + 2ρ−i + 1] + ρ2

i ρ(ρ+ 2)
. (30)

Proof: See Appendix D.

Corollary 5. When N = 2, the correlation coefficient of the two AoI processes x1(t) and x2(t)

under the LCFS-NP queueing discipline is given by
NP

Cor =
ρ1ρ2

[
ρ3 − 2(2ρ+ 1)

]
ρ
∏2

i=1

√
(1 + ρ)2[ρ2 + 2ρ−i + 1] + ρ2

i ρ(ρ+ 2)
. (31)
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TABLE III

TRANSITIONS OF THE LCFS-PS QUEUEING DISCIPLINE IN FIG. 2B (2 ≤ i ≤ N, 1 ≤ j ≤ N).

l ql → q′l λ(l) xAl Al

1 0 → 1 λ1 [0 x1 x2 · · · xN ]



0 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1



2 1 → 0 µ [0 x0 x2 · · · xN ]



0 1 0 . . . 0

0 0 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1



2 + j 1 → j λj [0 x1 x2 · · · xN ]



0 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


(2 +N)i− (N + 1) 0 → i λi [0 x1 x2 · · · xN ] [0T

N+1 eT
2 eT

3 · · · eT
N+1]

(2 +N)i−N i → 0 µ [0 x1 x2 · · · xi−1 x0 · · · xN ] [0T
N+1 eT

2 eT
3 · · · eT

i eT
1 · · · eT

N+1]

(2 +N)i−N + j i → j λj [0 x1 x2 · · · xN ] [0T
N+1 eT

2 eT
3 · · · eT

N+1]

Proof: This result follows from Proposition 1 by setting ρ = ρ1 + ρ2.

B. LCFS-PS Queueing Discipline

The set of transitions under the LCFS-PS queueing discipline is listed in Table III. Different

from the LCFS-NP queueing discipline, we note from transition l = (2 + N)i − N + j that

under the LCFS-PS queueing discipline, a new arriving status update at the transmitter preempts

the packet in service regardless of its generating source (i.e., source-agnostic preemption). The

stationary joint MGF of set K for this case is provided in the next theorem.

Theorem 3. Under the LCFS-PS queueing discipline and for s = [sK(1) sK(2) · · · sK(|K|)], the

stationary joint MGF of a set K ⊆ {1, 2, · · · , N} of age processes is given by

PS

M(s) =
∑
q̄∈Q

v̄
(s)
q̄,K = µ|K|

 |K|∏
i=1

λK(i)

 ∑
P∈P(K)

1

C(P)
. (32)

Proof: See Appendix E.



21

Corollary 6. Under the LCFS-PS queueing discipline, the marginal stationary MGF of source

k’s AoI is given by
PS

M(s̄k) =
ρk

(1− s̄k) (ρ− s̄k)− ρ−k
, (33)

where k ∈ 1 : N .

Corollary 7. For k1, k2 ∈ 1 : N , the stationary joint MGF of the two AoI processes xk1(t) and

xk2(t) under the LCFS-PS queueing discipline is given by
PS

M(s̄k1 , s̄k2) =
ρk1ρk2[

ρ− (s̄k1 + s̄k2)
][

1− (s̄k1 + s̄k2)
]
− ρ−{k1,k2}

∑
i∈{k1,k2}

1

(1− s̄i)(ρ− s̄i)− ρ−i
.

(34)

Proposition 2. For k1, k2 ∈ 1 : N , the correlation coefficient of the two AoI processes xk1(t)

and xk2(t) under the LCFS-PS queueing discipline is given by
PS

Cor =
−2ρk1ρk2

(ρk1 + ρk2)
√

(ρ2 + 2ρ−k1 + 1) (ρ2 + 2ρ−k2 + 1)
. (35)

Proof: See Appendix F.

Corollary 8. When N = 2, the correlation coefficient of the two AoI processes x1(t) and x2(t)

under the LCFS-PS queueing discipline is given by
PS

Cor =
−2ρ1ρ2

ρ
√

(ρ2 + 2ρ1 + 1)(ρ2 + 2ρ2 + 1)
. (36)

Remark 2. Note that the expression in (36) is identical to the correlation coefficient expression

derived in [43, Theorem 2] using tools from Palm calculus (for a two-source system setting

under the LCFS-PS queueing discipline).

C. LCFS-SA Queueing Discipline

The set of transitions under the LCFS-SA queueing discipline is listed in Table IV. From tran-

sition l = 3i, we note that the LCFS-SA queueing discipline only allows preemption in service

between the status updates generated from the same source (i.e., source-aware preemption). In

the next theorem, we provide the stationary joint MGF of set K under this queueing discipline.

Theorem 4. Under the LCFS-SA queueing discipline and for s = [sK(1) sK(2) · · · sK(|K|)], the

stationary joint MGF of a set K ⊆ {1, 2, · · · , N} of age processes is given by

SA

M(s) =
∑
q̄∈Q

v̄
(s)
q̄,K = µ|K|

 |K|∏
i=1

λK(i)

( µ

λ+ µ

)λ+ µ−
|K|∑
j=1

sK(j)

 ∑
P∈P(K)

C ′(P)

C(P)
, (37)
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TABLE IV

TRANSITIONS OF THE LCFS-SA QUEUEING DISCIPLINE IN FIG. 2C (2 ≤ i ≤ N).

l ql → q′l λ(l) xAl Al

1 0 → 1 λ1 [0 x1 x2 · · · xN ]



0 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1



2 1 → 0 µ [0 x0 x2 · · · xN ]



0 1 0 . . . 0

0 0 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1



3 1 → 1 λ1 [0 x1 x2 · · · xN ]



0 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


3i− 2 0 → i λi [0 x1 x2 · · · xN ] [0T

N+1 eT
2 eT

3 · · · eT
N+1]

3i− 1 i → 0 µ [0 x1 x2 · · · xi−1 x0 · · · xN ] [0T
N+1 eT

2 eT
3 · · · eT

i eT
1 · · · eT

N+1]

3i i → i λi [0 x1 x2 · · · xN ] [0T
N+1 eT

2 eT
3 · · · eT

N+1]

where C ′(P) is defined as

C ′(P) =
λP(|P|) + µ

µ
× 1

µ+ λP(|P|) − sP(|P|)
×
|P|−1∏
i=1

µ+ λP(i) −
∑|P|

j=i+1 sP(j)

µ+ λP(i) −
∑|P|

j=i sP(j)

. (38)

Proof: See Appendix G.

Corollary 9. Under the LCFS-SA queueing discipline, the marginal stationary MGF of source

k’s AoI is given by

SA

M(s̄k) =
ρk (1 + ρk) (1 + ρ− s̄k)

(1 + ρ) (1 + ρk − s̄k) [(1− s̄k) (ρ− s̄k)− ρ−k]
, (39)

where k ∈ 1 : N .

Corollary 10. For k1, k2 ∈ 1 : N , the stationary joint MGF of the two AoI processes xk1(t) and

xk2(t) under the LCFS-SA queueing discipline is given by

SA

M(s̄1, s̄2) =
ρk1ρk2

[
1 + ρ− (s̄k1 + s̄k2)

]
(1 + ρ)

[[
ρ− (s̄k1 + s̄k2)

][
1− (s̄k1 + s̄k2)

]
− ρ−{k1,k2}

]
×

∑
i∈{k1,k2}

(1 + ρi)(1 + ρ−i − s̄i)
(1 + ρi − s̄i)

[
1 + ρ−i − (s̄k1 + s̄k2)

][
(1− s̄i)(ρ− s̄i)− ρ−i

] . (40)
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Proposition 3. For k1, k2 ∈ 1 : N , the correlation coefficient of the two AoI processes xk1(t)

and xk2(t) under the LCFS-SA queueing discipline is given by

SA

Cor =
−ρk1ρk2g(ρk1 , ρk2)

(ρk1 + ρk2)(1 + ρk1)(1 + ρk2)
√
f(ρk1)f(ρk2)

, (41)

where g(ρk1 , ρk2) and f(ρi) are respectively given by:

g(ρk1 , ρk2) = ρ2
k1
ρ2
k2

[
(ρk1 + ρk2) + 2(1 + ρ)2

]
+ ρk1ρk2(ρk1 + ρk2)

[
2(ρk1 + ρk2) + 3ρ2 + 6ρ+ 5

]
+ (ρk1 + ρk2)3 + 2(ρk1 + ρk2)2(ρ2 + 2ρ+ 2) + (ρk1 + ρk2)(3ρ2 + 6ρ+ 4) + 2(1 + ρ)2,

(42)

f(ρi) = ρ3
i (ρ+ ρ−i) + ρ2

i

[
ρ3(ρ+ 2) + ρ−i(2ρ

2 + 9ρ+ 8)
]

+ ρi
[
ρ(2ρ+ 1)(1 + ρ)2 + ρ−i(2ρ+ 3)

+ ρ2
−i(3ρ+ 4)

]
+ (1 + ρ)4.

(43)

Proof: See Appendix H.

Corollary 11. When N = 2, the correlation coefficient of the two AoI processes x1(t) and x2(t)

under the LCFS-SA queueing discipline is given by

SA

Cor =
−ρ1ρ2g(ρ1, ρ2)

ρ(1 + ρ1)(1 + ρ2)
√
f ′(ρ1, ρ2)f ′(ρ2, ρ1)

, (44)

where g(ρ1, ρ2) and f ′(y, z) are respectively given by:

g(ρ1, ρ2) = ρ2
1ρ

2
2(ρ+ 2)(2ρ+ 1) + ρ1ρ2ρ(1 + ρ)(3ρ+ 5) + 2(1 + ρ)4, (45)

f ′(y, z) = z3y + y2z(2ρ2 + 7ρ+ 4) + yz(ρ2 + 6ρ+ 3) + y2ρ3(ρ+ 2) + yρ(2ρ3 + 6ρ2 + 4ρ+ 1)

+ (1 + ρ)4. (46)

D. Additional Discussion and Insights

Now we will list some additional insights the can be obtained from the expressions derived in

Section IV. Please recall that several insights obtained from our SHS-based framework developed

in this paper have already been presented in Section III. First, we note from Propositions 1-3

that while the two age processes xk1(t) and xk2(t) are negatively correlated under preemptive in

service queueing disciplines (LCFS-PS and LCFS-SA) for any choice of values of the system

parameters, they may be positively correlated under the non-preemptive queueing discipline
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Fig. 3. Correlation coefficient of the two AoI processes xk1(t) and xk2(t) as a function of ρ when N > 2 and ρ−{k1,k2} = 0.1ρ.
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Fig. 4. Correlation coefficient of the two AoI processes xk1(t) and xk2(t) as a function of ρ when N > 2 and ρ−{k1,k2} = 0.3ρ.

(LCFS-NP). This can also be observed from Figs. 3-5. Further, when N = 2, one can deduce

from Corollary 5 that there exists a threshold value ρth ≈ 2.2143 of ρ above which the two age

processes x1(t) and x2(t) are positively correlated under the LCFS-NP queueing discipline, as

shown in Fig. 6. This follows from the fact that the term [ρ3−2(2ρ+1)] in (31) is monotonically
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Fig. 5. Correlation coefficient of the two AoI processes xk1(t) and xk2(t) as a function of ρ when N > 2 and ρ−{k1,k2} = 0.5ρ.

increasing for ρ > 2√
3
, and it equals to zero at ρ ≈ 2.2143. Further, we observe from Figs. 3-5

and Fig. 7 that the source-aware preemption in service slightly reduces the negative correlation

of the two age processes compared to the source-agnostic one.
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Fig. 6. Correlation coefficient of the two AoI processes x1(t) and x2(t) as a function of ρ under the LCFS-NP queueing

discipline when N = 2.
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different values of µ.

V. CONCLUSION

In this paper, we developed an SHS-based general framework to facilitate the study of joint

distributional properties of an arbitrary set of AoI/age processes in a network. In particular, a

system of first-order linear differential equations was first derived for the temporal evolution of

both the joint moments and the joint MGFs for an arbitrary set of age processes. Afterwards, we

characterized the conditions under which the derived differential equations are asymptotically

stable, which in turn enabled the characterization of the stationary joint moments and joint

MGFs for the AoI processes forming the set of interest. We demonstrated the generality of

our framework by recovering several existing results as its special cases. An interesting insight

obtained from our analysis is that the existence of the stationary joint first moments guarantees

the existence of the stationary joint higher order moments and MGFs.

As an application of our framework, we obtained closed-from expressions of the station-

ary joint MGF in multi-source updating systems under several queueing disciplines including

non-preemptive and source-agnostic/source-aware preemptive in service queueing disciplines.

Using these MGF expressions, we derived closed-form expressions of the correlation coefficient

between any two arbitrary AoI processes in the system. Our derived correlation coefficient

expressions demonstrated that while any two AoI processes are negatively correlated under
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preemptive in service queueing disciplines for any choice of values of the system parameters,

they may be positively correlated under the non-preemptive queueing discipline. For instance,

for a two-source updating system, there exists a threshold value of server utilization in the

non-preemptive queueing discipline above which the two age processes are positively corre-

lated. Further, we numerically demonstrated that the source-aware preemption in service slightly

reduces the negative correlation of the two age processes compared to the source-agnostic one.

The generality of our analytical framework stems from the fact that it allows one to understand

the joint distributional properties for an arbitrary set of AoI processes in a broad range of system

settings under any arbitrary queueing discipline. This, in turn, opens the door for the use of our

framework in the future to investigate the stationary joint moments and MGFs of age processes

for a variety of queuing disciplines/status updating systems that have only been analyzed in

terms of the marginal moments and MGFs until now.

APPENDIX

A. Proof of Lemma 1

To derive this result, we follow a similar approach to that in [5] and [6], where the idea is

to define the test functions {ψ(q,x)} whose expected values {E[ψ(q(t),x(t))]} are quantities

of interest. Then, one can use the SHS framework to derive a system of differential equations

for the temporal evolution of the expected values of the defined test functions. Since we are

interested in the joint analysis of age processes in this paper, we define the following two classes

of test functions

ψ
(m)
q̄,K (q,x) =

|K|∏
j=1

x
[m]j
K(j)δq̄,q, ∀q̄ ∈ Q, (47)

ψ
(s)
q̄,K(q,x) = exp

 |K|∑
j=1

[s]jxK(j)

 δq̄,q,∀q̄ ∈ Q. (48)

Clearly, taking the expectation of the two classes of test functions in (47) and (48) gives

{v(m)
q̄,K (t)} and {v(s)

q̄,K(t)}, respectively. Now, we apply the SHS mapping ψ → Lψ (known as the

extended generator) to every test function in (47) and (48). Since the test functions defined above
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are time-invariant, it follows from [6, Theorem 1] that the extended generator of the considered

piecewise linear SHS with linear reset maps is given by

Lψ(q,x) =
∂ψ(q,x)

∂x
1T +

∑
l∈L

λ(l)(q)
[
ψ(q′l,xAl)− ψ(q,x)

]
︸ ︷︷ ︸

θ(q,x)

, (49)

where the row vector ∂ψ(q,x)/∂x denotes the gradient. Applying (49) to the test functions in

(47) and (48), we have

Lψ
(m)
q̄,K (q,x) =

∂ψ
(m)
q̄,K (q,x)

∂x
1T + θ

(m)
q̄,K (q,x), (50)

Lψ
(s)
q̄,K(q,x) =

∂ψ
(s)
q̄,K(q,x)

∂x
1T + θ

(s)
q̄,K(q,x), (51)

where

∂ψ
(m)
q̄,K (q,x)

∂x
=

|K|∑
j=1

[m]jψ
(m−ej)
q̄,K eK(j), (52)

∂ψ
(s)
q̄,K(q,x)

∂x
=

|K|∑
j=1

[s]jψ
(s)
q̄,KeK(j), (53)

where in (52), ej ∈ R1×|K| and eK(j) ∈ R1×n. Now, to obtain θ(m)
q̄,K (q,x) and θ(s)

q̄,K(q,x), note that

ψ
(m)
q̄,K (q′l,xAl) =

|K|∏
j=1

[xAl]
[m]j
K(j)δq̄,q′l

(a)
=

|K|∏
j=1

[
x[m]jAl

]
K(j)

δq̄,q′l , (54)

ψ
(s)
q̄,K(q′l,xAl) = exp

 |K|∑
j=1

[s]j[xAl]K(j)

 δq̄,q′l , (55)

δq̄,q′lδql,q =

δql,q, l ∈ L
′
q̄,

0, otherwise
, δq̄,qδql,q =

δq̄,q, l ∈ Lq̄,0, otherwise,
(56)

where step (a) in (54) follows from the fact that Al has no more than a single 1 in a column.

Thus, we have

θ
(m)
q̄,K (q,x) =

∑
l∈L′q̄

λ(l)

|K|∏
j=1

[
x[m]jAl

]
K(j)

δql,q −
|K|∏
j=1

x
[m]j
K(j)δq̄,q

∑
l∈Lq̄

λ(l), (57)
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θ
(s)
q̄,K(q,x) =

∑
l∈L′q̄

λ(l)exp

 |K|∑
j=1

[s]j[xAl]K(j)

 δql,q − exp

 |K|∑
j=1

[s]jxK(j)

 δq̄,q∑
l∈Lq̄

λ(l). (58)

Finally, the system of differential equations in (8) and (9) can be derived by applying Dynkin’s

formula [6] to each test function and its associated extended generator. In particular, the Dynkin’s

formula can be expressed as

dE[ψ(q(t),x(t))]

dt
= E[Lψ(q(t),x(t))]. (59)

Hence, from (1), (47) and (50), we get

v̇
(m)
q̄,K (t) = E[Lψ

(m)
q̄,K (q(t),x(t))] = E

[
∂ψ

(m)
q̄,K (q(t),x(t))

∂x(t)
1T

]
+ E[θ

(m)
q̄,K (q(t),x(t))],

=

|K|∑
j=1

[m]jv
(m−ej)
q̄,K (t) + E[θ

(m)
q̄,K (q(t),x(t))], (60)

where

E[θ
(m)
q̄,K (q(t),x(t))] =

∑
l∈L′q̄

λ(l)E

 |K|∏
j=1

[
x[m]j(t)Al

]
K(j)

δql,q(t)

− E

 |K|∏
j=1

x
[m]j
K(j)(t)δq̄,q(t)

∑
l∈Lq̄

λ(l),

(a)
=
∑
l∈L′q̄

λ(l)
[
V(m)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K
− v(m)

q̄,K (t)
∑
l∈Lq̄

λ(l), (61)

where step (a) follows from the definition of V(m)
q̄l,|K|(t) as

[
V(m)
q̄l,|K|(t)

]
K

= v
(m)
q̄l,K

(t) along with the

fact that [Al]j = 0T or eT
i , where i, j ∈ 1 : n. Let Zl = {j ∈ K : [Al]j = 0}. When Zl 6= ∅, one

can easily see that E
[∏|K|

j=1

[
x[m]j(t)Al

]
K(j)

δql,q(t)

]
=
[
V(m)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K|Al

]
K

= 0.

On the other hand, when Zl = ∅, E
[∏|K|

j=1

[
x[m]j(t)Al

]
K(j)

δql,q(t)

]
= v

(m)
q̄l,K′

(t) =
[
V(m)
q̄l,|K|(t) ×1

Al ×2 Al · · · ×|K| Al

]
K

such that |K′| = |K| and
[
x[m]j(t)Al

]
K(j)

= [x(t)]
[m]j
K′(j),∀j ∈ 1 : |K|.

Substituting (61) into (60) yields

v̇
(m)
q̄,K (t) =

|K|∑
j=1

[m]jv
(m−ej)
q̄,K (t) +

∑
l∈L′q̄

λ(l)
[
V(m)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K
− v(m)

q̄,K (t)
∑
l∈Lq̄

λ(l).

(62)

Further, from (2), (48) and (51), we get

v̇
(s)
q̄,K(t) = E[Lψ

(s)
q̄,K(q(t),x(t))] = E

[
∂ψ

(s)
q̄,K(q(t),x(t))

∂x(t)
1T

]
+ E[θ

(s)
q̄,K(q(t),x(t))],

=

|K|∑
j=1

[s]jv
(s)
q̄,K(t) + E[θ

(s)
q̄,K(q(t),x(t))], (63)
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where E
[
θ

(s)
q̄,K(q(t),x(t))

]
=

∑
l∈L′q̄

λ(l)E

exp
[ |K|∑
j=1

[s]j[x(t)Al]K(j)

]
δql,q(t)

− E

exp
[ |K|∑
j=1

[s]jxK(j)(t)
]
δq̄,q(t)

∑
l∈Lq̄

λ(l),

(a)
=
∑
l∈L′q̄

λ(l)
[
V(s)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K

+ cq̄,K(t)− v(s)
q̄,K(t)

∑
l∈Lq̄

λ(l), (64)

where step (a) follows from defining
∑

l∈L′q̄
λ(l)E

[
exp
[∑|K|

j=1 [s]j[x(t)Al]K(j)

]
δql,q(t)

]
= cq̄,K(t)

when Zl 6= ∅,∀l ∈ L′q̄, and cq̄,K(t) is given by (10) as

cq̄,K(t) =
∑
l∈L′q̄

λ(l)
∑

Z∈2K\∅

1
(
Zl = Z

)[
V(s′)
q̄l,|K\Zl|(t)×1 Al ×2 Al · · · ×|K\Zl| Al

]
K\Zl

,

where the vector s′ =
[
[s]Il(1) [s]Il(2) · · · [s]Il(|K\Zl|)

]
such that the set Il contains the indices of

the elements of K\Zl inside K. Note that when Zl = ∅, E
[
exp
[∑|K|

j=1 [s]j[x(t)Al]K(j)

]
δql,q(t)

]
=

v
(s)
q̄l,K′

(t) =
[
V(s)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K

. Finally, substituting (64) into (63) yields

v̇
(s)
q̄,K(t) =

 |K|∑
j=1

[s]j −
∑
l∈Lq̄

λ(l)

 v(s)
q̄,K(t) +

∑
l∈L′q̄

λ(l)
[
V(s)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
K

+ cq̄,K(t),

(65)

which completes the proof.

B. Proof of Theorem 1

We start the proof by combining the differential equations (12) and (13) of Lemma 1 in a

vector form as follows:

v̇
(m)
K (t) =

|K|∑
j=1

[m]jv
(m−ej)
K (t) + v

(m)
K (t)(BK −DK), (66)

v̇
(s)
K (t) = cK(t) + v

(s)
K (t)

[
BK −DK +

|K|∑
j=1

[s]jI
]
, (67)

where

v
(m)
K (t) =

[
vec
(
V(m)

0,|K|(t)
)
· · · vec

(
V(m)
qmax,|K|(t)

)]
,

v
(s)
K (t) =

[
vec
(
V(s)

0,|K|(t)
)
· · · vec

(
V(s)
qmax,|K|(t)

)]
,

DK = diag [d0In|K| , · · · , dqmaxIn|K| ] , dq̄ =
∑

l∈Lq̄ λ
(l),

cK(t) =
[
vec
(
C0,|K|(t)

)
· · · vec

(
Cqmax,|K|(t)

)]
,
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Rq̄,K(t) =
∑

l∈L′q̄
λ(l)
[
V(m)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
,

R̂q̄,K(t) =
∑

l∈L′q̄
λ(l)
[
V(s)
q̄l,|K|(t)×1 Al ×2 Al · · · ×|K| Al

]
,

[vec (R0,K(t)) · · · vec (Rqmax,K(t))] = v(m)(t)BK, (68)[
vec
(
R̂0,K(t)

)
· · · vec

(
R̂qmax,K(t)

)]
= v(s)(t)BK, (69)

such that vec(X ) is the row vector resulting from concatenating the rows of X into a single

long row, and X = diag[x1, · · · , xn] is a diagonal matrix with [X]i,j = xiδi,j,∀i, j ∈ 1 : n. Note

that we could construct the expressions in (68) and (69) due to the fact that vec (Rq̄,K(t)) and

vec
(
R̂q̄,K(t)

)
are linear in v

(m)
K (t) and v

(s)
K (t), respectively. In order to figure out the conditions

under which (66) is asymptotically stable, we first rewrite (66) in the case where v̇
(1|K|)

K (t) = 0

as t→∞:

v̄
(1|K|)

K DK =

|K|∑
j=1

v̄
(1|K|−ej)

K + v̄
(1|K|)

K BK, (70)

where v̄
(m)
K = lim

t→∞
v

(m)
K (t). Now, it would be useful to state the result in [5, Lemma 2], which

is a minor variation on the Perron-Frobenius Theorem. In particular, for the following system

of equations:

vD = z + vB, (71)

if B and D are non-negative matrices, z is strictly positive, and there exists a positive solution v

for (71), then all the eigenvalues of B−D have strictly negative real parts. A key observation here

is that both BK and DK in (70) are non-negative matrices. Thus, based on (71), if
∑|K|

j=1 v̄
(1|K|−ej)

K

is strictly positive and there exists a positive solution v̄
(1|K|)

K for (70), then all the eigenvalues

of BK −DK have strictly negative real parts, and hence (66) is asymptotically stable. Further,

when all the eigenvalues of BK − DK have strictly negative real parts, we observe from (67)

that there exists s0 > 0 such that for all s ∈ S = {s :
∑|K|

j=1 [s]j < s0}, all the eigenvalues of[
BK−DK +

∑|K|
j=1 [s]jI

]
will have strictly negative real parts, which guarantees the asymptotic

stability of (67) under the condition that cK(t) converges as t → ∞. Thus, what remains is

to identify the conditions for strict positivity of
∑|K|

j=1 v̄
(1|K|−ej)

K and convergence of cK(t) as

t → ∞. To clearly see these conditions for the generic case of having an arbitrary set K with

|K| age processes, we start with the cases of |K| = 1 and |K| = 2. For the cases of |K| = 1 and

|K| = 2, (70) respectively reduces to:

v̄
([1])
{k1}D{k1} = v̄

([0])
{k1} + v̄

([1])
{k1}B{k1}, (72)
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v̄
([11])
{k1,k2}D{k1,k2} = v̄

([0 1])
{k1,k2} + v̄

([1 0])
{k1,k2} + v̄

([1 1])
{k1,k2}B{k1,k2}. (73)

Note that v̄
([0])
{k1} in (72) is formed by the state probabilities of the Markov chain q(t), and

c{k1}(t) is a function of the state probabilities of q(t). Thus, having an ergodic Markov chain q(t)

with stationary distribution v̄
(0)
q̄ > 0, q̄ ∈ Q, guarantees both strict positivity of

∑|K|
j=1 v̄

(1|K|−ej)

K

and convergence of cK(t) as t → ∞ for the case of |K| = 1 (as has been demonstrated in [5,

Theorem 1]). Now, we move to the case of |K = 2|. For this case, it is important to note that

v̄
([0 1])
{k1,k2} and v̄

([1 0])
{k1,k2} in (73) can be constructed using v̄

([1])
{k1}, and c{k1,k2}(t) is a function of v([s1])

{k1}

and the distribution of q(t). Therefore, we can figure out that in this case, both strict positivity

of
∑|K|

j=1 v̄
(1|K|−ej)

K and convergence of cK(t) hold when: 1) q(t) is ergodic with distribution

{v̄(0)
q̄ > 0}q̄∈Q, and 2) there exists a positive solution v̄

([1])
{k1} for (72). Repeated application of

(70) yields the conditions under which (66) and (67) are asymptotically stable for a set K with

|K| > 2. By inspecting the analysis of the two cases of |K| = 1 and |K| = 2 above, we can

deduce that these conditions are: 1) q(t) is ergodic with distribution {v̄(0)
q̄ > 0}q̄∈Q, and 2) the

existence of positive solutions {v̄(1|Z|)

Z }|Z|∈{1,2,··· ,|K|} for (70). This completes the proof.

C. Proof of Theorem 2

Using the set of transitions in Table II and (24) in Theorem 1, v̄
([sk1

])

0,{k1} can be expressed as

(λ− sk1) v̄
([sk1

])

0,{k1} = µ

v̄([sk1
])

k1,{0} +
N∑

q̄=1,q̄ /∈{k1}

v̄
([sk1

])

q̄,{k1}

 , (74)

where v̄
([sk1

])

k1,{0} and v̄
([sk1

])

q̄,{k1} are given by

(µ− sk1) v̄
([sk1

])

k1,{0} = λk1 v̄
(0)
0 , (75)

(µ− sk1) v̄
([sk1

])

q̄,{k1} = λq̄v̄
([sk1

])

0,{k1} , (76)

where q̄ ∈ 1 : N . Substituting (75) and (76) into (74), we get

v̄
([sk1

])

0,{k1} =
µλk1 v̄

(0)
0

(λ− sk1)(µ− sk1)− µ
∑N

j=1,j /∈{k1} λj

(a)
=
µλk1 v̄

(0)
0

c{k1}
, (77)

where k1 ∈ 1 : N and step (a) follows from defining cZ for a set Z ⊆ {1, 2, · · · , N} in (27) as

cZ =

λ− |Z|∑
j=1

sZ(j)

µ− |Z|∑
j=1

sZ(j)

− µ N∑
j=1,j /∈Z

λj.
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Now, using (77), one can evaluate v̄
([sk1

sk2
])

0,{k1,k2} . In particular, from (24), v̄
([sk1

sk2
])

0,{k1,k2} can be

expressed as

[λ− (sk1 + sk2)]v̄
([sk1

sk2
])

0,{k1,k2} = µ
[
v̄

([sk1
sk2

])

k1,{0,k2} + v̄
([sk1

sk2
])

k2,{k1,0} +
N∑

q̄=1,q̄ /∈{k1,k2}

v̄
([sk1

sk2
])

q̄,{k1,k2}

]
, (78)

where

[µ− (sk1 + sk2)]v̄
([sk1

sk2
])

k1,{0,k2} = λk1 v̄
([sk2

])

0,{k2} , (79)

[µ− (sk1 + sk2)]v̄
([sk1

sk2
])

k2,{k1,0} = λk2 v̄
([sk1

])

0,{k1} , (80)

[µ− (sk1 + sk2)]v̄
([sk1

sk2
])

q̄,{k1,k2} = λq̄v̄
([sk1

sk2
])

0,{k1,k2} , (81)

where q̄ ∈ 1 : N . Thus, v̄
([sk1

sk2
])

0,{k1,k2} can be rewritten as

v̄
([sk1

sk2
])

0,{k1,k2}
(a)
=

µ
(
λk1 v̄

([sk2
])

0,{k2} + λk2 v̄
([sk1

])

0,{k1}

)
[
[λ− (sk1 + sk2)][µ− (sk1 + sk2)]− µ

∑N
j=1,j /∈{k1,k2} λj

] ,
(b)
=
µ
(
λk1 v̄

([sk2
])

0,{k2} + λk2 v̄
([sk1

])

0,{k1}

)
c{k1,k2}

,

(c)
= µ2λk1λk2 v̄

(0)
0

(
1

c{k1,k2}c{k1}
+

1

c{k1,k2}c{k2}

)
(d)
= µ2λk1λk2 v̄

(0)
0

∑
P∈P({k1,k2})

1

C(P)
,

(82)

where step (a) follows from substituting (79)-(81) into (78), step (b) follows from the fact that

c{k1,k2} = [λ−(sk1 +sk2)][µ−(sk1 +sk2)]−µ
∑N

j=1,j /∈{k1,k2} λj , step (c) follows from substituting

(77) into (82), and step (d) follows from defining C(P) as follows

C(P) =

|P|∏
i=1

cP(i:|P|) =

|P|∏
i=1

λ− |P|∑
j=i

sP(j)

µ− |P|∑
j=i

sP(j)

− µ N∑
j=1,j /∈P(i:|P|)

λj

 . (83)

In order to clearly see how v̄
(s)
0,K can be obtained for an arbitrary set K ⊆ {1, 2, · · · , N}, where

s = [sK(1) sK(2) · · · sK(|K|)], it will be useful to further derive v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} using (82). From

(24), v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} can be expressed as

[λ− (sk1 + sk2 + sk3)]v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} = µ
[
v̄

([sk1
sk2

sk3
])

k1,{0,k2,k3} + v̄
([sk1

sk2
sk3

])

k2,{k1,0,k3} + v̄
([sk1

sk2
sk3

])

k3,{k1,k2,0}

+
N∑

q̄=1,q̄ /∈{k1,k2,k3}

v̄
([sk1

sk2
sk3

])

q̄,{k1,k2,k3}

]
, (84)
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where

[λ− (sk1 + sk2 + sk3)]v̄
([sk1

sk2
sk3

])

k1,{0,k2,k3} = λk1 v̄
([sk2

sk3
])

0,{k2,k3} , (85)

[λ− (sk1 + sk2 + sk3)]v̄
([sk1

sk2
sk3

])

k2,{k1,0,k3} = λk2 v̄
([sk1

sk3
])

0,{k1,k3} , (86)

[λ− (sk1 + sk2 + sk3)]v̄
([sk1

sk2
sk3

])

k3,{k1,k2,0} = λk3 v̄
([sk1

sk2
])

0,{k1,k2} , (87)

[λ− (sk1 + sk2 + sk3)]v̄
([sk1

sk2
sk3

])

q̄,{k1,k2,k3} = λq̄v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} , (88)

where q̄ ∈ 1 : N . Thus, v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} can be rewritten as

v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3}
(a)
=

µ
(
λk1 v̄

([sk2
sk3

])

0,{k2,k3} + λk2 v̄
([sk1

sk3
])

0,{k1,k3} + λk3 v̄
([sk1

sk2
])

0,{k1,k2}

)
[
[λ− (sk1 + sk2 + sk3)][µ− (sk1 + sk2) + sk3 ]− µ

∑N
j=1,j /∈{k1,k2,k3} λj

] ,
=
µ
(
λk1 v̄

([sk2
sk3

])

0,{k2,k3} + λk2 v̄
([sk1

sk3
])

0,{k1,k3} + λk3 v̄
([sk1

sk2
])

0,{k1,k2}

)
c{k1,k2,k3}

,

(b)
=
µ3λk1λk2λk3 v̄

(0)
0

c{k1,k2,k3}

 ∑
P∈P({k2,k3})

1

C(P)
+

∑
P∈P({k1,k3})

1

C(P)
+

∑
P∈P({k1,k2})

1

C(P)

 ,

(c)
= µ3λk1λk2λk3 v̄

(0)
0

∑
P∈P({k1,k2,k3})

1

C(P)
, (89)

where step (a) follows from substituting (85)-(88) into (84), step (b) follows from substituting

(82) into (89), and step (c) follows from the fact that

1

c{k1,k2,k3}

 ∑
P∈P({k2,k3})

1

C(P)
+

∑
P∈P({k1,k3})

1

C(P)
+

∑
P∈P({k1,k2})

1

C(P)

 =
∑

P∈P({k1,k2,k3})

1

C(P)
.

By inspecting the expressions of v̄
([sk1

])

0,{k1} , v̄
([sk1

sk2
])

0,{k1,k2} and v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} in (77), (82) and (89),

respectively, one can see that repeated application of (24) gives v̄(s)
0,K for an arbitrary set K ⊆

{1, 2, · · · , N} as

v̄
(s)
0,K = µ|K|

 |K|∏
i=1

λK(i)

 v̄
(0)
0

∑
P∈P(K)

1

C(P)
. (90)

Thus, the stationary joint MGF of a set K ⊆ {1, 2, · · · , N} of age processes is given by

NP

M(s) =
∑
q̄∈Q

v̄
(s)
q̄,K

(a)
=

(
1 +

λ

µ−
∑|K|

j=1 sK(j)

)
v̄

(s)
0,K,
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(b)
= µ|K|

 |K|∏
i=1

λK(i)

( µ

λ+ µ

)(
1 +

λ

µ−
∑|K|

j=1 sK(j)

) ∑
P∈P(K)

1

C(P)
, (91)

where step (a) follows from expressing v̄
(s)
q̄,K, q̄ ∈ Q/{0}, as a function of v̄(s)

0,K using (24), and

step (b) follows from (90) along with noting that v̄(0)
0 =

µ

λ+ µ
. This completes the proof.

D. Proof of Proposition 1

The correlation coefficient of the two AoI processes xk1(t) and xk2(t) can be evaluated as

NP

Cor =
E[xk1xk2 ]− E[xk1 ]E[xk2 ]√

E[x2
k1

]− (E[xk1 ])2
√

E[x2
k2

]− (E[xk2 ])2
. (92)

Using Corollary 4, E[xk1xk2 ] can be evaluated as

E[xk1xk2 ] =
∂2
[NP

M(s̄k1 , s̄k2)
]

µ2∂s̄k1∂s̄k2

∣∣∣
s̄k1

=0,s̄k2
=0
,

=
ρ(1 + ρ)(ρk1 + ρk2)2 + (ρk1 + ρk2)

[
(1 + ρ)3 + 2ρρk1ρk2

]
− 2ρk1ρk2(1 + ρ)

µ2ρk1ρk2(1 + ρ)(ρk1 + ρk2)
. (93)

Further, from Corollary 3, E[xk] and E[x2
k] can be respectively evaluated as

E[xk] =
d
[NP

M(s̄k)
]

µ ds̄k

∣∣∣
s̄k=0

=
1 + ρ

µρk
+

ρ

µ (1 + ρ)
, (94)

E[x2
k] =

d2
[NP

M(s̄k)
]

µ2 ds̄2
k

∣∣∣
s̄k=0

=
2
[
ρ2
kρ+ ρk(ρ

2 − 1) + (1 + ρ)3
]

µ2ρ2
k(1 + ρ)

, (95)

where k ∈ 1 : N . The final expression of
NP

Cor in (30) can be derived by substituting (93)-(95)

into (92), followed by some algebraic simplifications.

E. Proof of Theorem 3

Using the set of transitions in Table III and (24) in Theorem 1, v̄
([sk1

])

0,{k1} can be expressed as

(λ− sk1) v̄
([sk1

])

0,{k1} = µ

v̄([sk1
])

k1,{0} +
N∑

q̄=1,q̄ /∈{k1}

v̄
([sk1

])

q̄,{k1}

 , (96)

where v̄
([sk1

])

k1,{0} and v̄
([sk1

])

q̄,{k1} are given by

(µ+ λ− sk1) v̄
([sk1

])

k1,{0} = λk1

N∑
q̄=0

v̄
(0)
q̄ = λk1 , (97)
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(µ+ λ− sk1) v̄
([sk1

])

q̄,{k1} = λq̄

(
v̄

([sk1
])

0,{k1} +
N∑
q̄=1

v̄
([sk1

])

q̄,{k1}

)
, (98)

where q̄ ∈ 1 : N . Thus, from summing the set of equations in (98), we get
N∑
q̄=1

v̄
([sk1

])

q̄,{k1} =
λ

µ− sk1

v̄
([sk1

])

0,{k1} . (99)

Substituting (99) into (98), v̄
([sk1

])

q̄,{k1} can be expressed in terms of v̄
([sk1

])

0̄,{k1} as

v̄
([sk1

])

q̄,{k1} =
λq̄

µ− sk1

v̄
([sk1

])

0,{k1} , (100)

where q̄ ∈ 1 : N . From (96), (97) and (100), v̄
([sk1

])

0,{k1} can be rewritten as

v̄
([sk1

])

0,{k1}
(a)
=

µ

λ− sk1

[ λk1

µ+ λ− sk1

+

∑N
j=1,j /∈{k1} λj

µ− sk1

v̄
([sk1

])

0,{k1}

]
,

=
µλk1 (µ− sk1)

µ+ λ− sk1

× 1

(λ− sk1)(µ− sk1)− µ
∑N

j=1,j /∈{k1} λj
,

(b)
=

µλk1 (µ− sk1)

c{k1} (µ+ λ− sk1)
, (101)

where k1 ∈ 1 : N , step (a) follows from substituting (97) and (100) into (96), and step (b) follows

the definition of c{k1} in (27). Now, using (101), one can evaluate v̄
([sk1

sk2
])

0,{k1,k2} . In particular, from

(24), v̄
([sk1

sk2
])

0,{k1,k2} can be expressed as

[λ− (sk1 + sk2)]v̄
([sk1

sk2
])

0,{k1,k2} = µ
[
v̄

([sk1
sk2

])

k1,{0,k2} + v̄
([sk1

sk2
])

k2,{k1,0} +
N∑

q̄=1,q̄ /∈{k1,k2}

v̄
([sk1

sk2
])

q̄,{k1,k2}

]
, (102)

where

[µ+ λ− (sk1 + sk2)]v̄
([sk1

sk2
])

k1,{0,k2} = λk1

N∑
q̄=0

v̄
([sk2

])

q̄,{k2} , (103)

[µ+ λ− (sk1 + sk2)]v̄
([sk1

sk2
])

k2,{k1,0} = λk2

N∑
q̄=0

v̄
([sk1

])

q̄,{k1} , (104)

[µ+ λ− (sk1 + sk2)]v̄
([sk1

sk2
])

q̄,{k1,k2} = λq̄

N∑
j=0

v̄
([sk1

sk2
])

j,{k1,k2} , (105)

where q̄ ∈ {1, 2, · · · , N}. Thus, by summing the set of equations in (105),
∑N

j=0 v̄
([sk1

sk2
])

j,{k1,k2} can

be expressed as
N∑
j=1

v̄
([sk1

sk2
])

j,{k1,k2} =
λ

µ− (sk1 + sk2)
v̄

([sk1
sk2

])

0,{k1,k2} . (106)
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Therefore, by substituting (106) into (105), v̄
([sk1

sk2
])

q̄,{k1,k2} can be expressed in terms of v̄
([sk1

sk2
])

0̄,{k1,k2}

as

v̄
([sk1

sk2
])

q̄,{k1,k2} =
λq̄

µ− (sk1 + sk2)
v̄

([sk1
sk2

])

0,{k1,k2} , (107)

where q̄ ∈ 1 : N . Further, from (99), (103) and (104), v̄
([sk1

sk2
])

k1,{0,k2} and v̄
([sk1

sk2
])

k2,{k1,0} can be respectively

expressed as

v̄
([sk1

sk2
])

k1,{0,k2} =
λk1 (µ+ λ− sk2)

(µ− sk2)
[
µ+ λ− (sk1 + sk2)

] v̄([sk2
])

0,{k2} , (108)

v̄
([sk1

sk2
])

k2,{k1,0} =
λk2 (µ+ λ− sk1)

(µ− sk1)
[
µ+ λ− (sk1 + sk2)

] v̄([sk1
])

0,{k1} . (109)

Thus, v̄
([sk1

sk2
])

0,{k1,k2} can be rewritten as

v̄
([sk1

sk2
])

0,{k1,k2}
(a)
=

µ

(
µ− (sk1 + sk2)

µ+ λ− (sk1 + sk2)

)(
λk1 (µ+ λ− sk2)

µ− sk2

v̄
([sk2

])

0,{k2} +
λk2 (µ+ λ− sk1)

µ− sk1

v̄
([sk1

])

0,{k1}

)
[
[λ− (sk1 + sk2)][µ− (sk1 + sk2)]− µ

∑N
j=1,j /∈{k1,k2} λj

] ,

(b)
=
µ2λk1λk2

[
µ− (sk1 + sk2)

]
µ+ λ− (sk1 + sk2)

(
1

c{k1,k2}c{k1}
+

1

c{k1,k2}c{k2}

)
,

=
µ2λk1λk2

[
µ− (sk1 + sk2)

]
µ+ λ− (sk1 + sk2)

∑
P∈P({k1,k2})

1

C(P)
, (110)

where step (a) follows from substituting (107)-(109) into (102), and step (b) follows from

substituting v̄
([sk2

])

0,{k2} and v̄
([sk1

])

0,{k1} from (101) along with adding c{k1,k2} based on the definition

in (27). Following similar steps as in (102)-(110), one can obtain v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} using v̄
([sk1

sk2
])

0,{k1,k2}

as

v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} =
µ3λk1λk2λk3

[
µ− (sk1 + sk2 + sk3)

]
µ+ λ− (sk1 + sk2 + sk3)

∑
P∈P({k1,k2,k3})

1

C(P)
. (111)

By inspecting the expressions of v̄
([sk1

])

0,{k1} , v̄
([sk1

sk2
])

0,{k1,k2} and v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} in (101), (110) and (111),

respectively, one can see that repeated application of (24) gives v̄(s)
0,K for an arbitrary set K ⊆

{1, 2, · · · , N} as

v̄
(s)
0,K = µ|K|

 |K|∏
i=1

λK(i)

( µ−
∑|K|

j=1 sK(j)

µ+ λ−
∑|K|

j=1 sK(j)

) ∑
P∈P(K)

1

C(P)
. (112)

Thus, the stationary joint MGF of a set K ⊆ {1, 2, · · · , N} of age processes is given by

PS

M(s) =
∑
q̄∈Q

v̄
(s)
q̄,K

(a)
=

(
1 +

λ

µ−
∑|K|

j=1 sK(j)

)
v̄

(s)
0,K

(b)
= µ|K|

 |K|∏
i=1

λK(i)

 ∑
P∈P(K)

1

C(P)
, (113)
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where step (a) follows from expressing v̄
(s)
q̄,K, q̄ ∈ Q/{0}, as a function of v̄(s)

0,K using (24), and

step (b) follows from substituting v̄(s)
0,K from (112). This completes the proof.

F. Proof of Proposition 2

From Corollary 7, E[xk1xk2 ] can be evaluated as

E[xk1xk2 ] =
∂2
[PS

M(s̄k1 , s̄k2)
]

µ2∂s̄k1∂s̄k2

∣∣∣
s̄k1

=0,s̄k2
=0

=
(1 + ρ)2(ρk1 + ρk2)− 2ρk1ρk2

µ2ρk1ρk2(ρk1 + ρk2)
. (114)

Further, from Corollary 6, E[xk] and E[x2
k] can be respectively evaluated as

E[xk] =
d
[PS

M(s̄k)
]

µ ds̄k

∣∣∣
s̄k=0

=
1 + ρ

µρk
, (115)

E[x2
k] =

d2
[PS

M(s̄k)
]

µ2 ds̄2
k

∣∣∣
s̄k=0

=
2
[
(1 + ρ)2 − ρk

]
µ2ρ2

k

, (116)

where k ∈ 1 : N . The final expression of
PS

Cor in (35) can be derived by substituting (114)-(116)

into (92), followed by some algebraic simplifications.

G. Proof of Theorem 4

Using the set of transitions in Table IV and (24) in Theorem 1, v̄
([sk1

])

0,{k1} can be expressed as

(λ− sk1) v̄
([sk1

])

0,{k1} = µ

v̄([sk1
])

k1,{0} +
N∑

q̄=1,q̄ /∈{k1}

v̄
([sk1

])

q̄,{k1}

 , (117)

where v̄
([sk1

])

k1,{0} and v̄
([sk1

])

q̄,{k1} are given by

(µ+ λk1 − sk1) v̄
([sk1

])

k1,{0} = λk1

(
v̄

(0)
0 + v̄

(0)
k1

)
(a)
=
λk1 + µ

µ
v̄

(0)
0 , (118)

(µ+ λq̄ − sk1) v̄
([sk1

])

q̄,{k1} = λq̄

(
v̄

([sk1
])

0,{k1} + v̄
([sk1

])

q̄,{k1}

)
, (119)

where q̄ ∈ 1 : N and step (a) in (118) follows from the fact that v̄(0)
k1

=
λk1

µ
v̄

(0)
0 . Substituting

(118) and (119) into (117), we get

v̄
([sk1

])

0,{k1} =
µλk1 v̄

(0)
0 (µ− sk1)

(λ− sk1)(µ− sk1)− µ
∑N

j=1,j /∈{k1} λj
×

λk1
+µ

µ

µ+ λk1 − sk1

,

=
µλk1 v̄

(0)
0 (µ− sk1)

c{k1}
×

λk1
+µ

µ

µ+ λk1 − sk1

, (120)
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where k1 ∈ 1 : N . Now, using (120), one can evaluate v̄
([sk1

sk2
])

0,{k1,k2} . In particular, from (24),

v̄
([sk1

sk2
])

0,{k1,k2} can be expressed as

[λ− (sk1 + sk2)]v̄
([sk1

sk2
])

0,{k1,k2} = µ
[
v̄

([sk1
sk2

])

k1,{0,k2} + v̄
([sk1

sk2
])

k2,{k1,0} +
N∑

q̄=1,q̄ /∈{k1,k2}

v̄
([sk1

sk2
])

q̄,{k1,k2}

]
, (121)

where

[µ+ λk1 − (sk1 + sk2)]v̄
([sk1

sk2
])

k1,{0,k2} = λk1

(
v̄

([sk2
])

0,{k2} + v̄
([sk2

])

k1,{k2}

)
(a)
= λk1

(
1 +

λk1

µ− sk2

)
v̄

([sk2
])

0,{k2} ,

(122)

[µ+ λk2 − (sk1 + sk2)]v̄
([sk1

sk2
])

k2,{k1,0} = λk2

(
v̄

([sk1
])

0,{k1} + v̄
([sk1

])

k2,{k1}

)
(a)
= λk2

(
1 +

λk2

µ− sk1

)
v̄

([sk1
])

0,{k1} ,

(123)

[µ+ λq̄ − (sk1 + sk2)]v̄
([sk1

sk2
])

q̄,{k1,k2} = λq̄

(
v̄

([sk1
sk2

])

0,{k1,k2} + v̄
([sk1

sk2
])

q̄,{k1,k2}

)
, (124)

where q̄ ∈ {1, 2, · · · , N} and step (a) in (122) and (123) follows from substituting v̄
([sk2

])

k1,{k2} and

v̄
([sk1

])

k2,{k1} from (119). Thus, v̄
([sk1

sk2
])

0,{k1,k2} can be rewritten as

v̄
([sk1

sk2
])

0,{k1,k2}
(a)
=

µ
[
µ− (sk1 + sk2)

] λk1

(
1 +

λk1

µ−sk2

)
[
µ+ λk1 − (sk1 + sk2)

] v̄([sk2
])

0,{k2} +
λk2

(
1 +

λk2

µ−sk1

)
[
µ+ λk2 − (sk1 + sk2)

] v̄([sk1
])

0,{k1}


[
[λ− (sk1 + sk2)][µ− (sk1 + sk2)]− µ

∑N
j=1,j /∈{k1,k2} λj

] ,

(b)
=
µ2λ1λ2v̄

(0)
0

[
µ− (sk1 + sk2)

]
c{k1,k2}

×

[
1

c{k1}
×

λk1
+µ

µ
(µ− λk2 − sk1)

(µ+ λk1 − sk1)
[
µ+ λk2 − (sk1 + sk2)

]
+

1

c{k2}
×

λk2
+µ

µ
(µ− λk1 − sk2)

(µ+ λk2 − sk2)
[
µ+ λk1 − (sk1 + sk2)

]],
(c)
= µ2λk1λk2 v̄

(0)
0

[
µ− (sk1 + sk2)

] ∑
P∈P({k1,k2})

C ′(P)

C(P)
, (125)

where step (a) follows from substituting (122)-(124) into (121), step (b) follows from substituting

v̄
([sk2

])

0,{k2} and v̄
([sk1

])

0,{k1} from (120) along with the definition of c{k1,k2} in (27), and step (c) follows

from defining C ′(P) in (38) as

C ′(P) =
λP(|P|) + µ

µ
× 1

µ+ λP(|P|) − sP(|P|)
×
|P|−1∏
i=1

µ+ λP(i) −
∑|P|

j=i+1 sP(j)

µ+ λP(i) −
∑|P|

j=i sP(j)

.
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Following similar steps as in (121)-(125), one can obtain v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} using v̄
([sk1

sk2
])

0,{k1,k2} as

v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} = µ3λk1λk2λk3 v̄
(0)
0

[
µ− (sk1 + sk2 + sk3)

] ∑
P∈P({k1,k2,k3})

C ′(P)

C(P)
. (126)

By inspecting the expressions of v̄
([sk1

])

0,{k1} , v̄
([sk1

sk2
])

0,{k1,k2} and v̄
([sk1

sk2
sk3

])

0,{k1,k2,k3} in (120), (125) and (126),

respectively, one can see that repeated application of (24) gives v̄(s)
0,K for an arbitrary set K ⊆

{1, 2, · · · , N} as

v̄
(s)
0,K = µ|K|

 |K|∏
i=1

λK(i)

 v̄
(0)
0

µ− |K|∑
j=1

sK(j)

 ∑
P∈P(K)

C ′(P)

C(P)
. (127)

Thus, the stationary joint MGF of a set K ⊆ {1, 2, · · · , N} of age processes is given by

SA

M(s) =
∑
q̄∈Q

v̄
(s)
q̄,K

(a)
=

(
1 +

λ

µ−
∑|K|

j=1 sK(j)

)
v̄

(s)
0,K,

(b)
= µ|K|

 |K|∏
i=1

λK(i)

( µ

λ+ µ

)λ+ µ−
|K|∑
j=1

sK(j)

 ∑
P∈P(K)

C ′(P)

C(P)
, (128)

where step (a) follows from expressing v̄
(s)
q̄,K, q̄ ∈ Q/{0}, as a function of v̄(s)

0,K using (24), and

step (b) follows from substituting v̄
(s)
0,K from (127) along with the fact that v̄(0)

0 = µ
λ+µ

. This

completes the proof.

H. Proof of Proposition 3

From Corollary 10, E[xk1xk2 ] can be evaluated as

E[xk1xk2 ] =
∂2
[SA

M(s̄k1 , s̄k2)
]

µ2∂s̄k1∂s̄k2

∣∣∣
s̄k1

=0,s̄k2
=0

=

∑3
j=0 αj(ρk1ρk2)j

µ2ρk1ρk2(1 + ρk1)2(1 + ρk2)2(1 + ρ)(ρk1 + ρk2)
,

(129)

α3 = −2(1 + ρ),

α2 = (ρk1 + ρk2)
[
− (2 + ρ)(ρk1 + ρk2) + (ρ3 + 5ρ2 + 5ρ− 1)

]
,

α1 = −(2ρ+ 3)(ρk1 + ρk2)3 + (ρk1 + ρk2)2(2ρ3 + 9ρ2 + 9ρ− 1) + 2(ρk1 + ρk2)ρ(ρ+ 2)2 − 2(1 + ρ),

α0 = (1 + ρ)(ρk1 + ρk2)(1 + ρk1 + ρk2)
[
− (ρk1 + ρk2)2 + (ρk1 + ρk2)

[
(1 + ρ)2 + ρ

]
+ (1 + ρ)2

]
.

Further, from Corollary 9, E[xk] and E[x2
k] can be respectively evaluated as

E[xk] =
d
[SA

M(s̄k)
]

µ ds̄k

∣∣∣
s̄k=0

=
(1 + ρ)2(1 + ρk) + ρkρ−k
µρk(1 + ρk)(1 + ρ)

, (130)
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E[x2
k] =

d2
[SA

M(s̄k)
]

µ2 ds̄2
k

∣∣∣
s̄k=0

,

=
2
[
− ρ3

k(3 + 2ρ) + ρ2
k(ρ

3 + 4ρ2 + 2ρ− 2) + ρk(1 + ρ)(2ρ2 + 5ρ+ 1) + (1 + ρ)3
]

µ2ρ2
k(1 + ρk)2(1 + ρ)

, (131)

where k ∈ 1 : N . The final expression of
SA

Cor in (41) can be derived by substituting (129)-(131)

into (92), followed by some algebraic simplifications.
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