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 

Abstract—Driver training is one of the interventions aimed at 

mitigating the number of crashes that involve novice drivers. Our 

failure to understand what is really important for learners, in 

terms of risky driving, is one of the many drawbacks restraining 

us to build better training programs. Currently, there is a need to 

develop and evaluate Advanced Driving Assistance Systems that 

could comprehensively assess driving competencies. The aim of 

this paper is to present a novel Intelligent Driver Training 

System (IDTS) that analyses crash risks for a given driving 

situation, providing avenues for improvement and 

personalisation of driver training programs. The analysis takes 

into account numerous variables acquired synchronously from 

the Driver, the Vehicle and the Environment (DVE). The system 

then segments out the manoeuvres within a drive. This paper 

further presents the usage of fuzzy set theory to develop the 

safety inference rules for each manoeuvre executed during the 

drive. This paper presents a framework and its associated 

prototype that can be used to comprehensively view and assess 

complex driving manoeuvres and then provide a comprehensive 

analysis of the drive used to give feedback to novice drivers. 

 
Index Terms— Driver Training, Novice driver, Crash 

prevention, Intelligent Driver Training System (IDTS)  

 

I. INTRODUCTION 

  

RIVERS are at a greater risk of crashing during the early 

years of driving. Research indicates that novice drivers are 

over represented in crashes [1] and that these crashes have 

different characteristics compared to the ones from 

experienced drivers: these drivers are particularly involved in 

single vehicle crashes involving loss of control, excess speed 

for conditions, unlit rural roads and crashes while making 

cross-flow turns [2]. Young driver crashes are often due to a 

lack of experience, poor hazard perception practice, and a 

tendency to take risks, as they drive faster, in ways that 

increase the probability of conflicts with other drivers and 

with smaller gaps [1, 3, 4].  

Knowledge about what are the subjective and objective 

characteristics of safe and unsafe driving is extensive [16-18]. 

Up till now a lot of driver feedback programs have been 

designed, each trying to cover as many aspects of driving as 

 
 

possible [19, 20]. Yet to our knowledge, there is no 

comprehensive automated feedback system that lets the 

drivers and driver trainers to effectively observe and measure 

all the variables relevant to safety involved in driving (i.e. 

Driver, Vehicle and Environment). The aim of this paper is to 

design a new, objective and automated way of providing 

feedback to instructors and/or novice drivers by harnessing 

and combining data captured from various in-vehicle sensors 

from on-road training. This paper provides a proof-of concept 

and a demonstration of how this system would technically 

work in principle. Such a tool could be used to improve 

training of novice drivers by providing a comprehensive 

analysis of the risk of the manoeuvre as performed by the 

novice driver, as well as a way to highlight the specific 

deficiencies of the novice driver for further tailoring the 

training of the driver. 

The next section will provide the background supporting the 

proposed approach. Then we will comprehensively present the 

approach for developing Intelligent Driver Training System 

and its prototype. 

II. BACKGROUND 

A. Novice driver issue related to road safety 

There is a long  research debate about whether the over-

representation of young drivers in road crashes arises because 

of immaturity or because of inexperience [5]. Young drivers 

underestimate the risks and overestimate their driving skill; 

they also consider themselves superior to other drivers. Such 

overestimation may partly be an effect of training strategies, 

particularly for programs providing advanced skills training 

for facing dangerous situations. This is an issue as drivers do 

not drive more carefully than they believe is necessary, which 

means that such drivers would take more risks.  

B. The driver training debate 

More generally there is a debate on the effectiveness of driver 

education programs in the literature [6]. Numerous studies 

have failed to show any positive effects of driver education 

and training programs on crashes and violations, and some 

even suggest that such programs pose a safety risk, whether 

due to earlier licensure or overestimation of skills. Difficulty 

in showing the positive effects of driver training on crashes 
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reduction should not reduce efforts to improve training 

strategies, as many of these studies are methodologically 

flawed (for instance due to lack of control group or 

confounding effects) and as the validity and usefulness of 

crash rates as a measure of effectiveness is questionable, 

crashes being rare events, under-reported and the result of 

multiple contributing factors [7]. This refrains from drawing 

definite conclusions and further and more robust research is 

needed. 

One possible explanation for the lack of positive effects of 

training program could be the fact that these programs did not 

focus on the important factors leading to risks of collisions. 

Efforts to improve novice driver safety should focus on 

attitudes and beliefs of drivers [8]. Traditions in driver training 

must be changed or complemented, particularly by focusing 

on the aspects of the driving task relates to the risk of 

collisions and making drivers aware of the practical 

limitations of the skills they have learnt [4].  This can 

particularly be done by putting an emphasis on hazard 

recognition and risk assessment [6]. In particular current 

technology developments allow the use of computer based 

training strategies providing dynamic visual context to 

learners, which have been shown to help in proceduralising 

new skills developed during training (earlier glances toward 

hazards in this study)  [9]. An important method of improving 

safety among young drivers may therefore be to find ways of 

making them aware of their own limitations and risks 

associated to a particular manoeuvre [4]. Such an approach 

could result in enhanced decision making by novice drivers. 

To put this into practice, Robinson [10] advocates for the 

development of training programs that would be empirically 

based, focused on perceptual skill deficiencies, tackling over-

confidence by making novice drivers aware of their limitations 

and should be tailored to the particular skill deficiencies of 

each novice driver. Training strategies should also be designed 

to counteract the likelihood of novice drivers developing 

overconfidence in their driving skills [1]. 

C. Current approaches and their limitations 

The current approach to improve novice driver safety relies on 

graduated licensing and on parental involvement. Advanced 

Driving Assistance Systems (ADAS) could be a solution for 

improving novice driver safety, as they could be used to 

provide objective and contextualised information to both 

trainers and trainees. Indeed, current practice by professional 

driver trainers is mainly manual, which is prone to 

subjectivity, potential lack of identification of multiple 

hazards, and a lack of comprehensive environmental context. 

So far, most intelligent systems have focused on warning the 

driver of potential hazards or lane departures by fusing data 

from multiple sensors [11-14]. However, prioritisation of the 

warning system is not the appropriate solution for tackling the 

novice driver issue, as such systems tend to  results in a false 

perception of control and lack of urgent reactions by novice 

(and particularly male) drivers [13] or in distraction, both 

resulting in higher crash risks. A better approach would be to 

use the fusion of information to assess the level of risk of a 

particular driving manoeuvre, and then provide interactive 

feedback to the novice driver so that they can identify their 

limitations. Some attempt toward this approach can be found 

in a study using low cost sensors (smartphones) to assess 

safety of the driving task [15], but with a lack of theoretical 

modelling of what is a safe manoeuvre and the limitations of 

the sensor used for integrating the road environment in the 

assessment of risk. 

Research suggests that the best learning environment for the 

inexperienced driver is the real road system under the 

supervision of an experienced driver or an instructor [1, 3]. 

One of the key aspects of driver training programs is 

assessment or feedback on the driving performance. This can 

be either self-assessment or assessment from another group or 

individual. 

D. The potential of an integrated approach to improve driver 

training 

The driver’s decision and response on processing the stimulus 

is not accurate but rather an estimate. By exploiting fuzzy set 

theory we will be able to model the low risk driving 

behaviour. We hypothesize that training results in increased 

accuracy of the driver estimates that are required in execution 

of different driving manoeuvres. Therefore an effective 

feedback system needs to be in place.  

In-order to comprehensively tackle driving issues, a complete 

and integrated framework needs to be developed that should 

include and examine all the parameters that influence driving 

(i.e. cues related to road, vehicle and driver). This introduces 

the need for a system that can assess the multiple manoeuvres 

in a driving scenario as high risk or low risk based on the 

parameters acquired from DVE. Once the assessment has been 

made, an effective feedback system needs to be put in place 

that can help driver trainers to better explain the driving 

shortcomings of novice trainee drivers. This can take the form 

of a visualisation system (the approach taken in this paper), as 

this has the potential benefits of feedback support, given the 

assertion that people are trying to learn or reduce the error 

inherent to their early attempts of performing a particular 

manoeuvre. This paper focuses on decomposing, analysing 

and providing feedback about manoeuvres such as driving on 

curves, overtaking and lane changing. Fuzzy set theory is then 

applied as the framework for risk evaluation and analysis of 

the manoeuvres, as this theory was developed to represent 

imprecise knowledge and concepts and has been successfully 

used in many real world applications due to its flexibility 

(such as automatism, robotic, informatics, decision making 

problems, medicine and pattern recognition), as they enable 

the representation of imprecise knowledge and concepts. In 

particular, it can be implemented in real-time and with an 

appropriate structure for effective risk modelling [21]. 

Figure 1 illustrates three sensors, namely FaceLab (eye 

tracking system), MobileEye (lane and obstacle detection 

system) and Vigil System (GPS, accelerometer and vehicle 

dynamics data logger) to gather data from the DVE.  
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Fig. 1. Multi-sensor recording system for Intelligent Driver Training System 

(IDTS) 

III. IDTS FRAMEWORK 

A successful feedback solution has to combine the benefits 

of multiple sensors such as GPS, accelerometers, cameras, 

vehicle information, driver’s head/eye data and geographical 

data. In order to obtain a precise synchronization, a 

sufficiently accurate global time for all sensors and fusion 

system is necessary. This would then allow processing of 

drive related data using complex algorithms to retrieve 

information such as but not limited to; following distance 

during particular manoeuvres, indicator distance before 

manoeuvres, average speed during manoeuvres, excessive 

braking or accelerations, driver gaze depth and orientation etc. 

All this information synchronously plotted on an interactive 

map will definitely complement the effectiveness of the 

contextually rich feedback system. 

The proposed framework (i.e. Intelligent Driver Training 

System) using fuzzy logic provides crash risk assessment for 

the driving manoeuvres. We call the IDTS presented in the 

paper a framework, as many of its components can be replaced 

or extended. For example, the risk evaluation modules could 

be based on statistical classifiers. The library of manoeuvres is 

also extensible. Along with this, the framework utilizes an 

interactive mapping interface to provide feedback of the drive 

to its users. This would eventually help driver trainers and 

parents to objectively evaluate and provide feedback to novice 

drivers.  

To model a complex driving scenario in a comprehensive 

way, it is necessary to fuse several sensory data. Our test 

vehicle (a 4WD) is equipped with vision systems, and sensors 

to monitor the vehicle dynamics as described in Figure 1. 

Currently the test vehicle for this project includes the 

following sensors. 

 FaceLab (head and eye tracking system) [see 22]. 

 MobileEye (lane and obstacle detection system) 

[see 23]. 

 Vigil System (GPS, accelerometers and vehicle 

dynamics data logger) [see 24]. 

Figure 2 presents the block diagram of the architecture of 

the IDTS. All outputs are gathered from the above mentioned 

sensors during the drive and then RTMaps is used to 

synchronize all the sensory data. By integrating information 

about the vehicle, driver and environment we are able to 

contextualize, observe and assess formally a more complete 

range of driver behaviours. After the data synchronization, 

manoeuvres are segmented out as right turn, left turn, lane 

change and overtake. Each manoeuvre is composed of several 

individual tasks that are necessary to be performed in a timely 

manner. This sequence of task completion helps driver trainers 

to assess the drivers during execution of different manoeuvres. 

The IDTS uses fuzzy rules to evaluate the risk associated with 

manoeuvres. Finally, it uses a mapping module combined with 

graphical representation of the drive to provide an extensive 

feedback about the drive. Currently, the IDTS is able to 

segment and assess risk for the following manoeuvres: turns, 

lane changes and overtakes. An example of a standard 

manoeuvre assessment (i.e. right turn) that driver trainers use 

is presented in Table I. The assessment tables for lane change 

and overtake have similar tasks as described in section 3.1.1. 

The tasks are basic actions that are required to drive safely 

and are part of many manoeuvres that drivers carry out during 

their drive. For example: the ‘check mirrors’ task in ‘turn’ 

assessment is also required before the start of ‘lane change’. 

And ‘lane change’ is a requirement of overtake manoeuvre. So 

we can see how the IDTS architecture is based on combining 

basic behaviours/tasks to build more complex 

behaviours/manoeuvres. The breakdown of particular 

manoeuvres (i.e. curve, lane change and overtake) into tasks 

and risk assessment (i.e. low risk or high risk) of these tasks is 

explained in detail in the manoeuvre respective sections. 

 
RTMaps timestamps 

data acquired from 

DVE

Manoeuvre classification 

and segmentation

Manoeuvre risk 

assessment based on 

fuzzy rules
Feedback of the drive

 
Fig. 2. Top level architecture of the IDTS 

 
TABLE I 

DRIVER EDUCATION PERFORMANCE-TURN ASSESSMENT 

(Example of ) DRIVER EDUCATION PERFORMANCE 

Right Turn Assessment (Tasks List) 

1) Checks mirrors. 

2) Positions car properly in lane. 

3) Signals right at the right distance from turn start. 

4) Reduces speed and keeps wheels straight. 

5) Checks traffic thoroughly, yielding to pedestrians. 

6) Starts turn. 

Source: Michigan Department of Education (1997) [25] 

A. Data synchronisation 

In-order to comprehensively assess a driving situation, it is 

necessary to have a spatiotemporal analysis of the data. The 

task of fusing sensory data input is handled by RTMaps. It 

timestamps and synchronizes the sensor inputs from 

MobileEye, Facelab, cameras and VigilSystem for the drive. It 

then stores the data for future real-time replay. The 

synchronized drive data enables us to measure task durations 

during manoeuvres (e.g. the amount of time host vehicle 

remained in the right lane during overtake manoeuvre). The 

duration required to complete a specific task is an important, 
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safety-relevant measure. These parameters are later used in 

risk assessment of a particular manoeuvre. 

 

B. Segmentation of Manoeuvres 

A typical driving scenario would comprise of a certain set 

of driving events and patterns that are repeated over time. For 

example, a right turn manoeuvre is composed of tasks as 

shown in Table I. The important aspect of manoeuvre risk 

assessment is to segment out particular manoeuvres from the 

drive. In-order to effectively monitor the driver behaviour, 

every manoeuvre is divided into three parts namely: pre-

manoeuvre, manoeuvre and post-manoeuvre. This helps to 

objectively assess the driver behaviour not just during 

manoeuvre but even at the approach and end of a particular 

manoeuvre.  

The manoeuvres are chosen because of their cost to the 

society in case of crash. In Australia, 30% of crashes occur on 

road curves [26]. Crashes on road curves frequently result in 

fatal injuries or casualties. Curve related crashes contributed to 

63.44% of fatalities [27]. In addition, the likelihood of 

surviving crashes on curved roads is approximately 17% lower 

than on straight roads [27]. The other manoeuvre under 

consideration in this paper is overtaking. Overtaking is 

considered to be a hazardous task, experts estimate that lane 

change crashes including overtaking and lane merging account 

for 4 to 10% of all crashes [28].  

 

1) Manoeuvres (Turn and Overtake) 

As previously mentioned, the manoeuvres are segmented 

based on the spatiotemporal location of the vehicle. For 

example in order to determine whether the vehicle is passing 

through a turn, GPS data are used. This GPS data helps to 

compute a turn angle for each GPS point returned for the 

drive. Details are explained in [29]. The start and end of the 

turn manoeuvre are identified, which helps to better monitor 

driver behaviour just before and after negotiating the turn. The 

IDTS framework utilizes the same tasks (as presented in Table 

I) for risk assessment using fuzzy rule based system. 

Apart from the calculation of turn angle for the vehicle, the 

position of the vehicle with respect to the lane is also 

calculated. This enables the system to determine the location 

at which the lane changes take place. Table II presents the 

tasks that driver trainers assess during an overtake scenario. 

Since there are number of events that frequently occur during 

driving, a typical driving scenario would comprise of a certain 

set of driving events and patterns that are repeated over time. 

As apparent from Table I and Table II, the two distinct 

manoeuvres are composed of multiple tasks. These tasks 

might vary slightly based on a manoeuvre but the basic 

principle of these tasks is the same in both manoeuvres. 

 
TABLE II 

DRIVER EDUCATION PERFORMANCE-OVERTAKE ASSESSMENT 

(Example of ) DRIVER EDUCATION PERFORMANCE 

Overtake Assessment (Tasks List) 

1) Checks mirrors. 

2) Positions car properly in left lane. 

3) Maintains speed limit 

4) Looks in the right lane where the driver is going to 

move 

5) Signals right at a sufficient distance before lane change  

6) Turns into the right side lane smoothly 

7) Crosses the car which is now on the left. 

8) Checks mirrors 

9) Positions car properly in right lane 

10) Maintains speed 

11) Looks to the left lane where the driver is going to 

move. 

12) Signals left at a sufficient distance before lane change  

13) Turns into the left side lane smoothly completing the 

overtake manoeuvre 

Source: Overtaking - Driving test tips [30] 

 

2) Manoeuvre Classification 

For clarity, it should be stated that “low risk” behaviour is 

not a tangible or easily defined construct and therefore a 

definition of “low risk” behaviour is developed that will be 

made operational within this project. An example of a core 

driving competency may relate to maintaining a safe driving 

distance between vehicles, and braking on approach to an 

intersection. A computer based analysis of the above basic 

behaviour can be articulated into a safety scale.  

 

The main idea behind the classification of manoeuvres is 

that given information about the driving situation (i.e. tasks 

executed), and knowledge about driver behaviour, it is 

possible to infer the manoeuvres that a driver is most likely to 

have performed. Figure 3 introduces a pictorial representation 

of the manoeuvre risk assessment. For example, when the 

framework identifies a lane change manoeuvre, risk 

assessment of lane change is performed. This risk assessment 

is based on tasks such as  

• What was the driver speed on approach of the lane 

change manoeuvre? 

• Did the driver check the lane (by doing a head check) in 

which they were going to move? 

• How long before the indicator was switched on before 

the lane change? 

• Was the driver positioned in the lane properly before the 

lane change? 

Another point highlighted in Figure 3 is that task 

assessments can be combined to create a manoeuvre 

assessment (represented as triangles). And some of the 

manoeuvre assessments can be further combined with other 

manoeuvres or tasks to create more complex manoeuvres’ 

assessments (i.e. T-Crossing or overtake). 

The benefit of such a modular approach is that it facilitates 

the evolution of further complex manoeuvres. It has been 

mentioned above that the IDTS framework utilizes fuzzy set 

theory to define low risk driving models for different 
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manoeuvres. Details are explained in the following section. 

 

Check Mirror Position in lane
Following 

Distance
Head Check Indicator

Time Spent At Stop 

Sign

Turn

Lane Change

T-Crossing

Right Lane 

Change
Left Lane 

Change

Overtake

Excessive Lateral

/Longitudinal Force

Rear Gap From The Vehicle 

That Was Overtaken

 Fig. 3. Manoeuvre risk assessment based on the tasks. Tasks are shown in 
ellipses and manoeuvres are represented as triangles. 

 

C. Risk Assessment based on Fuzzy Logic 

This section deals with creating a low risk driving model 

based on fuzzy set theory. All of the driver inputs while 

driving are not based on crisp values; rather they have some 

uncertainty based on subjective perception (e.g. distance from 

the object in front etc.). 

At the empirical level, uncertainty is an inseparable 

companion of almost any measurement, resulting from a 

combination of inevitable measurement errors and resolution 

limits of measuring instruments [31]. Fuzzy logic has been 

proven to deal with these uncertainties [31]. Fuzzy logic uses 

rules for inference of results. A fuzzy rule has two 

components: an if-part (antecedent) and a then-part 

(consequent):  

IF{antecedent},THEN{consequent} 

For instance, Table III presents the inference rules between 

the two sets, which are: 

The distance at which the indicator was switched on before 

the turn (1st set).                            

and 

Average speed of the car on the approach of a turn (2nd set)  

Figure 4 shows the trapezoidal fuzzy membership functions 

for the 1st set which are Very Low (VL), Medium Low (ML), 

Medium (M), Medium Large (MLrg) and Very Large (VLrg). 

And Figure 5 shows the pictorial representation of the 

membership functions for the 2nd set. Those are Low (L), 

Medium (M) and High (H). One of the rules in Table III for 

‘High’ average speed and ‘Very low’ indicator distance before 

the turn implies ‘Very high’ risk and can be written as: 

 

IF{average_speed==‘H’AND 

distance==’VL’}THEN{Risk_is_VeryHigh} 

 

This rule based system introduces a quantifiable degree of 

uncertainty into the modelling process in-order to 

accommodate the natural or subjective perception of real 

variables [32]. It models the human decision making process 

using fuzzy membership functions and fuzzy rules (if/then 

rules). The formation of the rules is based on advice from the 

human expert (i.e. driver trainer). In-order to construct these 

rules, multiple negotiations of the same manoeuvre were 

reviewed.  

 

 
Fig. 4. Trapezoidal Membership functions for indicator switch on distance 

before the turn 
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Fig. 5. Trapezoidal Membership functions for speed on approach to a turn 

 

1)  ‘Indicator’ risk assessment 

As previously mentioned, the manoeuvres are segmented 

based on the spatiotemporal location of the vehicle. Such 

segmentation can then be used, for example, in order to 

determine when the vehicle is passing through a turn. 

Table III along with Figure 4 and 5 are utilized to assess the 

risk for “Indicator” task (displayed in Figure 3). This 

assessment is a necessary component to assess multiple 

manoeuvres (i.e. turn, overtake, T-crossing etc.) risk. In Figure 

4, the X axis represents the membership functions and their 

relationship for the fuzzy set (indicator switch on distance), 

whereas the Y axis presents the degree of membership to the 

functions (i.e. VL, ML, ..., MLrg etc.). The risk is evaluated 

on a scale of 0-1, 1 being the highest risk.  

Table III presents the fuzzy rules for indicator risk 

assessment. This risk is calculated by comparing the ‘safe 

distance’ (distance between indicator switch on location and 

the point of turn start) against the average speed of the vehicle 

before turn manoeuvre.  

The rows (in Table III) depict average speed of the vehicle 

to the start of a turn. The fuzzy membership functions for the 

average speed are (Low (L), Medium (M), and High (H)). 

Low speed fuzzy function is defined between 0-20 km/h. 
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Medium is defined between 40-60km/h and speeds above 

80km/h are considered ‘High’. Figure 5 presents this in 

pictorial form. The columns in Table III represent the ‘safe 

distance’. The ‘safe distance’ is described by fuzzy 

membership functions (VL, ML, M MLrg, VLrg). These 

membership functions emphasize that indicator should not be 

turned on very close or very far from turn start. Figure 4 

shows this in pictorial form. Some fuzzy rules in Table III are:  

IF{average_speed==‘M’AND 

distance==’M’}THEN{Risk_is_VeryLow} 

IF{average_speed==‘H’AND 

distance==’VL’}THEN{Risk_is_VeryHigh}  

Table IV below introduces the fuzzy sets involved to assess 

risk for the remaining tasks/manoeuvres shown in Figure 3. 

These assessments eventually help the IDTS framework to 

flag any task in a manoeuvre that the driver might have not 

performed in a low risk manner.  

Another integral part of the driver training system is 

feedback about the drive to the driver. This feedback can be 

from a driver trainer or self-assessment. In-order to give 

effective feedback to the user, flags are placed on the 

approach, during and at the end of the recognized manoeuvres. 

The colour of flag varies from green (Very Low risk) to red 

(Very High risk).  

 
 

TABLE III 

INFERENCE RULES FOR INDICATOR RISK ASSESSMENT USING AVERAGE SPEED 

AND THE INDICATOR DISTANCE 

Avg. Speed  Safe Distance (meter) 

(km/h)      Med               M High/M Low       V Low/V Large 

Low (L) Low_Risk Low_Risk High_Risk 

Medium (M)  VeryLow_Risk Medium_Risk High_Risk 

High (H) Medium_Risk Medium_Risk VeryHigh_Risk 

 

 

TABLE IV 
INFERENCE RULES FOR RISK ASSESSMENT DURING A LANE CHANGE 

MANOEUVRE 

Tasks Fuzzy sets 

Position in 

Lane 

Vehicle position *w.r.t. 

right lane for the 
manoeuvre 

Vehicle position *w.r.t. left 

lane for the manoeuvre 

*w.r.t: with respect to 

Check 

mirrors 

No. of times mirrors are checked before undertaking of a 

manoeuvre 

Following 

distance 

Following distance maintained with the car in front on the 

approach to a  manoeuvre Versus average speed 

Head checks No. of times side of the vehicle is checked (i.e. head 

check) before undertaking of a manoeuvre. Plus how far 
was the driver looking on the road when negotiating the 

manoeuvre. 

Excessive 
accelerations 

/decelerations 

No. of excessive accelerations or decelerations during the 
manoeuvre. 

D. Comprehensive Feedback Using Mapping 

Visualization of the drive is an integral part of providing 

feedback to the driver. Since the end users of IDTS are driver 

trainers and trainees, it is necessary that all recorded drive data 

and risky situations are represented in an easy to comprehend 

manner. A comprehensive graphical mapping of the data 

collected during the drive makes it certain that the data 

collected and processed is not just organized information but 

rather actionable intelligence (Figure 6). 

Figure 7 (detail of display 4 of Figure 6) below shows a part 

of the comprehensive feedback module. The X axis shows the 

distance travelled by the vehicle. Y axis from 0 till ‘100’ 

shows driver’s speed (km/h) and scaled down average gaze 

depth (in meters). Further above on Y axis, the points 

highlighted are indicators, points where brakes were applied, 

vehicle turned, lanes were changed, overtake manoeuvre, 

excessive acceleration or deceleration and driver checked rear 

or side mirrors. Another feature is, if these manoeuvres were 

performed in a high risk manner the identification labels of 

these manoeuvres change colour from blue to red (as shown 

by the legend in Figure 7).Using such a graphical interface, 

driver trainers and trainees will be able to empirically check 

multiple driving parameters for a particular time.  

 

 
Fig. 6. The comprehensive feedback module with four displays. 
 

 
Fig. 7. Details of display 4 of the IDTS. 
 

But the graph presented in Figure 7 alone does not allow 

accessibility to view road parameters (e.g. the location of an 

intersection, location of a roundabout etc.). In-order to handle 

this issue, the IDTS provides a map in the feedback module. 

Since all the drive information (from DVE) is recorded in a 

synchronous manner, it is possible to display the vehicle 

position along with the driver gaze points on a map (i.e. 

GoogleMap) for any given time. Along with this, by clicking 

any vehicle trajectory point on the map, the framework is able 
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to display its corresponding location on the drive’s graphical 

representation (Figure 7). The map also flags the manoeuvres 

that were performed in a high risk manner.  

One of these flags is visible in the Google map in Figure 8 

(display 2 of Figure 6). The Feedback module in Figure 6 has 

four display panels. They are:  

1. The main controller. Display 2, 3 and 4 present the 

driving scenario for the slider selected time. 

2. Interactive map (i.e. GoogleMap) that displays the 

recorded vehicle trajectory (red line). 

• The position of the vehicle (i.e. the car icon), drivers’ 

gaze direction and depth (in green dots and lines), indicator 

usage (yellow star), excessive accelerations/decelerations.  

• The flags display risks at which a manoeuvre is 

performed. On clicking the flag, a table appears (shown at 

bottom of display 2). This table displays the manoeuvre and 

the risk of each task (shown by variable ‘FuzzScr’) within 

that manoeuvre. Risk is normalized between 0 and 1, where 

1 is the highest risk. 

3. The camera image (displaying the road ahead) overlaid 

with the driver’s gaze points. 

4. The graphical representation of the complete drive. The 

solid blue vertical line displays the position of car based on the 

slider selected time. The vertical red dotted line corresponds to 

the point clicked on the vehicle trajectory displayed in Google 

map. This allows the driver trainers to view the position of 

road landmarks (traffic lights, roundabouts etc.) on the drive’s 

graphical representation (display 4). This helps to assess 

behaviour such as did the driver change lane while crossing 

the traffic light? 

 

 
Fig. 8. Details of display 2 of the IDTS. 

 

This effective and dynamic feedback will help the driver 

trainers to better empirically assess (both weaknesses and 

strengths) the drives. Along with this, comprehensive 

feedback will allow the drivers to self-assess their manoeuvre 

undertakings. 

IV. CONCLUSION 

Driver training programs have been mainly developed 

without clear theoretical foundation [33]. A comprehensive 

and systematic evaluation of the drive could help to 

understand the empirical differences in novice and 

experienced driver behaviours. This would not only help the 

driver trainers to better understand different driver behaviours 

that they otherwise wouldn’t be able to identify, but also assist 

them to design programs that improve these behaviours. 

This paper presented a framework and its implementation 

for analysing crash risk for a set of driving manoeuvres. The   

The IDTS framework integrates information related to 

driver, vehicle dynamics and road information. It then 

segments out the complex driving manoeuvres and uses 

expert’s knowledge (i.e. in the form of fuzzy rules) to assess 

the risk of tasks within each manoeuvre. It then uses a 

contextually rich interface to provide feedback of the drive. 

The dynamic assessment module combines risk assessment of 

multiple tasks to identify the risk of a manoeuvre. This 

flexible design makes it possible to combine multiple simple 

manoeuvres/tasks into complex manoeuvres. 

This framework will help identify and sharpen driving 

abilities that are required for skilled driving. Diversions made 

by trainees from the experienced model of driving will flag 

areas where improvements need to be made in-order to aid and 

support novice drivers. It will act as an assisting tool for the 

driver trainers and trainees to identify the driving 

competencies required and understand shortcomings on part of 

novice drivers.  

Eventually both drivers and driver trainers would be able to 

assess driving performance using the IDTS. As already 

mentioned, a major percentage of road crashes are attributable 

to driving error. Thus, driver training remains an important 

road safety intervention to improve driving performance and 

abilities, particularly amongst young drivers. 
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