2309.11039v1 [cs.LG] 20 Sep 2023

arxXiv

Federated Learning in Intelligent Transportation
Systems: Recent Applications and Open Problems

Shiying Zhang, Jun Li, Long Shi, Ming Ding, Dinh C. Nguyen,
Wuzheng Tan, Jian Weng, and Zhu Han

Abstract—Intelligent transportation systems (ITSs) have been
fueled by the rapid development of communication technologies,
sensor technologies, and the Internet of Things (IoT). Nonethe-
less, due to the dynamic characteristics of the vehicle networks,
it is rather challenging to make timely and accurate decisions of
vehicle behaviors. Moreover, in the presence of mobile wireless
communications, the privacy and security of vehicle information
are at constant risk. In this context, a new paradigm is urgently
needed for various applications in dynamic vehicle environments.
As a distributed machine learning technology, federated learning
(FL) has received extensive attention due to its outstanding
privacy protection properties and easy scalability. We conduct
a comprehensive survey of the latest developments in FL for
ITS. Specifically, we initially research the prevalent challenges in
ITS and elucidate the motivations for applying FL from various
perspectives. Subsequently, we review existing deployments of FL
in ITS across various scenarios, and discuss specific potential
issues in object recognition, traffic management, and service
providing scenarios. Furthermore, we conduct a further analysis
of the new challenges introduced by FL deployment and the
inherent limitations that FL alone cannot fully address, including
uneven data distribution, limited storage and computing power,
and potential privacy and security concerns. We then examine
the existing collaborative technologies that can help mitigate these
challenges. Lastly, we discuss the open challenges that remain to
be addressed in applying FL in ITS and propose several future
research directions.

Index Terms—Federated learning (FL), intelligent transporta-
tion system (ITS), Internet of Things (IoT), privacy.

I. INTRODUCTION

RIVEN by overwhelming demand for safe and reliable

transportation systems, artificial intelligence (AI) has
been wildly applied in the field of the Internet of Vehicles
(IoV), called intelligent transportation systems (ITSs) [1].
The components comprising ITS encompass vehicle nodes,
sensors, Roadside Units (RSUs), main base stations, and
more. Notably, vehicles are equipped with on-board units
that serve as network nodes, facilitating communication with
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both stationary and mobile RSUs, as well as other vehicle
nodes. Furthermore, on-board sensors are employed to gather
pertinent status information, while emergent messages gen-
erated thereby are transmitted to nearby vehicles and RSUs,
subsequently relayed to the control center. As the primary
steadfast node within ITS, the roadside static RSU typically
boasts dual communication interfaces, furnishing access points
for vehicles. Additionally, the repertoire of roadside static
facilities also encompasses wireless battery-powered sensor
nodes. For disparate static sensor types, the integration of
data from varied sensors frequently necessitates the utilization
of data fusion techniques, encompassing infrared and camera
systems. In the realm of ITS, vehicular interconnectivity is
presently realized through contemporary sensing mechanisms
and Dedicated Short-Range Communications (DSRC), thereby
facilitating route planning [_2], traffic flow prediction [3]], object
detection [4]], infotainment broadcasting, and the provision of
public services, all complemented by the integration of Al [J5]].
However, the limited communication range inherent in DSRC
technology mandates the deployment of dense fixed RSUs to
ensure sufficient coverage, albeit this approach of extensively
deploying static facilities entails exorbitant costs. Moreover,
the application of Al technology tends to introduce time-
consuming and computationally intensive challenges, render-
ing it more suitable for scenarios exhibiting lower sensitivity
to latency. While in complex and dynamic IoV networks, it is
necessary to take into account low transmission latency and
massive data storage, while promoting the information accu-
racy. Vehicles in the network must perceive the environment
in real-time and make optimal decisions in the real-world.
Consequently, any decision-making errors in the system, which
may come from excessive network latency or malicious third-
party attacks, unavoidably cause serious traffic accidents and
irreparable loss of life and property.

In the following, we briefly summarize main characteristics
of ITS and urgent issues in ITS:

1) High Response Latency: The high dynamic nature of
vehicles places extremely high real-time requirements for their
decision-making, and excessive response latency can pose se-
rious safety risks. However, traditional IoV often experiences
high response latency due to factors such as heterogeneous
storage and computing resources, and unstable communication
links.

o Unstable communication links: In an IoV system, despite
static and stable roadside infrastructure, the vehicles
within the jurisdiction of the Roadside Units (RSUs) are
constantly changing due to their own movement. Such



frequent changes in network topologies will render com-
munication links unstable, and disrupt route establish-
ment. From the perspective of optimizing communication
links, a number of existing works propose multi-hop
routing path models [6], cache-aided relays, as well as
other methods [7]]. However, these techniques can only
be used to mitigate the issue of link failure, and the
alternating process of routing will boost the latency.

e Data multi-modality and resource heterogeneity: Vehicles
are often equipped with various types of sensors for data
collection, access control, and action feedback. These
sensors, roadside detectors, and other devices are dis-
tributed throughout the ITS data collection layer to collect
relevant data, including vehicle speed, traffic flow density,
vehicle location, and more [8]]. To compensate for the
lack of a single data model, sensor data regularly contains
multiple modes, including one-dimensional signal data in
smart grids, and two-dimensional image data for license
plate recognition. Accordingly, the storage and computing
capacities of distinct vehicles are limited and unevenly
distributed. Specifically, different vehicles have distinct
resource constraints. The immediate problem caused by
this multi-modality and heterogeneity lies in that the du-
ration of training for each vehicle varies greatly, resulting
in the “Cannikin Law” in system-level decision making.
Despite extensive works on Mobile Edge Computing
(MEQC) resource allocation, frequent interactions between
terminals and servers can also cause significant channel
congestion.

2) Privacy and Security Issues: In the realm of IoV, the
exchange of information relies on wireless communication
links such as vehicle-to-vehicle, vehicle-to-RSU, and RSU-to-
server connections. However, the high level of connectivity
across different layers within ITS renders it susceptible to
external attacks during model training, both in terms of data
and network security. For instance, an attacker can disrupt
a vehicle’s operations and provide misleading instructions,
potentially leading to severe traffic accidents [9]. Moreover,
the presence of malicious vehicles within the ITS ecosystem
can collude to manipulate or steal sensitive data, including
vehicle license plate details, driver information, and loca-
tion data. Given the low-latency requirements of ITS, the
data security processing cycle is limited, thus necessitating
robust data privacy protection mechanisms. Furthermore, as
technologies like Software Defined Networking (SDN) and
fog computing continue to advance, network security emerges
as a critical concern in ITS. While some existing research
explores network security solutions in the context of IoV,
these often rely on access control at the edge nodes and
protection through predefined rules, such as firewalls, intrusion
detection systems, and authentication-based approaches, which
have high complexity and poor scalability [10]]. However, there
is a need for a comprehensive survey of novel architectures
that address these challenges more comprehensively.

3) Low Decision-making Accuracy: The predominant rea-
sons for the low accuracy of the model are data island and
immature data fusion technology on the basis of dynamic
decision-making.

e Data island: Vehicle data privacy requirements lead to
data island, where sensitive data is not allowed to be
exchanged directly between vehicles. In addition to the
vehicles themselves, data interaction between RSUs that
control different vehicles is also prohibited. This places
restrictive requirements on the data collected by the
vehicle’s sensors. Nonetheless, on the one hand, limited
by the number of vehicle sensors and the frequency of
real-time data collection, less information satisfies the
training requirements, especially the label data. On the
other hand, rare events including severe weather and
holidays are sparse, particularly in certain hazardous sce-
narios. Real-world data collection is extremely difficult,
which results in poor generalization ability of the model.
Although some works can predict the flow in extreme
states based on observing the regular state [11] or by
utilizing the game engine to generate virtual datasets for
model training [12]], [[13]], the effect remains insignificant.
In addition to the development of algorithms and original
data, we intend to investigate the solution of this problem
from a variety of novel perspectives.

o Imperfect sensor data fusion for dynamic decision-
making: Since the expected performance is challenging
to achieve with the aid of a single sensor, numerous
solutions use multi-sensor fusion techniques to collect the
samples [14], [15]. In ITS, the sensor system employed
by the vehicle includes multiple sets of cameras, radar,
GPS systems, and inertial measurement units (IMUs) [16]]
for environmental perception and vehicle positioning.
Environmental perception is typically used by vehicles
to detect their surroundings, such as road, pedestrian,
and traffic light detection, while vehicle positioning uses
GPS data to control vehicles and provide public services.
Although researchers have proposed solutions on the
basis of multi-sensor and multi-modality [17], [[18]], the
feasibility of the current multi-sensor fusion technology is
still not quite enough, and real-time fusion has stringent
demands on computing and communication performance.

Therefore, at this stage, the development of a sufficiently
reliable ITS system remains a daunting challenge. Recently, a
novel architecture deployed in ITS is widely investigated to
meet the needs of timeliness, accuracy, as well as robustness
in the ITS network. In 2016, the Google team proposed a
Federated Learning (FL) algorithm framework for the privacy
protection of mobile Internet mobile terminals, and it has been
utilized extensively in the medical, industrial, academic circles
and other fields. For example, the recent GenoMed4All project
led by the European Union aims to connect European clinical
databases of rare diseases through FL platforms and establish
supporting international datasets as well as interoperability
standards. Reina et al. [19] use the OpenFL architecture for the
first time to train ML models in an international consortium of
healthcare organizations. In addition, open source frameworks
include FedML, UniFed, and others [20]. FL can use dis-
tributed samples residing on edge devices to collectively train
a global model while observing data privacy regulations. This
process is coordinated by a trusted third-party central entity,



ensuring that participating entities do not directly interact
with the data. Through continuous iterations, the central entity
averages the local models and arrives at the optimal global
model, which is subsequently distributed to the participants.

Although the central cloud-based architecture can process

and make decisions based on global information, collect-
ing data from distributed agents results in high bandwidth
consumption and latency. At the same time, the decisions
of local agents are limited by the local environment and
cannot reflect the global characteristics. In contrast, the FL-
enabled architecture within an ITS framework facilitates the
deployment of large-scale caching and computation offloading
mechanisms. This enables the training of a robust global
model while preserving the privacy of vehicles and users.
Furthermore, the adoption of vehicle selective aggregation
and asynchronous aggregation algorithms allows vehicles that
meet the predetermined threshold conditions in uploading
local models and downloading global models. Consequently,
this approach effectively mitigates the information imbalance
problem.

In summary, FL is expected to accomplish the following

key advantages:

o Lower Communication Costs: Compared with central-
ized systems that directly aggregate large amounts of data
to the server, FL only shares model parameters between
the server and the clients [21]]. Furthermore, for real-time
decision-making scenarios, FL can be processed directly
locally at the edge node, which is much more sensitive
than that of convergence to the cloud for unified decision-
making. Additionally, FL. can allocate clients’ weights
in accordance with distinct bandwidths to increase com-
munication effectiveness and reduce transmission latency
[22].

o Privacy Protection: FL. imposes constraints on the di-
rect access of data in conventional centralized learning.
It leverages locally trained models derived from edge-
side data to make informed decisions. The data remains
securely stored on local devices, with no inter-client
sharing. Moreover, the training process of models on
end devices predominantly relies on shared computational
resources rather than centralized servers, thereby afford-
ing substantial safeguards for data privacy [23]]. Further-
more, FL can be synergistically integrated with other
privacy and security protection mechanisms, rendering
it adaptable to diverse ITS scenarios. For instance, the
incorporation of decentralized blockchain facilitates the
sharing of information among vehicles, emancipated from
the jurisdiction of central server governance. Similarly,
the fusion of FL with selective security aggregation, in
tandem with MEC, fortifies privacy safeguards. Addition-
ally, the adoption of proactive defense mechanisms such
as differential privacy (DP) facilitates the generation of
shared models embellished with noise [24].

o Scalability: In FL, the clients are coordinated by the
server, which can flexibly allocate their participation
level. Meanwhile, it allows the model to continuous
train and make real-time adjustments on each partic-
ipant’s local device. This implies that the model can

promptly adapt to newly collected data from in-vehicle
sensors within a highly dynamic ITS environment. The
architecture is especially advantageous for dynamically
switching vehicles and edge servers participating in ITS.
Additionally, this excellent scalability allows multiple
data holders to participate in FL training [25].

o Robustness: As a distributed architecture, the perfor-
mance of the final global model is jointly determined
by multiple local models, resulting in a more stable FL
system. Vehicles in ITS frequently switch between RSUs,
meanwhile, the instability of the communication link can
inevitably result in node loss. However, the characteristics
of FL can bring it into play against this effect.

o Pre-conditions for Non-uniform Dataset: Conventional
distributed machine learning algorithms commonly as-
sume a balance in node loads, which is often imprac-
tical in the context of ITS due to variations in device
performance, uneven distribution of vehicles, and dis-
similarities in data collection capabilities. In contrast,
FL acknowledges this limitation and numerous research
studies address this imbalance by formulating diverse
strategies for model updates, aggregation, and numerical
optimization. Prominent approaches encompass grouped
FL aggregation methods [26], adaptive weight update
methods [27]], and the realization of personalized model
representations through multi-model optimization algo-
rithms [28]]. Furthermore, numerical optimization directly
optimizes the data itself, thereby ensuring that the data
distribution among clients aligns as closely as possi-
ble with the overall data distribution [29]. These well-
established techniques can readily be applied to the ITS
domain.

o Support Local Personalized Decision: Since FL is
trained on the basis of distributed user data, each vehicle
performs vertical FL or FL-based model transfer by
collecting data with the same label but distinct features,
thus supporting autonomous decision-making during lo-
cal training.

The applications of FL in ITS systems are advancing with
the emergence of privacy-enhanced frameworks [30]], through
which vehicles can share knowledge without compromising
the local context, and use the information continuously cap-
tured by sensors locally to enhance model performance.

The FL-enabled architecture within an ITS framework fa-
cilitates the deployment of large-scale caching and compu-
tation offloading mechanisms. This enables the training of a
robust global model while preserving the privacy of vehicles
and users. There has been a flood of academic research on
the applications of FL in ITS, including the challenges of
FL deployment (e.g., model security, clients selection and
scheduling, communication link stability, etc.), research on
FL-enabled ITS scenarios (e.g., human monitoring, object
detection, vehicle trajectory prediction, etc.). For example,
oneVFC, a platform based on vehicular fog computing built by
Phung et al. [31], can coordinate information flow and com-
putation tasks on vehicular fog nodes by managing distributed
resources, which significantly reduces the program processing



time in a real-life system. For integrating vehicle-to-everything
communication with heterogeneous computation power aware
learning platform, Pervej et al. [32] propose a mobile-aware
online FL-based platform for providing near-ground multilevel
speed and vehicle-specific power prediction. Wang et al. [33]
propose the electric vehicle integration system called AEBIS.
The smart grid platform deploys FL in a network consisting
of distributed generation units, power consumers and storage
systems for power management.

A. Current State of Art and Our Contributions

In this subsection, we conduct a comprehensive survey of
recent literature reviews on FL, blockchain, deep learning, as
well as their integration within ITS. By combing through these
reviews, we aim to provide a comprehensive understanding of
the current state of research and identify potential research
gaps and opportunities.

The study conducted by Manias et al. [34] explore the
challenges of machine learning-based ITS, focusing on dy-
namic properties such as dynamic environments, privacy, and
data storage. The authors also discuss the rationale behind
adopting FL architectures in ITS, highlighting the benefits
of distributed and continuous collaborative learning. In a
study by Tan er al. [35]], two applications of FL in ITS
are cited: resource management and performance optimiza-
tion. They briefly summarize the current issues related to
device interference, data security, and the Non-independent-
and-identically-distributed (Non-IID) of data. Du et al. [36]
examine the application of FL in wireless Internet of Things
(IoT), dividing IoT into sensing layer, network layer, and
application layer, moreover, they propose several challenges
and directions for integrating FL. and IoT architectures. Billah
et al. [37] investigate the application of FL and blockchain in
ITS, particularly addressing privacy concerns and proposing
a preparation approach for blockchain-supported FL. Jamil e?
al. [38]] explore the application of digital twin (DT) and FL
in various contexts such as industrial IoT (IIoT), IoV, and the
Internet of Drones (IoD). Under the topic of IoV security and
privacy issues, Hussain et al. [39] discuss cybersecurity and
privacy issues in Connected and Autonomous Vehicles (CAVs)
under an FL architecture, while Xing er al. [40] elaborate on
the attack model of the Social Internet of Vehicles (SloV)
and provide a comparative analysis of typical data security
solutions, emphasizing the synergy of federated learning in
data security protection. Other studies focus on the integration
of blockchain and FL in ITS. Zhu et al. [41]] discuss UAV edge
network architectures that support blockchain and FL. Javed et
al. [42] discuss computational cost, communication overhead,
and privacy issues in ITS, which can be addressed through
the integration of blockchain and FL. Recently, Chellapandi
et al. [43] have compiled recent advances in applying FL
in vehicular networking, specifically covering tasks such as
object perception, motion planning, and vehicle control.

While these studies provide valuable insights into FL-
enabled ITS, they also have their limitations. For instance,
Manias et al.’s work [34]] primarily focuses on system robust-
ness rather than specifically highlighting the advantages of FL

itself. Tan et al. [35]] omit mentioning common scenarios in
the application section, except for resource management and
optimization. Similarly, studies by Zhu et al. [41]] and Billah
et al. [37] concentrate on blockchain-assisted FL architectures
and do not comprehensively cover other assistive technologies.
The works by Hussain et al. [39] and Xing et al. [40] solely
discuss the advantages of FL in terms of privacy protection
and security. Finally, with the exception of Billah et al. [37]]
and Chellapandi et al. [43]], the other articles lack organization
based on ITS task scenarios, which hinders the reader’s
intuitive understanding of FL-enabled ITS.

Table summarized the differences between the existing
works and this work. These limitations inspire us to do a more
comprehensive research on FL-enabled ITS. On one hand, we
aim to provide newcomers to this field with an intuitive and
rapid understanding of the existing work through a detailed
depiction of the system architecture and clear categorization
of scenarios. Additionally, we strive to enable researchers in
related areas to stay abreast of the latest research developments
and identify future reference directions. On the other hand,
we have noticed that the majority of existing works primarily
focuse on the privacy-preserving aspects of FL. when applied
to ITS, often neglecting other remarkable features of FL, such
as extensibility and robustness. In our review, we intend to
explore the potential value of FL and its integration with
other technologies from a fresh perspective. This approach
is essential for advancing both the theoretical research of FL
and facilitating future ITS system upgrades and deployments.
In this paper, we first extensively discuss the state-of-the-
art technical applications of FL in various ITS scenarios,
and then analyze how the relevant FL auxiliary mechanisms
solve a number of significant problems that have garnered
considerable attention. Finally, we summarize the existing
limitations of FL-enabled ITS and highlight future research
directions. The following are the principal contributions of
this paper:

o We sort out the issues existing in the current centralized
ITS, in combination with the inherent advantages of
FL, and analyze the motivation for employing the FL
framework in ITS.

e We gain our own insight by dividing ITS into four
scenarios, including traffic management, object recogni-
tion, service providing, and traffic status identification, in
accordance with the tasks in distinct stages (perception
stage, prediction stage, decision stage). Subsequently, we
separately describe the existing FL-enabled technologies
and architectures in each scenario.

o We provide a summary of the existing ITS’s problems and
challenges, including resource constraints, transmission
constraints, security and privacy concerns, and uneven
data and device distribution. Moreover, we organize
some recent works and illustrate how FL solves the
corresponding problems. And how to incorporate some
supplementary mechanisms into the FL architecture to
compensate for FL’s deficiencies, which have never been
systematized in any of the existing surveys as of this
writing.



TABLE I

SURVEY PAPERS OF FL-ENABLED ITS.

Ref. Year | Framework | Scenarios Main Topics Limitations

1351 2020 | V X Resource management, performance op- | The advantages of FL are not fully explained and the
timization, and VN-based applications. core ideas are on system robustness.

136] 2020 | vV X Wireless communication and privacy. The authors do not elaborate on specific scenarios.

1371 2022 | X v Blockchain-enabled FL architecture, | The discussion of FL technology architecture is slightly
dataset and platform of each methods. lacking and covers incomplete scenarios.

[38] 2022 | X X Digital Twins (DT) and FL in the Indus- | The supporting literature cited by the authors for the
trial Internet of Things (IIoT), the IoV | application of FL in ITS is sparse and lacks focus.
and the Internet of Drones (IoD).

[39] 2022 | V/ X Cybersecurity and privacy issues for | The discussion is limited to cybersecurity and privacy
CAV. issues in CAV under FL architecture.

[41] 2022 | V/ X An edge computing network for UAV | The discussion is limited to the application scenarios
with integrated blockchain and FL. of UAV under FL architecture.

[42] 2022 | X X Computational costs, communication | Only the role of blockchain as a supporting mechanism
overheads, and privacy issues. is discussed.

[40] 2023 | V/ X Social Internet of Vehicles (SloV), data | The discussion is limited to the synergistic role of FL
security solutions, FL synergistic. in data security protection.

[43]] 2023 | V/ v FL-enabled ITS, some application sce- | The scenarios involved are not comprehensive and
narios, resurce limitation, imperfect | do not explore the technical connections between the
methodology, inadequate evaluation cri- | scenarios, and the transmission and resource inequality
teria. issues that most reflect the characteristics of ITS are

not discussed.

pgll:err 2023 | V/ Object An extensive survey of FL-enabled ITS. Particularly,

recognition, e We provide an extensive explanation for the justification of implementing FL in ITS and
traffic status propose a generic architecture for FL-enabled ITS.
lde_mlﬁ' e To ensure logical clarity, we have introduced a novel categorization of four scenario
cation, types based on task phase and characteristics. Each scenario encompasses multiple sub-
traffic man- scenarios.
agement, o Beginning with an analysis of ITS characteristics, we integrate the limitations of
service FL-enabled methods. Furthermore, we compile a comprehensive inventory of current
providing. challenges and existing solutions, culminating in a summary of future research directions.

o Eventually, we point out the current remaining open
challenges and put forth future research directions for
FL-enabled ITS.

B. Structure of The Survey

The remaining sections of this paper are structured as
follows. Section [l presents several other reviews on the appli-
cations of FL to ITS, and we briefly describe how our work
is distinct from that of others. In Section we divide the
applications of ITS into four scenarios on the basis of methods
and task phases, and summarize the predominant problems
and the application results of FL in each scenario. In Section
IV} we categorize the challenges in ITS into three categories
and organize further enhancements and optimizations based on
FL architectures. In Section [V] we summarize several open
challenges in the current ITS, and finally give a conclusion
in Section [V1} Fig. [I] outlines the organization of the survey.
Table indicates the list of abbreviations employed in this

paper.

II. FL-ENABLED ITS

In the conventional centralized ITS, after data collection,
vehicles and mobile devices are dispersed and transmit data
directly to RSUs or the central cloud for training. To obtain
higher model accuracy, a large number of high-quality images

require to be transmitted, which occupies a large amount of
bandwidth. In addition, wireless transmission makes it simple
to receive external attacks FL supports local training for
each vehicle, and the server is only used to aggregate model
parameters and broadcast.

The ensuing exposition expounds upon the foundational
architecture for integrating FL within the context of an ITS.
Initially, the central cloud server direct oversight of vehi-
cles throughout the entire area, each vehicle establishes an
exclusive point-to-point (P2P) communication link with the
cloud server, resulting in significant communication overhead.
In order to accommodate the forthcoming communication
networks characterized by high density and short-range con-
nectivity, some researchers have embraced a hierarchical FL
architecture, as illustrated in Fig. @ This framework consists
of three distinct layers: the top layer, the middle layer, and the
bottom layer.

Top Layer: The top layer is the central server, the coordi-
nator of the entire ITS. Its role encompasses the regulation of
update frequency and participant count, as well as performing
global caching and aggregation. In FL, the crux lies in the
artful design of an aggregation scheme, which largely deter-
mines the performance of the global model. The conventional
approach, known as FedAvg, involves the computation of
model averages from the uploaded counterparts. Subsequently,
numerous works have developed more refined aggregation
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Fig. 2. The architecture of FL-enabled ITS.

algorithms to capture valuable information.

Middle Layer: The middle layer consists of the relay
devices including RSUs, which are charged with acting as
an intermediary for mobile devices including vehicles to
interact with the server. Unlike the main server, RSUs have
limited computing and storage capabilities. In addition to
their capacity for aggregating and storing model parameters,
RSUs possess the capability to retain a limited quantity of
contextual information, including vehicle IDs, vehicle data,
and the location particulars of the RSU itself, serving man-
agement objectives. Previous research has explored the use
of infrastructure for deploying an edge control plane, where
selected RSUs are designated as controllers, endowed with
control functions within the edge network. This configuration
enables them to act as edge controllers, enhancing adaptability
to variations in the topology of the vehicular network. During

system operation, RSUs upload aggregation parameters to the
central server. Subsequently, upon completing an aggregation
round, the server dispatches the updated model parameters to
the RSUs, and are then disseminated to each vehicle through
a broadcasting mechanism.

Bottom Layer: The bottom layer, as the data collection
layer, includes devices such as vehicles and roadside sensors
that are tasked with collecting environmental data. This entails
the employment of speed sensors, airbag sensors, and night
vision sensors to capture vehicle safety data, as well as position
sensors to provide real-time vehicle status parameters. These
data collectors locally cache the real-time data within the ITS
for training purposes, subsequently transmitting the trained
local models to the RSUs within a designated timeframe. In
instances requiring privacy safeguards, the trained models are
encrypted to prevent malicious third-party agents from tamper-
ing with privacy. Nonetheless, owing to the limited computa-
tional capabilities of vehicles, the training may occasionally
exceed the allocated timeframe due to excessive computing
loads. In such circumstances, a flexible model upload time
limit may be placed within the framework, or vehicles with
limited computing capability can offload computing tasks to
trusted RSUs or other edge servers to assist in model training
and data storage.

In essence, vehicular nodes, edge computing devices, mo-
bile IoT devices, and infrastructure nodes can all be regarded
as clients in FL-enabled ITS. Vehicular nodes collect local
sensor data and vehicle travel data, leveraging this information
to conduct local model training and updates. Edge comput-
ing devices, typically located in infrastructure or cloud-edge
servers near vehicles, play a coordinating role in facilitat-
ing communication and model aggregation among vehicular
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TABLE II
KEY ABBREVIATIONS.
Abbreviation Explanation
ITS Intelligent Transportation System
ADS Autonomous Driving Systems
IoV Internet of Vehicles
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
p2p Point-to-Point
DSRC Dedicated Short-Range Communications
URLLC ultra-reliable low-latency communication
SV Smart Vehicle
EV Electric Vehicle
CS Charging Station
CSP Charging Station Provider
VSP Vehicular Service Provider
LPD License Plate Detection
LPR License Plate Recognition
Qol Quality of Information
QoS Quality of Service
RSU Roadside Unit
MEC Mobile Edge Computing
UAV Unmanned Aerial Vehicle
FL Federated Learning
RL Reinforcement Learning
DRL Deep Reinforcement Learning
Non-1ID Non-independent-and-identically-distributed
DP Differential privacy
SGD Stochastic gradient descent
HE Homomorphic encryption
DNN Deep Neural Network
CNN Convolutional Neural Network
R-CNN Region based-Convolutional Neural Network
GNN Graph Neural Network
GCN Graph Convolutional Network
GRU Gate Recurrent Unit
LSTM Long Short-Term Memory
SDN Software Defined Networking
GPA Global Passive Adversary

! Lane Gra
: ‘ F.’h.// Train ﬁﬁ B|B|

nodes. Mobile IoT devices, such as smartphones or in-vehicle
terminals, can also serve as clients for FL, collecting vehicle
data and communicating with other clients. Meanwhile, infras-
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tructure nodes, such as traffic management centers or roadside
devices, gather data from vehicles and other devices and use it
for local model training and collaborative learning processes.

III. APPLICATION SCENARIOS OF FL IN ITS

We research and organize existing works by service types
and scenarios, including such license plate recognition, au-
tonomous controller design, congestion monitoring, knowl-
edge sharing, route planning, etc., and divide them into four
major scenarios to classify the specific scenarios, which in-
clude traffic management, object recognition, service provi-
sioning, and traffic status identification.

The general basis of scene division is according to the
distinct task phases of ITS. Fig. 3] depicts a variety of FL
application scenarios in ITS. The scene on the left is object
recognition, including license plate recognition, traffic sign
recognition, etc., the majority of which are image recognition-
based classification detection tasks. In the middle is the traffic
status recognition scenario, which is mostly on the basis of the
analysis of time series data, including travel mode recognition
and traffic flow prediction. The final phase includes vehicle
management and service delivery. In this figure, the parking
control is represented by P2P information sharing with the
parking control center on the condition that the vehicle is in
the state of finding a parking space, and decisions are made
after completing the training. In the following, we review and
investigate the integration of FL and such ITS application
scenarios with four different aspects of object recognition,
traffic status identification, traffic management, and service
providing.

A. Object Recognition

In ITS, the safety of Autonomous Driving Systems (ADS)
is ensured by learning data captured by cameras and sensors
in wireless networks. Object recognition is a basic work in
the IoV [44], principally in the dynamic system to process



image tasks, owing to the extensive use of computer vision
technology, the performance of the traditional object recogni-
tion model has been enhanced. Currently, there are a variety
of algorithms for video frame processing, and they have found
widespread application in vehicle tracking [45] and obstacle
recognition [46], including region-based Convolutional Neural
Networks (R-CNN) [47]] and YOLO-based detection methods
[48]]. Typically, bounding boxes are drawn around road detec-
tion targets and sent to vehicles for route planning. Among
them, the YOLO method is a more developed method cur-
rently, and the bounding boxes can be directly exported from
the CNN model. Nonetheless, two-stage object detectors such
as R-CNN use a more fine-grained paradigm to achieve higher
detection accuracy when performing object recognition, which
results in a longer detection time and increased complexity.
While using a faster, more optimized one-stage object detector,
it will lose model performance. At present, some works have
been done to find a trade-off between the accuracy of the
model and the speed of inference [49]]. On other hand, the
work in [S0], [51]] and [52] utilizing the method of multi-
modal image data fusion, attempt to improve accuracy and
the issue of missing labels. During the same time, in the
target recognition scene, there are often some image occlusion
problems, relying on the perspective captured by the sensors
of a single vehicle cannot include sufficient features, and
multi-mode data set based on distinct driving conditions and
object labels can substantially enhance the network’s precision
and resilience. Considering the processing scenarios of ITS
distributed images, it is natural to consider FL to alleviate the
aforementioned issues.

As the first application of FL in vehicle target recognition,
the authors of [53] verify through simulation that the FL archi-
tecture can identify detection targets that cannot be recognized
in local training of a single vehicle. For instance, they use
YOLO to perform five epochs of detection on four clients. It
demonstrates that some unrecognized trucks and pedestrians
at the original image’s boundary can be detected using FL,
indicating that other users indirectly gain knowledge through
weight aggregation. On the basis of this work, to achieve
better training results in vehicle object recognition scenarios
supported by 6G, the work of [54]] deals with the hierarchical
structure of FL in ITS. The authors propose a two-layer FL
model based on CNNs (TFL-CNN) to perform hierarchical
model selection at the edge and in the cloud. RSUs use metrics
such as RSU distance from vehicles to estimate model quality
in model aggregation, and subsequently multiple RSUs upload
aggregated parameters to the cloud, unlike the RSU layer,
whereas the cloud infers the model quality (i.e., whether it is at
a busy intersection with a great deal of data) and its computing
capability (i.e., whether it can process a large amount of data)
on the basis of the location of RSUs.

In addition to obstacle recognition, another noteworthy
application of image recognition in ITS is fault recognition,
which is commonly employed in UAVs. For instance, in
the field of electric power systems, many companies usually
choose to use UAVs instead of traditional manual inspections
due to their compact size and flexible maneuverability. In this
context, Liu ef al. [55] pioneer the application of FL to a power

line image detection task based on the YOLO v5 model. Their
experimental findings demonstrate that FL training involving
multiple power companies could yield a model with higher
detection accuracy compared to local models. Similarly, Fang
et al. [56] utilize an enhanced lightweight YOLO v3 model
specifically tailored to the UAV scenario for target recognition.
However, when employing the FL architecture for image
detection, there is a scarcity of real-time samples available for
UAVs. This is due to the inherent mobility of UAVs, which
makes it challenging to add samples during online training.
To address this limitation, Wu et al. [57|] develop a collab-
orative inference-based online FL system named “CIOFL”.
This system leverages a large-scale high-quality model to label
real-world images through multi-node collaborative inference,
thereby expanding the training dataset.

Most object recognition tasks are aimed at avoiding colli-
sions, including road detection, vehicle detection, pedestrian
detection, etc, which aim to identify circular boundaries and
areas where vehicles may travel, and are applied to lane
keeping and vehicle departure control systems, which can be
categorized into the identification of obstacles. Additionally,
there is another scenario for the recognition of license plate
numbers and traffic signs [58]], which have higher image
quality expectations. For instance, the license plate number
recognition task is typically separated into two stages. The
first stage is license plate detection (LPD), which is adopted
to preliminarily determine whether the image is displayed as a
license plate, and the second stage is license plate recognition
(LPR), which is employed to detect license plate characters
after completing LPD. There are three common approaches to
LPR tasks: 1) area-based methods, 2) color-based methods,
and 3) pixel-to-pixel methods. The predominant bottleneck
of several methods at this stage is the processing of multi-
directional license plate detection, as well as dealing with
motion-induced blurred images [59]. In [60], the authors
redesign the LPR model that can be deployed on edge devices,
and simultaneously considered the issues of photo blur and
orientation anomalies caused by the dynamic properties of ve-
hicles and sensors, and proposed a license plate tilt correction
algorithm to enhance the robustness of the model. Aiming to
reduce the computational overhead, [61] designs a spike neural
network (SNN) encoding scheme based on neuron receptive
fields, which has better noise immunity and accuracy than FL
using CNN.

Furthermore, it is important to highlight that while FL
effectively addresses the issue of data fragmentation, there still
exists a challenge in terms of limited availability of locally
labeled data. This limitation arises due to the cost associated
with data labeling, as well as the aforementioned constraints
on image quality. To tackle this issue, researchers have turned
to the utilization of semi-supervised learning (SSL) methods,
which have proven to be effective. Building upon this, novel
frameworks known as semi-supervised FL (SSFL) have been
developed. For instance, Zhang et al. [62]] devise a SSFL
framework specifically tailored to the task of UAV image
recognition. In their work, they incorporated a dynamic hy-
perparameter term and two active learning strategies, which
collectively contribute to achieving high-quality performance



in SSFL. This approach helps overcome the scarcity of labeled
data and enhances the accuracy and effectiveness of the image
recognition process.

In general, the integration of FL into the target recognition
scenario of ITS facilitates the construction of comprehensive
training models by harnessing distributed data obtained from
vehicle networks and road sensors. This approach effectively
addresses challenges such as visual obstructions resulting from
individual sensors or vehicles, as well as the ambiguity in
identifying targets due to the dynamic movement of vehicles.
However, the development of an FL architecture capable of
real-time analysis of extensive multimodal data remains an
arduous endeavor [[63]]. Alongside the amalgamation of data
modalities from diverse edge devices, it is imperative to satisfy
the stringent requirements of low latency. Furthermore, to
optimize the utilization of collected multi-layered resources, it
is essential to incorporate road characteristics when designing
sensor layouts and establish sophisticated simulators that pro-
vide high-fidelity image rendering within complex recognition
scenarios, thereby minimizing perceptual errors.

B. Traffic Status Identification

Traffic status identification, including travel mode identifi-
cation and traffic speed forecasting, is frequently optimized to
enhance public services and observe atypical vehicle driving
behavior, understand driving intent and avoid potential traffic
accidents [64]]. In comparison with the transfer and appli-
cations of image learning algorithms in target detection and
recognition, recognition of traffic status requires more collab-
orative training of sensors and auxiliary systems, including
speed sensors, acceleration sensors, and vehicle positioning
systems.

1) Vehicle Position: Vehicle positioning is a basis for appli-
cations including vehicle navigation and lane keeping. Global
Navigation Satellite System (GNSS) and Inertia Navigation
System (INS) are currently the most advanced positioning
systems, since the other two positioning methods can achieve
rapid update frequency and high short-term accuracy, this
method is too costly and highly dependent on the GNSS
base station to be used for ADS algorithm testing [635].
Therefore, multi-system-based data fusion is a development
direction of vehicle positioning tasks, and it is coordinated
with onboard sensors and visual positioning systems. Some
existing methods rely on sensor-rich vehicles (SRVs), and yet
this approach requires high implementation costs and requires
a large number of bandwidth resources.

The work in [[66] first employs the FL architecture based
on the cooperative perception of V2V vehicles to generate
more training samples, aiming to protect privacy whereas
cooperating with universal vehicles to maximize the role of
SRV, and for GPS error correction, and for errors caused
by individual differences, transfer learning methods are used.
Additionally, the work in [67] uses remote sensing data as
an aid to increase the detection range of vehicle congestion,
which is employed to solve the issue of insufficient coverage
of traffic monitoring systems, and FL as a privacy protection
method as well.

2) Travel Mode Identification: Accurate data on travel
patterns can help governments and related businesses better
comprehend user travel habits and develop more effective
traffic control strategies. As an extension of vehicle positioning
service, it predicts trajectories and recognizes patterns by ex-
tracting features from a large number of GPS users and vehicle
trajectory data. In the earliest work, a GPS device is used
to record the travel location features at preset time intervals,
the long trajectory is first divided into multiple segments
with distinct patterns employing a change point clustering
segmentation scheme, and subsequently the statistical features
of each segment are adopted as an input of classifier [68].
With the popularity of neural networks, researchers mapped
GPS trajectories into images, and extracted features using
CNN and other techniques until the emergence of networks
including Long Short-Term Memory (LSTM), which can cap-
ture spatiotemporal correlations to obtain better classification
results. Nonetheless, several obstacles remain in this scenario,
including vehicle trajectory-based classification task, which
relies too much on GPS data. It is difficult to track vehicles
in the absence of GPS signals. While some indoor positioning
technologies, such as Wi-Fi [[69], can be leveraged, deploying
a large number of sensors locally will incur huge storage
and computing costs. The work in [70], it is proposed to
transfer the smartphone’s inertial data to the vehicle in order to
determine the vehicle’s position in real-time. After the vehicle
enters the closed area, the position inference is done by using
the FL updated model, and the GPS data is only adopted
for training in the open environment. During the same time,
the use of FL also effectively alleviates the heterogeneous
problems caused by distinct driving and equipment hardware
distinctions of users.

In the real-world, vehicle users generally do not attach labels
to the driving mode by themselves, and general institutions do
not have the privacy permission to collect user labels. In [71],
the authors assume that the cloud server side holds a small
privacy permission data set with a drive mode tag, whereas
the user’s data set lacks a tag. They design a semi-supervised
FL framework that first employs the pseudo-labeling method
to label local data before grouping and aggregating according
to the class distribution as a standard to solve the Non-IID
problem. In [72]], the authors optimize the one-class support
vector machine with stochastic gradient descent (SGD), so that
the algorithm supports sequential learning, it can be utilized
in FL to detect abnormal vehicle trajectories at intersections,
thereby reducing the burden of local data labels.

Except for that, some works consider the optimization of
FL aggregation methods and training parameters in trajectory
prediction or travel mode identification tasks. In [73]], the
authors make personalized FL updates for distinct parameters
in a trajectory prediction scenario. They come to the conclu-
sion that one way to effectively prevent over-fitting during
training is to slow down the update speed of parameters that
share common features. For instance, some of the shared
kinetic data might have similar similarities. In [74]], the authors
demonstrate that the aggregation method and the FedAvg
method that give greater weight to comparable observations
have better model performance with small moving windows



and multiple communication rounds, correspondingly. It is
crucial to highlight, however, that in LSTM-based vehicle
prediction, the trained models perform poorly in predicting the
departure time of vehicles from one cell to the next, perhaps as
a point for future research. The work in [75] develops a three-
stage map fusion method, including the density-based spatial
clustering of applications with noise, the score-based average,
as well as the intersection over union-based box pruning,
global map fusion achieved at the edge server using knowledge
extraction. And the method of FL generates training labels for
FL when data labels are not available.

3) Traffic Flow Prediction: Traffic flow prediction com-
pared with vehicle positioning and travel mode recognition,
has more time and space dependence. Distinct locations and
distinct time in the same location have an effect on the
predicted value, this highly dynamic task scenario frequently
needs to combine more edge-end information, and for con-
gested vehicles to assign a data set (due to the fact that
traffic congestion state and traffic flow are strongly correlated).
Furthermore, the location of the camera, speed, and even
weather conditions can be included in the input data set for
better estimation of traffic behavior [76]. Recently, GNNs
have been applied to traffic flow prediction and estimation
scenarios, where coordinate information associated with nodes
is used to assist in routing to avoid information diffusion
[77]. The monitoring stations in the real scenario are located
on the nodes of the GNN, the connection lines between
stations are edges, and the adjacency matrix is calculated
from the distance between stations. Similar to sensor data, the
adjacency matrix contains feature information and associative
user privacy. In some works employing GNN or GCN, the
design of the aggregation method for the adjacency matrix is
considered on the condition that aggregating with FL, which
enhances the scalability of the network o improve application
to traffic speed and traffic prediction [78[], [79]. In [80],
the authors combine FL and Gate Recurrent Unit (GRU)
and add the Joint-Announcement protocol to the aggregation
mechanism. This protocol, which has been applied to large-
scale distributed prediction and also captures the time-space
correlation of traffic data flow, uses random subsampling for
participants to reduce communication overhead. In addition
to traffic forecasting, some research also applies FL to the
forecasting of passenger flow on urban rail systems [81]], [82].

Due to the high cost, many urban arterial roads lack traffic
detectors, so they are typically only installed on highways,
which is not conducive to the prediction of the entire network.
Through the collaboration of FL training, this problem can be
mitigated [83]].

C. Traffic Management

Object detection and traffic state identification rely on
cooperative perception of the vehicle’s environment and are
used to characterize the scene and predict vehicle behavior. In
traffic management scenarios, intelligent decisions are made
based on the previous two, including parking control in a
parking lot and traffic light control at an intersection, which are
occasionally treated as game problems in multi-institutional
collaborative training.

1) Parking Management: The parking control system for
parking space search is one of the most important ITS ac-
tivities, particularly in large cities [84]. On average, vehicles
remain stationary 90% of the time. Several works point out that
the dispatch center is crucial [85]] to calculate the optimal route
and make parking recommendations. Its basic components are
a driver request center and an intelligent parking assignment
center that makes reservations and checks the availability of
parking spaces through the sensors and applications [86].
Nonetheless, in most scenarios, there are multiple service
providers, and cloud storage is required to centralize infor-
mation, including connecting multiple service providers to a
public cloud, and users extract information from it [87]]. In
order to utilize the onboard resources of parked vehicles to
complete a given workload, the authors in [88] propose an
appropriate incentive based on FL to encourage vehicles to
enter the parking space. First, the parking capacity constraints
of multiple parking lots are obtained through LSTM, and
subsequently, the interaction between the parking lot and the
vehicle is obtained. It is characterized as a non-cooperative
game, and theoretical analysis proves the unique existence of
the Stackelberg equilibrium.

Another task scenario in parking management is parking
trajectory planning. Unlike route planning, this scenario in-
troduces constraints related to narrow spaces. Specifically, in
vehicle navigation, polynomial-based path planning is com-
monly used to generate multiple alternative collision-free and
smooth curves. However, due to limited space, parking lots
often have multiple non-differentiable points. Additionally,
given the complexity of the environment, obstacle avoidance
constraints in parking are significantly more severe than in
normal driving lanes, and sufficient mobility is required.
Currently, neural network-based approaches are popular. For
instance, Dolgov et al. [89] initially use the Hybrid A* algo-
rithm to sample the control space and obtain smooth dynamic
curves. Subsequently, Fassbender et al. [90] propose two node
expansion methods: one employs numerical optimization to
solve boundary problems, and the other generates edges using
a simulated controller to guide the vehicle towards the global
reference path.

2) Traffic Signal Control: In the traffic signal control sce-
nario, the optimization directions include network optimiza-
tion, intersection optimization, roundabout optimization, and
timing cycle optimization [91]. On the one hand, recently,
advanced machine learning techniques, such as evolutionary
algorithms and swarm intelligence algorithms, have been ap-
plied to tackle optimization problems characterized by non-
linear, continuous, and discrete factors. One such problem is
traffic signal control. Notably, Li et al. [92]] undertake a com-
prehensive approach by integrating various metrics, including
system throughput, latency, and intersection volume overflow.
They use genetic algorithms to address the optimization prob-
lem, conducting their investigations over three different levels
of vehicular network complexity. Similarly, Jia et al. [93]
present a metaheuristic algorithm based on particle swarm
optimization to tackle multi-objective optimization challenges
specifically in the realm of signal timing schemes. However,
this approach does not consider hybrid traffic flow control



models and vehicle coordination.

On another front, reinforcement Learning (RL) has gained
popularity owing to its ability to bypass the need for ex-
cessively idealized assumptions and intricate mathematical
derivations. Initially, the control unit collects state information,
including queue length, and vehicle position, and then executes
actions on the basis of the policy obtained by the RL method,
and finally, the agent receives rewards from it. This procedure
reduces intersection traffic congestion. Nonetheless, the high
joint action space dimension makes centralized RL infeasible
for large-scale traffic signal control [94]]. Recent works have
also introduced FL into traffic control scenarios, allowing
agents to communicate remotely without routing and load
model parameters when idle.The relevant simulation demon-
strates that this method is conducive to the algorithm’s rapid
convergence [93]], [96]. In the follow-up work, a cooperative
optimization framework can be considered to separate the
traffic network into individual components to better optimize
the traffic network containing numerous intersections.

In the context of traffic management scenarios, the co-
ordination among multiple organizations is often necessary,
leading to frequent interactions and substantial communication
overhead in model aggregation. Thus, ensuring the reliability
of FL for model training and inference in large-scale com-
munication networks becomes paramount. Currently, network
edge caching is recognized as an effective approach to enhance
Quality of Service (QoS) in wireless network access. For
instance, Li et al. [97] propose an edge cooperative caching
scheme based on federated deep reinforcement learning, where
collaborative models are formulated as a Markov process,
enabling dynamic and adaptive caching. However, the practical
implementation of high-precision map caching remains lim-
ited, with current efforts primarily focused on the theoretical
domain. In summary, optimizing caching strategies in dynamic
network topologies and accommodating high-speed node mo-
bility within FL-enabled ITS presents an ongoing challenge.

D. Service Providing

In this section, we discuss two widely employed vehicle
public service scenarios, charging services for new energy ve-
hicles as well as route planning services for vehicle navigation.
Due to the need to consider complex constraints in the actual
public service environment, a truly mature system has not yet
emerged. Here we only do the latest applications of FL, and
briefly describe the shortcomings of the existing methods.

1) Charging Service: The primary categories of vehicles
that require charging services encompass both UAVs and
electric vehicles (EVs). Notably, UAVs have exhibited a shift
towards civilian applications in recent years, finding extensive
usage in areas such as parcel delivery and traffic surveillance.
Simultaneously, due to high energy efficiency and low emis-
sions, EVs have become one of the sustainable solutions for
retrofitting traditional transportation systems. And the general
setting is that once a request from EVs is received, the
charging station provider (CSP) will focus on providing energy
to the charge stations (CSs) to meet the electrical needs of
EVs. In the traditional centralized architecture, the charging

time of each EVs is determined by the aggregator, which
straightforwardly collects the charging demands of EVs, and
subsequently solves the optimization problem to determine the
charging speed. Even though the global system state is readily
accessible, failure to resolve optimization issues can result
in system crashes, so a system backup must be considered.
Additionally, additional complexity arises on the condition
that the control variables and constraints of EVs are increased
[98]]. Recent research has introduced hierarchical FL into this
scenario, grouping EVs and managing each group via sub-
aggregators. In addition, due to the complexity of billing,
highly sensitive signal control, and state estimation, some
existing privacy protection methods based on data tampering
are inapplicable to EVs, which provides additional justification
for the implementation of FL.

In [99]], the authors combine FL with random forests and
CNN for power load prediction. To save communication over-
head, the work in [100]] adopts a clustering-based approach on
the CS side to reduce the data set dimension. Consequently, the
biased prediction can be minimized. Nonetheless, the authors
did not fully consider the distinct features of EVs and CSs.
In [101]], the authors design a cross-platform FL mechanism,
and introduce a recommendation model with cross features for
EVs and CSs, selectively adopting hash and RSA encryption,
which can increase the convergence rate of the model while
maintaining privacy.

Comparable to parking management, scenarios with mul-
tiple agents can also be optimized by introducing economic-
driven games. In [102], the authors utilize a multi-principal
one-agent (MPOA) contract-based economic model to convert
CSs utility maximization into a non-cooperative energy opti-
mization issue of MPOA contract strategy. They demonstrate
the existence of balanced contract solutions for all CSs and
develop an iterative algorithm for obtaining balanced solu-
tions. Considering that FL typically disregards the uncertainty
associated with energy demand forecasting, the authors in
[103]] generalize FedAvg, added the probabilistic prediction
algorithm, as well as verified the performance advantage over
the deterministic prediction model through experiments. Zou
et al. [|104] introduce an approach for urban UAV charging
services, combining Hierarchical Federated Learning (HFL)
with LSTM and stochastic game theory. In the first stage,
LSTM is employed to forecast energy demand data, enabling
proactive prediction. Subsequently, in the second stage, an
optimal energy dispatching strategy is determined through the
utilization of Markov games, leveraging the predicted demand
as a basis for decision-making.

Indeed, it is apparent that when it comes to designing FL
architectures for charging services, there are additional con-
siderations and constraints compared to general traffic control
scenarios. At the operator level, the priority lies in maximizing
operational efficiency and minimizing costs. Similarly, at the
aggregator level, the focus is on maximizing the benefits of
aggregation and reducing power supply costs. At the individual
electric vehicle (EV) level, the prime objective is to minimize
charging power loss and battery degradation. Moreover, market
fluctuations play a significant role in causing fluctuations
in electricity demand, while the sensitivity of time-varying
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heat loads introduces uncertainties in the network [105]. It
is imperative to effectively address these external disturbances
and enhance the robustness of the proposed solutions. Fur-
thermore, while the widespread and dense deployment of
fixed charging stations as public infrastructure, combined with
the utilization of mobile charging stations as supplementary
resources, serves as the fundamental solution to alleviate range
anxiety, challenges related to cost control and maximizing the
utilization of limited charging stations still persist.

2) Route Planning: The distinction between the motion
planning of a vehicle and a mobile robot is that the vehi-
cle is in a complex road network, and its route must also
consider traffic regulations and road layout constraints, and
in the process of network work, all routing algorithms must
respond to network changes by refreshing the previous route.
Common techniques include 1) graph search-based planners,
2) sampling-based planners, 3) interpolating curve-based plan-
ners, and 4) numerical optimization. The majority of current
solutions consist of implementing route planning on a single
server or dividing the road network into multiple processes
using a parallel method. Nonetheless, deploying planning deci-
sions directly in the cloud leads in communication latency, and
at the same time, new collision trajectories are continuously
generated due to multiple dynamic obstacles, which drastically
reduces the decision window for route planning. For the
purpose of solving this problem, the work in [106]] deploys
routing at the network edge of RSUs and assumes that access
to external cloud servers is intermittent while compressing the
search space as well as limiting the communication frequency
of fog nodes, effectively reducing latency and memory re-
quirements. In [107], the traffic data collected by each station
is divided into distinct clusters, the road network is modeled
as a time-dependent graph, and the enhanced A* algorithm
determines the optimal route with the quickest travel time.

Furthermore, the utilization of UAVs as aerial anchors
presents an opportunity to address the challenges associated
with expensive and unstable GPS systems [108]]. Shahbazi
et al. [109] delve into this area by exploring local mini-
mization error paths in various parameter environments. They
employed FL to aggregate models and conducted tests in a
fourth parameter environment, resulting in the identification
of a model with the lowest localization error rate. Regarding
UAV route planning, it encompasses several considerations.
Firstly, the presence of unforeseen flight obstacles, including
enemy UAVs in military applications, must be taken into
account. Currently, RL-based UAV route planning schemes
have gained popularity. For instance, Khalil ef al. [[110] devise
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a route planning in hostile environments featuring dynamic and
static defense systems through federated DRL. The inherent
distributed learning structure of FL significantly enhances the
performance of swarm-based models. In addition, due to their
limited power storage, UAVs often face resource constraints,
necessitating optimal route planning achieved through joint
power distribution and UAV scheduling methods. We will
further explore this topic in the second subsection of Section
v

The challenges in the route planning scenario can be sum-
marized as the need to consider control constraints while
perceiving the environment, with the optimization objective
of minimizing the path or travel duration. In the current
FL-enabled ITS architecture, utilizing the basic algorithms
mentioned earlier to address route planning problems through
iterative solutions can result in high computational costs. Ad-
ditionally, as the number of vehicles in the system increases,
it can lead to potential deadlocks. Although there have been
recent efforts to address dynamic route planning problems
using reinforcement learning, which involves searching and
trial-and-error methods to obtain suboptimal solutions, it also
requires significant memory and bandwidth resources.

IV. CHALLENGES IN ITS BASED FL

In this section, we organize the application architecture
of FL from the perspective of addressing the existing issues
of ITS. We combine the challenges in Section [I] into three
aspects: high-speed mobility, limited storage and computing
capability, and high information sensitivity. It will involve
some commonly employed architectures in traditional FL,
as well as, if necessary, adjustments for special scenarios.
Notably, FL-enabled ITS alleviates the problems in traditional
ITS scenarios to a certain extent, notably in terms of privacy
protection and computational overhead reduction. Nonetheless,
some problems that existed in FL are also present in ITS in
the highly dynamic scenario, including higher communication
overhead and latency. With the aid of additional mechanisms
such as blockchain, UAVs, edge caching, etc., the existing
problems can be greatly mitigated or even solved. These
initiatives will facilitate the integration of FL with ITS.

A. High-speed Mobility

1) Non-uniform Samples and Equipment: As mentioned in
Section |I, due to the highly dynamic topology of IoV, data
is non-uniform and some vehicles are left behind. Both of
the aforementioned factors inevitably result in non-uniform



ditional communication overhead.

TABLE III
APPLICATION SCENARIOS OF FL IN ITSs.
Scenario Task Ref Algorithm Limitations Dataset Year
53] YOLO V3 The model aggregation mechanism | KITTI 2021
Obsi Obstacle Detection || is still simple.
Je,Ct. [154] CNN Comparative  experiments with | Private dataset 2021
Recognition single-layer FL are missing.
561 YOLO V3 Impact of network structure not | BelgiumTSC 2021
studied.
License Plate Recognition [60] YOLO, Mask-RCNN The scenario of architecture de- | Private dataset 2021
ployment is relatively simple.
Traffic Sign Recognition [61] Spike Neural Network | The security of the training algo- | BelgiumTSC 2022
(SNN) rithm is not taken into account.
. S 1671 Single Shot Multibox De- | The experiment is limited to static | Remote sensing | 2020
Vehicle Positioning L .
tector remote sensing images. 1mages from
Google Earth
66] DNN Vehicle status information is not | Didi Chuxing | 2022
fully utilized to improve accuracy. GAIA
Traffic Status [74] LSTM The simulation of LSTM is flawed. | Private dataset 2020
Identification [70] TCN (causal convolutions | Ignored the label upload permis- | Real-world 2021
and the dilated convolu- | sions. crowdsourced
Travel Mode Identification tions) dataset from DiDi
j72] One-Class Support Vector | Detection of a single anomaly class | INTERACTION 2021
Machine (OCSVM) is missing. Datase
73] LSTM Lack of communication overhead | Private dataset 2021
comparison.
[71] CNN, GRU, ReLU The server may not have data per- | GPS data from the | 2022
missions. GeoLife project
[75] Knowledge Distillation Assumptions on high accuracy of | Public dataset 2021
ego-vehicle localization.
[79] GCN Data heterogeneity is missing. PeMS04, PeMS08 2022
Traffic Flow Prediction 78] GNN Communication overhead is not | PeMSD7 2021
taken into account.
[180] GRU Only security and privacy are con- | PeMS 2020
cerned.
Parking Management [188] LSTM Only applicable to multi-leader | Birmingham park- | 2021
Traffic game scenarios. ing dataset
Management — — - -
. 195] Actor and Critic neural | Communication latency is not | Private dataset 2020
Traffic Signal Control .
networks taken into account.
[96] Actor and Critic neural | The actual deployment is not con- | Cityflow 2021
networks sidered.
[99] FRF-CNN Insufficient comparative experi- | Public dataset 2022
) | ments.
Serylge . . [111] | RL Data heterogeneity is not consid- | Private dataset 2022
Providing Charging Service ered.
[100] | DNN Convergence speed results is not | Public dataset 2019
given.
[101] | Encrypted entity align- | Communication overhead is not | Public dataset 2021
ment method taken into account.
[102] | Clustering-based DFEL Lack of privacy protection mecha- | Public dataset 2020
nisms.
[103] | Linear regression (LR) | Numerical simulations for privacy | TRDB 2021
and neural network (NN) is lacked.
[104] | HFL-LSTM, multi-agent | Analysis of performance loss from | Generated dataset 2021
double deep Q-learning FL is lacked.
. [112] | Partition Network The handling of node failures is not | OpenStreetMap 2020
Route Planning -
considered.
[107] | A* Traffic incident reporting incurs ad- | PeMS 2021

data and mobile node distribution (straggling vehicles are
considered to drop out of the training process). Typically,
to achieve low latency metrics for QoS, FL can enhance the
tolerance for these issues by dynamically selecting participants
and modifying the aggregation architecture [26]]. This idea is
also applicable to the ITS scenario, but needs to be modified

and adapted accordingly.

Participant Selection: Participant selection in traditional
FL usually utilizes model quality, and model similarity, as a
reference index for selection, and assigns lower aggregation
weights to local models with poor performance or directly
eliminates them, consequently decreasing the negative effect



of poor samples [113]. Referring to this method, in ITS,
numerous works replace the reference indicators with vehicle
speed, sensor picture quality, and communication link quality
to do multi-hop aggregation.

In [[114], the authors take image classification as the scene,
comprehensively consider loss function decay, wireless re-
sources, computing resources, and energy as selection in-
dicators for the first time, take learning efficiency as the
final optimization goal, obtain vehicle selection and resource
allocation schemes based on data content. The work in [[115]]
goes a step further, utilizing a fuzzy logic algorithm based on
stability factor (vehicles with a relatively low speed can always
be selected), topology factor, and connection factor (to ensure
communication quality), considering vehicle speed, vehicle
distribution and wireless link connections between vehicles, to
select the appropriate edge vehicles for RSUs communication.
The measurement method adopted by [[116] in the selection
mechanism is based on the contribution of the vehicles to
the weight change of the model, i.e., the greater the weight
change, the greater the contribution. Nonetheless, invariably,
an increase in the amount of data can result in a greater
contribution; however, this is accompanied by an increase in
Non-IID, which impacts the training speed of each round.
Accordingly, a correlation factor is added to the algorithm
to balance this effect, and for the dynamic environment of
IoV, the dimension of selection frequency is considered. Thus,
based on the user’s execution time and outlier detection,
changes in the environment are identified. Similarly, in [[117]],
each vehicle participating in the training is required to confirm
that its local update is consistent with the global update trend,
and the resulting similarity is used to select vehicles.

In addition to the aforementioned techniques for extracting
reference indicators based on the characteristics of the vehi-
cle’s environment, various conditions can also be combined
into joint optimization problems, and subsequently the optimal
solution can be obtained through a well-designed algorithm. In
[118], the authors employ the geometric relationship between
the target and the camera to evaluate the image quality, in
combination with the computing power of the vehicles, the
model selection process is expressed as a two-dimensional
contract theory, as well as the constraints are simplified by
relaxation, and accordingly solved by a greedy algorithm. In
addition to vehicle selection, the work of [[119]] also takes into
account resource scheduling, they treat resource allocation and
vehicle selection as a joint optimization problem. First, with
latency, transmission energy consumption, vehicle mobility
(speed and position), and image quality as constraints, given
the size of the vehicle selection set, the local training accu-
racy, on-board CPU frequency, as well as transmission power
are optimized. Subsequently, the designed greedy algorithm
adds vehicles iteratively to minimize energy consumption and
latency (system cost).

Nonetheless, the above works ignore the issue of obtaining
permissions for the cloud server’s various indicators, that is,
indicators including vehicle location, which users do not want
to disclose to the server. In this regard, the research in [120]]
provides a feasible solution. The authors adopt an architecture
for dynamic FL that allows a vehicular service provider (VSP)

to access the location information of each smart vehicle (SV)
securely. Moreover, to reduce privacy risks, this information
is only used to assist the VSP in selecting the best SVs for
each epoch of training. In other words, GPS information will
be anonymized or obscured. Each collected SV determines the
payment contract to the VSP based on its collected Quality-
of-Information (Qol) and location significance. Moreover, to
make the SV obtain the optimal payment contract, the author
develops an optimization method on the basis of the MPOA
protocol to deal with the common constraints of SV and VSP
and the problem of insufficient payment budget. This method
generates additional information exchange between the server
and clients, despite the fact that it prevents the server from
directly obtaining private information. Therefore in [121], the
authors propose to hold a small validation dataset on the
server side to measure the performance of selected client-
updated models. And the dataset has ground-truth labels, and
yet is insufficient to train a global model and does not incur
excessive computational overhead.

In terms of theoretical analysis, the work in [122]] presents
a rigorous convergence analysis of its FL dynamic selection
algorithm. Moreover, they analyze the effect of distinct par-
ticipation in the FL process and distinct data quality on the
convergence of the proposed algorithm.

Aggregate Structure: Some works redesign the aggregation
architecture for FL in consideration of vehicle mobility. To
adapt to the mobility characteristics of the vehicles, the work
in [123]] proposes a Mobility-aware Proactive edge Caching
scheme on the basis of FL. (MPCF), which selects a vehicle
with sufficient computing power as well as storage capacity
as a central server, termed server vehicle, rather than a static
RSU, whereas nearby vehicles with the same driving mode
are in connection to this server vehicle for training. In [[124],
the authors refer to the standard FL approach to asynchronous
problems, combining synchronous and asynchronous updates.
And the architecture is divided into an edge layer and a cloud
layer. Besides, the edge nodes aggregate a homogeneous local
model, and the cloud layer aggregates a part of heterogeneous
models. When the training of the slowest node is complete,
the selected node updates the global model.

In terms of FL model updates, the work in [[125] studies
the problem that each vehicle has distinct numbers of local
images and the limitation of computing resources and com-
munication resources. They propose an “adaptive step/epoch”
update method, in which each Non-IID participant’s number of
training steps for each epoch should be adaptively adjusted, to
reduce training time while combining with model quantization
to further reduce communication costs.

Some proposed strategies have not yet been implemented
in ITS, including sharing a part of the original data between
clients to improve the learning ability of Non-IID data [29].
Nonetheless, due to its reliance on data sharing, it can lead to
serious privacy breaches. In [126], it is suggested to regularize
the local loss function using the squared distance between
the local model and the global model, but the optimization
efficiency is low.

Moreover, it should be noted that the method of using se-
lection or client-side clustering is essentially an asynchronous



update mechanism. This method is widely utilized in standard
FL, but experiments indicate that some methods directly
implemented in ITS scenarios will decrease performance
[127]. In addition, in dealing with the problem of uneven
user resources, it is likewise possible to compensate for the
performance loss of the stragglers or low-performance models
via coding calculation, i.e., embedding calculation redundancy
[128].

2) Unstable Transmission: Another problem with the high
dynamics of vehicles is that this mobility brings constant
changes in network density, including areas where traffic
congestion occurs with higher network density, and relatively
remote areas have lower vehicle density. This density variation
and distinct vehicle distribution lead to unstable information
transmission, resulting in high communication latency. Aiming
to achieve the end-to-end latency goal, it is essential to
ensure low queue latency. Therefore, a significant amount
of effort is devoted to the development of efficient wireless
resource management schemes, including rate maximization,
improving energy efficiency, vehicle network clustering, and
power control algorithms.

It should be pointed out that the latency in ITS is predom-
inantly caused by uneven computing capability and limited
bandwidth. FL takes advantage of the computing power of
edge nodes in a distributed manner, which effectively reduces
the cloud server’s computing power overhead, and yet the
computing capability of edge nodes will be converted into a
bottleneck; at the same time, since the vehicles only upload
the model parameters, the transmission of the original data
is avoided and the communication overhead is alleviated.
Nonetheless, due to frequent communication between vehicles
and RSUs, RSUs and the server, high communication costs
continue to be incurred. In the sequel, we only discuss how to
alleviate communication latency. And the computing latency is
essentially caused by the limited computing capability, which
will be discussed in the next section.

Communication Protocol: The two predominant current
vehicle network distribution schemes are DSRC and cellular-
based ToV [[129], [130]. This Vehicle-to-Everything (V2X)
communication mode allows each vehicle to communicate
with distinct entities, including RSUs, cloud servers, and
other vehicles. Nonetheless, both schemes have shortcomings,
DSRC with limited coverage, low transmission rates, and no
mature safeguard mechanism for network security. Besides,
cellular-based IoV cannot support distributed communication
due to the fact that it can cause network congestion at high
densities. Emergence of heterogeneous networks combining
two communication protocols [131].

In [132], the authors equip each vehicle with DSRC and
millimeter wave communication protocols in the designed IoV.
The former is used for frequent communication of message
control and small data, whereas the latter is utilized mass
communication. In comparison with the communication proto-
col without distinction. It significantly enhances the system’s
scalability and stability as well as reduces communication
latency In addition to DSRC and cellular networks, WiFi and
other networks can likewise be incorporated into heteroge-
neous networks. In [[133]], the authors design the transport

protocol and network settings to capture highly dynamic on-
Vehicle WiFi Access Points (o0V-APs) data streams as well as
link switching and retransmission due to packet loss or latency
to precisely estimate packet loss rate as well as latency, and
FL as either a collaborative management mechanism.

In terms of resource allocation, the work in [[134] proposes
an information-sharing model on the basis of FL network
routing optimization. Initially, the storage cost of each MEC
is estimated, the energy consumption of MECs is calculated
under the condition that the storage and latency constraints
are satisfied, and eventually, the task scheduling is fed back
to the target vehicles in order to decrease the system’s total
transmission latency.

Furthermore, the integration of air links and wireless pow-
ered communication (WPC) offers the potential to establish
continuous communication for ground IoV. Zhou er al. [135]]
propose the deployment of UAVs at near-ground locations
to provide edge relay services for ground vehicles and user
devices. They optimize the trajectory of the UAVs to enhance
computational performance. Moreover, Pham er al. [136]
address the energy limitations of FL by leveraging UAVs.
They consider UAV placement, power control, FL. model
accuracy, and bandwidth allocation as constraints to tackle the
energy minimization problem in FL systems. By employing
a path-tracing procedure to solve the convex approximation,
they achieve convergence and optimize the system’s energy
efficiency.

Link Structure: Except for the optimization of communica-
tion protocols, there is also some works being done to redesign
the network link structure.

Regarding that the single-hop cluster structure limits the
system’s coverage and stability, numerous clustering algo-
rithms based on passive multi-hop have been developed in
recent years [137], [138]. Using the network topology of
ITS, the work of [[127] designs an end-to-end FL framework,
as well as inter-cluster and inner-cluster learning algorithms,
which accurately reduce redundant communication overhead.
The above end-to-end approach, which can direct vehicles
directly from raw data without costly labels, is widely used in
ADS at present. In [[139]], an autonomous blockchain-based FL
design is proposed for privacy-conscious and efficient vehicu-
lar communication networks, and system-level performance is
achieved by tuning parameters including block size, block ar-
rival rate, and transmission limit, and rigorously analyzed and
quantified end-to-end communication and consensus latency.
Hence, to collect more training models in vehicle cooperation
perception, a blockchain-assisted propagation method based
on FL is proposed in [[140]. In smart contracts, the Proof-of-
FL consensus competition transforms vehicles into miners. In
comparison with smart contracts without security checks and
other relay selection methods, the message propagation rate is
dramatically improved.

As a distributed computing paradigm, [oT-Fog aims to place
computational and storage resources at the edge of the network
for low-latency and high-reliability task execution. First, one
of the common communication types is the Proxy-Broker ap-
proach [141], in which the proxy and broker work in tandem to
handle communication and information exchange. The proxy



is employed to communicate with end devices, collecting and
forwarding data to the broker, while the broker is responsible
for processing, managing and routing the data. This commu-
nication type provides a flexible middle layer and improves
the efficiency of data processing. Another type is the Publish-
Subscribe approach [142], in which the publisher publishes
data on multiple topics for subscribers to choose from. This
communication type supports asynchronous communications,
which is well suited for information dissemination and event-
driven scenarios such as point-of-interest broadcasting in ITS.
Later, [143] investigates a P2P approach in localized networks
(e.g., similar to the same cluster in FL) with low privacy
requirements, wherein devices can communicate directly with
each other.

Additionally, Software-Defined Networking (SDN), as a
network architecture with programmability and centralized
control system, consists of application, control, and data
layers and is used to enable network device collaboration.
Distributed deployment of fog servers with logical uniformity
can be accomplished by using SDN enabled multi-hop IoT-Fog
networks. Akbar et al. [144] propose a combination strategy
of machine learning and multi-objective optimization to search
for optimal routes. It proves that SDN controllers can make
adaptive decisions in real-time to select the best path from the
Pareto-optimal set. However, in ITS, it is vital to consider
network dynamic characteristics. Ibrar et al. [145] utilize
the Reliability-Aware Flow Distribution Algorithm (RAFDA)
and two heuristic algorithms (RRAHA-1 and RRAHA-2) to
allocate flows over links based on their reliability level.

When implemented in ITS, SDN supports a wide range of
communication technologies, such as Bluetooth and ZigBee.
Specifically, Bluetooth technology enables V2X communica-
tions that serve personal devices at a transmission rate of
3Mbps; ZigBee facilitates vehicle connectivity with sensors at
a rate of 250Kbps [[146]. At present, researchers advocate the
integration of FL and SDN to improve FL’s scalability [147].
Within this framework, SDN encompasses multiple local sub-
controllers responsible for gathering network information such
as traffic density and service type. A higher layer, called the
master controller, plays the role of a central server in the
ITS domain. It leverages standardized interfaces to aggregate
local models and optimizes edge-to-edge routing paths for
each service flow based on global network information. This
integration enables not only region-wide communication but
also customized routing configurations for diverse service
flows to meet specific QoS requirements.

B. Limited Storage and Computing Capability

In comparison with traditional MEC scenarios, because ve-
hicles in IoV have relatively huge energy reserves, the problem
of limited transmission power is generally not considered,
and yet there will be a large amount of data collection and
storage in real-time. Additionally, although FL makes full use
of the computing power of edge nodes through a distributed
architecture, the storage and computing power limitations of
the vehicles themselves must still be taken into account [[148]].
And the existing solutions are usually optimization of resource
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scheduling or architecture design, including using Unmanned
Aerial Vehicles (UAVs) as auxiliary mechanisms [149]], or
proxy storage through third-party MECs and optimizing edge
caching strategies.

Auxiliary Mechanism: In the MEC scenarios, the use
of UAVs as an auxiliary mechanism is relatively mature,
and a UAV-MEC system is quite suitable for dealing with
high-density emergencies. Nonetheless, existing research often
ignores distributed deployment and communication latency,
and privacy issues. The work in [150] proposes a multi-
agent RL scheme under FL, which enables mobile devices
to make offloading decisions based on the system’s local
condition, effectively saving power consumption. According
to the authors, the algorithm is better suited for simulated
environments and IoV scenarios. In [[151]], the authors design a
scheme integrating UAVs and SVs, ensuring the uninterrupted
power supply of UAVs by considering the interaction of node
power and mobility constraints to support the uninterrupted
service of end devices.

However, the aforementioned research works fail to account
for the impact of transmission distance on the delay and
energy consumption of FL. Zeng et al. [152] address this
concern by optimizing the convergence rate of FL through
power allocation scheduling. They also consider the energy
consumption and delay of the swarm control system. For UAV
swarms operating within the FL architecture, a significant
challenge arises from spectrum scarcity. To tackle this issue,
Sabuj et al. [153] propose a UAV cognitive radio network
(CRN) that utilizes local FL in the edge network to enhance
spectral efficiency. Similarly, Wasilewska et al. [154]] aim
to maximize spectral efficiency by exploring the relationship
between computational and communication resources in FL-
based CRNs. Additionally, to enhance the energy efficiency of
FL, Shen et al. [[155] investigate the determination of the local
convergence threshold and optimization of resource allocation
to minimize the system’s energy consumption in UAV swarms.

In addition to UAVs auxiliary resource optimization, edge
servers can also be utilized as auxiliary agents. For instance,
vehicles with limited computing resources can offload tasks
to edge servers in time to decrease the computational load.
Even though ITS edge nodes can be deployed by third parties,
there will be storage trust issues due to security risks [[156].
Therefore, blockchain is used as an auxiliary authentication
mechanism in many works. The work in [[I57] adopts a
layered blockchain framework and Proof-of-Knowledge (PoK)
lightweight consensus mechanism, and utilizes layered FL
to introduce an intermediate layer to extract data correlation
features, which reduces the amount of computation signif-
icantly. In addition, Wang er al. [158] introduce DT into
the ITS architecture and construct a twin city in the virtual
space corresponding to the physical city to achieve intelligent
management and decision making of the transportation sys-
tem. They propose a conceptual model in environment-aware
scenario.

Edge Cache Optimization: Optimization of edge caching is
another popular research topic in ITS. Although the relatively
close distance of RSUs can effectively reduce the connection
latency, due to their limited computing resources, it is essential



to optimize resource management by selectively offloading
data. Passive and active caching solutions are available for
the edge. Passive caching selects cached content by observing
the pattern of user requests. This method can only be cached
after the request, making it vulnerable to obsolescence in
environments with a high level of dynamic IoV. To achieve
a sufficiently high cache hit rate, a large amount of backup
storage must be performed, which increases the storage pres-
sure. And the active caching strategy on the basis of content
prediction is very suitable to solve this issue. In the training
of the active caching model, the work in [[123] allocates the
FL aggregation weight in accordance with the vehicle storage
resources, which optimizes the resource utilization.

Edge caches, like vehicles, must not only ensure a high
cache hit rate, but also perform precise computing offloading
to further alleviate computing pressure. Whereas using the
FL framework can learn to offload the information from the
decision-making stage, which incurs a greater cost in terms of
latency, despite the fact that it can help make better decisions.
In [[159], three RSU-based clustering methods and vehicle-
based distributed methods are designed to model the unloading
process by delay and energy consumption, and the delay
and energy minimization problem is modeled as an opti-
mization problem under nonlinear constraints. The ultimate
optimization objective is to select an appropriate number of FL
iterations for each vehicle based on the latency requirement in
order to minimize energy consumption.

Additionally, not only the information is cached in RSUs,
but also a small part of the works have studied how to cache
the information in vehicles. Currently, the stability of dynamic
storage must be thoroughly considered. The work in [[160]
proposes a dynamic distributed on-board storage system, to
prevent the problem of data loss caused by vehicles leaving
the management area. They set up data transmission areas at
the entrance and exit of each area, so that the stored data can
be transmitted from of the departing vehicle to the arriving
vehicle via a one-hop link in a timely manner. Furthermore,
the authors maintain the integrity of the storage by introducing
structural redundancy of erasure codes.

Note that while edge arithmetic offloading reduces commu-
nication latency and the computational burden on vehicles, it
also introduces greater network complexity and computational
redundancy. To address these challenges, the combination of
SDN and MEC emerges as a promising approach. Local
SDNs serve as control systems responsible for managing task
migration between edge servers [[161]]. These local controllers
gather vehicle state information through cellular networks
or DSRC, enabling more effective task offloading policies.
Recently, distributed SDN controllers have been employed as
agents, as seen in the work of Tam er al. [[162]], to mitigate
update degradation by executing tasks on nodes with sufficient
computational capacity. They also recommend suitable edge
FL servers for model aggregation and averaging. Chen et
al. [163]] investigate various parameters influencing local FL
model transmission, optimizing these parameters based on
wireless network characteristics. Balasubramanian et al. [[164]
additionally considers cache location and content privacy.
Local device data is used to train the model, and local updates

are then uploaded to the central controller. The FL. module
determines content placement based on QoS, and the SDN
controller adjusts the routing path accordingly. Overall, SDN-
assisted FL can be deployed in dynamic network topologies,
facilitating trusted resource management.

It is important to note that FL. primarily serves as a privacy-
preserving mechanism in edge caching. Additionally, FL elim-
inates the need for centralized collection of training data,
thereby enhancing caching efficiency [165]. Ultimately, there
are a part of the works using deep Reinforcement Learning
(DRL) for optimizing resource allocation, which is effective in
improving energy efficiency, and yet for lightweight edge de-
vices, especially edge vehicles, in most cases, it is insufficient
to support the deployment of the RL framework independently
[166].

C. High Information Sensitivity

Vehicles are currently more susceptible to tracking attacks
than mobile phones, making privacy protection mechanisms
in ITS a particularly pressing issue. In the first place, due to
the requirements for vehicles safety, the vehicles communicate
frequently with RSUs to ensure real-time service on the basis
of positioning, which substantially increases the likelihood
of being attacked. Second, the vehicle moves under traffic
control and road constraints, and it is much simpler to attack
the position of vehicles with logic than it is to predict the
movement of the MEC as a whole. Notable examples of such
attacks include eavesdropping attacks and location attacks. To
elaborate further, the Global Passive Adversary (GPA) exploits
valid certificates to glean vehicle information, including user
IDs, location information, RSU details, license plate readers,
as well as comprehending road structure and traffic conditions.
Although the GPA attack is primarily regarded as a passive
attack, entailing the interception of private data without direct
tampering, it is often executed on a global scale, with the GPA
leveraging traffic management systems to achieve broad data
coverage. FL, on the other hand, as a distributed paradigm
with third-party agents, protects the privacy of participating
vehicles to a certain extent due to the fact that the original
data is mostly kept local [167]]. Nonetheless, some malicious
attackers can nevertheless deduce the original data backward
from the uploaded gradient information [168]]. Moreover, many
works do not account for the existence of malicious vehicles or
servers, including malicious vehicles will upload wrong model
parameters to interfere with the training process and affect
training accuracy. Consider a scenario involving road conges-
tion, where an attacker manipulates the congestion signal by
tampering with the data, thereby altering the navigation path.
While some research suggests that pseudonyms can be em-
ployed to safeguard vehicle data privacy [[169], this approach
can still be compromised in the absence of adequate trust
between cloud members. An attacker can infiltrate the system
by posing as a member of the cloud, thereby necessitating the
exploration of dynamic trust mechanisms as a potential area
of investigation.

Furthermore, the traditional FL architecture proves inef-
fective against certain program attacks targeting channel al-
location. Examples of such attacks include denial of service



attacks, where dishonest vehicles impede all feasible commu-
nication methods by transmitting multiple messages. These
attacks can be executed in a distributed manner, known as
distributed denial of service attacks (DDoS). Additionally,
jamming attacks disrupt broadcast communications through
various techniques such as alarm injection, which consumes
the available frequency range. Jammers impede network com-
munications between vehicles within a designated transmission
and reception range by interfering with the physical transmis-
sion and reception of wireless communications.

1) Blockchain: ITS inherently face security challenges re-
lated to availability, identity recognition, and confidentiality.
Conventional identification systems rely on public-private key
mechanisms, necessitating vehicle authentication with local
certification centers. However, this periodic encryption and
decryption process introduces additional network overhead.
In contrast, blockchain, as a decentralized paradigm, offers
a solution to mitigate attacks like single-point attacks. It
operates similarly to entity-centric vehicle trust management,
establishing a unified reputation system or making decisions
based on neighboring user opinions [[170]. By integrating FL
and blockchain, some privacy concerns can be addressed,
and issues related to untrusted data storage, centralized trust,
and tampering in existing systems can be resolved [171].
Recent research has proposed architectures that combine FL
and blockchain to tackle these challenges in ITS. The work
in [[172] proposes an FL architecture on the basis of a hybrid
blockchain architecture consisting of a permissive blockchain
and a locally directed acyclic graph, employing DRL for node
selection, integrating the learned model into the blockchain
and conducting two-phase verification. Nonetheless, there are
a large number of P2P communication methods in ITS,
and direct blockchain coupling in this scenario will reduce
efficiency [[172]. In [[173], the authors provide a P2P networks
structure that is completely independent of the blockchain and
deploys a publicly verifiable secret sharing scheme to protect
data without having to compromise model precision. In UAV
scenarios, there are security concerns when using traditional
blockchain and FL architectures for data analysis due to the
open nature of UAV communications. To address this, Zhu
et al. [41] propose a blockchain-assisted MEC framework for
FL data circulation. In this architecture, the global model is
distributed on the blockchain and resides on UAVs. The UAVs
upload model parameters to the MEC server through wireless
networks, where the MEC server adds digital signatures to the
model and broadcasts it. Other servers receive the local model,
perform mining and block verification operations.

While blockchain-assisted FL can address single-point fail-
ures and communication overhead between vehicles and the
main server through decentralization, the primary communica-
tion costs still concentrate on edge computing and parameter
transmission delays [[174]]. Current solutions focus on joint
optimization considering various latency requirements and can
improve communication efficiency through gradient compres-
sion techniques while enhancing data privacy protection. It
is important to note that the protection mechanisms provided
by blockchain are based on anonymous identity authentication
strategies, which are suitable for preserving identity privacy.

However, they overlook the protection of model parameters
and are still susceptible to threats such as data and model
poisoning, as well as issues like transmission security and lo-
cation privacy protection [[175]. Specifically, before submitting
the aggregation, an attacker can manipulate local training and
hyperparameters. Although adjusting the mining difficulty can
mitigate poisoning risks, it also entails performance trade-offs.

2) Encryption Mechanism: A lot of work at this stage
is based on the FL architecture in ITS to do cryptographic
mechanism design.

Differential Privacy: To further protect model parameters
in FL, some studies have added DP mechanisms. DP signifies
that the vehicle independently executes a random perturbation
algorithm and then sends the perturbed result to the aggregator,
where the privacy budget parameter is used to calculate the
privacy utility [176]. The research in [177] proposes four
new local differential privacy (LDP) mechanisms, PM-OPT,
PM-SUB, Three-Outputs, and HM-TP. In comparison with
the existing LDP mechanism, they have lower worst-case
noise variance in the segmented privacy budget range. For the
purpose of facilitating coding, they discretize the continuous
output range. Thus it is more suitable for ITS scenarios.
In addition to introducing noise into the original data and
parameters, the authors in [[78]] introduce a DP-based adjacency
matrix in the proposed FL framework to protect topological in-
formation (which may likewise contain sensitive information,
including the relationship between data providers). Further-
more, the article combines blockchain and DP, using delegated
practical byzantine fault tolerance (dBFT) model to update
the validation mechanism to reach a consensus, in order to
guarantee that only qualified models are aggregated. And the
LDP mechanism prevents membership inference attacks by
adding Gaussian noise to the model. In theoretical analysis, the
work in [117]] demonstrates model convergence under noise.

Nonetheless, DP is not a perfect solution for FL to protect
vehicle privacy [178]. In the first place, it is necessary to
find an appropriate DP factor to adjust the degree of privacy
protection. Furthermore, this way of adding noise is lossy, and
ITS has an extremely low accuracy tolerance, notably in scenes
involving vehicle operation. People are opposed to sacrificing
driving safety for privacy protection.

Other Encryption Mechanism: In ITS, it is necessary
to consider employing lightweight, low-loss encryption algo-
rithms. For example, Parekh et al. [[179] use the computational
power of edge devices to fine-tune the local model and perform
gradient encryption to save arithmetic overhead based on a
traffic sign classification scenario. In addition to designing
the encryption algorithm itself, it is also possible to allocate
weights in accordance with the privacy needs of the packet and
to allocate encryption resources confirming to the execution
time.

The authors in [[180] choose distinct FLL methods according
to the distinct distribution characteristics of the data source,
and adopts a lightweight encryption algorithm CPC to pro-
tect privacy, in comparison with other symmetric encryption
algorithms, which eliminates the expense of computation. In
[181], the authors design encryption algorithms for two distinct
MEC servers. Among them, for semi-honest vehicles, the use



of an identity anonymity scheme to protect message privacy,
through the use of a key of length 8, can achieve nearly 99%
privacy protection in a single full authentication. For malicious
vehicles, an identity traceability scheme is employed, as well
as blockchain-based autonomous driving reputation incentives
are being used to mitigate the negative effects of malicious
vehicles by increasing vehicle contribution. In [182f, the
authors propose an optimized quantum-based FL framework
for automatically tuning FL’s hyperparameters, including local
epoch, global epoch, as well as learning rate in the face of
adversarial attacks, then find the optimal solution using the
suggested optimization algorithm.

It should be noted that despite the fact that homomorphic
encryption (HE) is a commonly used encryption scheme in tra-
ditional FL, it requires a tremendous amount of computing re-
sources. Even linear homomorphic encryption (LHE) requires
complicated modular exponential operations, particularly for
large-scale networks like ITS, it is impractical to use FL on
the basis of HE.

Moreover, in the previously mentioned IoT-Fog network,
fog devices are usually placed near IoT devices in a distributed
manner without security defenses. As a result, the fog layer
is highly vulnerable to malicious attacks [183]. Traditional
techniques for network security, such as intrusion detection
systems, black-and-white-list mechanisms, and firewalls, are
ineffective in the large-scale IoT-Fog paradigm due to dis-
tributed, dynamic, and heterogeneous FL-enabled ITS. These
approaches do not provide security for borderless system
IoT-Fog architecture, because nodes in the fog layer can be
easily changed through local or remote connections [184].
In contrast, SDN can provide programmable network and
global view for efficient traffic management in FL-enabled
ITS by deploying centralized SDN controllers to observe
the nodes in cloud servers. Gao et al. [185] incorporate
blockchain and SDN into ITS to run the 5G fog computing
paradigm in distributed scenarios. Fog computing can be used
to mitigate handoffs between vehicles, and blockchain pro-
vides a decentralized reputation-scoring mechanism to reduce
the risk of attacks, rather than being centralized on a single
institution or server. In their proposed architectures, the SDN
data plane selects channels in vehicles equipped with SDN-
enabled in-vehicle devices, roadside units, and base stations.
The distributed RSUs act as SDN controllers and perform
the blockchain operations. ELMansy et al. [186] propose a
lightweight mitigation system for fog computing in response
to the Man-in-the-Middle (MITM) attack in fog computing
networks. The system utilizes the available connectivity inter-
faces in the Edge Devices and Fog Open vSwitches to provide
redundant paths for edge devices and Fog nodes. In light of
SDN deployment for FL-enabled ITS, Qureshi er al. [187]
study a distributed SDN approach in a smart grid scenario.
Each distributed controller is responsible for a specific domain,
obtains a partial view of the network, and finally updates
the global state. In FL-enabled ITS, SDN supports efficient
segmentation of the network. The different components of
the ITS infrastructure are divided into logical segments to
prevent unauthorized access and tampering. In addition, the
programmability of SDN enables dynamic enforcement of

security policies based on real-time network conditions. Nev-
ertheless, in order to achieve the security goals of SDN-based
IoT-Fog networks, it is essential to take into account the
uneven channel quality and resource constraints as well as
the diverse network topologies of ITS [[188].

3) Detection Mechanism: In addition to using encryption
algorithms, privacy is also protected by designing defense
mechanisms including attack detection and data leakage de-
tection. In [[189]], a FL-based architecture for detecting passive
attackers who eavesdrop on vehicles’ information is proposed.
Besides, the author first simulates passive attackers through
synthetic data and position-feature extraction method, and
consequently uses a semi-supervised method to self-label data
in FL vehicles to obtain precise detection results in a short
amount of time. The authors in [190] devise a two-stage
mitigation scheme including data transformation (converting
raw data into a data model) and collaborative data leakage
detection (by a DP model distorting and randomly selecting
updates to prevent the model’s differences from being used to
infer provider information).

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Despite researchers have made significant efforts on FL-
based ITS solutions and achieved remarkable results, in addi-
tion to the numerous difficulties mentioned previously, there
are some issues worth considering, and in this section, from
a broader perspective, we extend our thinking and propose
several future research directions for researchers to consider:

o Lightweight Encryption Algorithms: Numerous
works on vehicle privacy protection, including identity
anonymity and multiple encryption techniques, have been
published. However, many encryption algorithms incur
additional computational overhead, including key-based
encryption technology, which needs to consume a lot of
computing resources to manage keys. Few lightweight
encryption algorithms are specifically designed for ITS,
according to our survey. Meanwhile, there is a lack of
performance testing and experimental verification in real
scenarios, i.e., there are very few works to test their
defense models with distinct attack types, including
backdoor attacks, symbol flipping attacks, etc.

o Privacy and Security Concerns of FL: Although the
principle of “no data out of local” mitigates privacy
issues to some extent in FL, attackers can often deduce
individual data pertaining to participants’ vehicles using
model parameters or gradient information. While encryp-
tion techniques such as DP can provide masking protec-
tion, they may compromise decision accuracy, which is
often unacceptable in ITS [192]. Furthermore, regarding
security, although blockchain can mitigate single points
of failure, attackers can manipulate the distribution of
training data by strategically inserting crafted samples
into the training set. Existing strategies, including partic-
ipant authentication and other techniques, are all limited
by the additional communication overhead and system
management costs.

o Enhancing Incentives and Selection Mechanisms: In
FL-enabled ITS, there is an inherent imbalance in the



TABLE IV
CHALLENGES IN ITS BASED FL.
Characteristic| Challenge Method Ref Algorithm / Framework Contribution / Performance Year
[115] | Fuzzy logic algorithm A trade-off between accuracy and | 2021
communication overhead
[114] | Genetic algorithm More accurate, converge faster 2021
o [116] | Selection frequency Model accuracy increases 20% 2022
Participant 7[117] Convergence proof, less communi- | 2020
Unbalanced Selection nverg proot, fess
samples cation overhead
and [118] | Two-dimension contract theory, greedy al- | Higher utility at the central server | 2020
equipment || gorithm
. [119] | Greedy algorithm, subgradient projection | A tradeoff between training time | 2022
High-speed . . .
Mobii method, adaptive harmony algorithm and energy consumption
obility [120] | MPOA-based contract, learning contract it- | Convergence proof, converge faster | 2021
erative algorithm
[121] | Copeland score and multi-arm bandits | Converge faster 2022
framework
[122] | Dynamic federated proximal (DFP) algo- | Convergence proof, converge 40% | 2022
rithm faster
[123] | Mobility-aware Proactive edge Caching | Cache hit rate improves about 2% | 2021
Aggregate .
scheme
Structure  — - — —
[124] | Alternating Direction Method of Multipliers | A tradeoff between accuracy and | 2021
(ADMM)-Block Coordinate Update (BCU) | transmission latency
algorithm
[125] | “Adaptive steps/epoch” 66% training faster and reducing | 2021
35% communication cost
Communi- J132] Federated vehicular cloud (FVC) Reduce average latency 2021
cation [133] | TCP CUBIC over WiFi-based network Theoretical analysis 2020
Unstable Protocol  ™1734] | DQN Lower latency 2021
Transmission . [127] | End-to-End framework, Paillier-based com- | Converge faster 2022
Link munication protocol
Structure | -
[140] | Proof-of-FL (PoFL) consensus Reduce 65% latency, improve 8% | 2022
|| message delivery rate
[139] | oVML algorithm Theoretical analysis, lower latency | 2020
Auxiliar [150] | MARL approach Low power consumption 2021
Mechanissr/n [151] | Cooperative UAV-UGV process Low power consumption 2021
Limited Storage 1157 PoK consensus mechanism, alternating di- | Model accuracy increases 20% 2021
and rection method of multipliers-based
Computing Capability [159] | Evolutionary Genetic Algorithm Lower energy consumption 2022
Edge Cache| [160] | Data redundancy by erasure coding and data | Theoretical analysis, the system | 2019
Optimization relay by V2V communications could serve up to 95% of the re-
quests for contents
[163] | Enabling the implementation of FL algo- | Framework can improve the iden- | 2019
rithms over wireless networks tification accuracy by up to 1.4%,
3.5% and 4.1%
[164] | SDN-controlled FL framework Not only provides secure and trust- | 2021
worthy service delivery but also
ensures seamless communication
. [172] | Local Directed Acyclic Graph (DAG), | More accurate and converge faster | 2020
Blockchain . . .
blockchain two-stage verification
[173] | HydRand protocol, PVSS scheme More accurate, converge faster 2021
[177] | Four new LDP schemes Protecting privacy while guarantee- | 2021
Differential | | ing utility
High Information Sensitivity Privacy 7[78] Add noise to the adjacency matrix Satisty DP 2021
[191] | delegated Practical Byzantine Fault Toler- | Preventing data poisoning attacks 2021
ance (dFTP)
[117] | Identifying relevant updates trained by ve- | Convergence proof, 4.0x communi- | 2020
hicles cation efficiency
[180] | CPC encryption Lower calculation cost 2021
Others [181] | Traceable and anonymous identity-based | Reducing 73.7% training loss, in- | 2022
| | scheme creaseing 5.55% accuracy
[182] | Optimized Quantum-based FL Highest detection accuracy 2021
Detection [189] | Detect tracking attacks based on the receiv- | 20 received beacons could achieve | 2022
Mechanism | | ing beacons 95% accuracy
[190] Intelligent data transformation and collabo- | Data leakage defending scheme is | 2020

rative data leakage detection

near-real-time
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information shared, such as computing power and storage
capacity. Therefore, it is imperative to establish suitable
incentive schemes that accurately assess vehicle contribu-
tions. While there are currently numerous incentive mech-
anisms and vehicle selection methods, the lack of a stan-
dardized system results in divergence among incentive
schemes employed in different systems or applications,
thus blocking compatibility and reusability.

Scarcity of Labeled Samples in FL: Although FL can
maximize the use of local samples through model inter-
operability, the availability of labeled training samples is
limited due to distinct vehicle sensor performance and
variable environmental conditions. Data augmentation
techniques can expand the sample pool, while poten-
tially introducing noise or human intervention. Transfer
learning can leverage data from different domains, but
it must address inter-domain discrepancies and domain
adaptation challenges to ensure optimal model perfor-
mance within the target domain.

Real-world Architecture Deployment: The combination
of FL and RL is a hot topic in signal lamp control
and route planning [193]], and despite experiments have
shown that this scheme can learn nonlinear optimal
strategies, most existing models cannot be applied to
real-world environments. Consequently, on the one hand,
how to deploy in the actual scene should be taken into
account, on the other hand, the performance of the vehicle
simulator are further enhanced, and some random human
intervention should be added to ensure generalization
ability in the actual scene.

FL Application in ITS Generalized Scenarios: We
observe that almost no ITS scenarios exist in isolation,
and each scenario can affect the others, including the goal
recognition task can be used as a subset of the route
planning task, and the constraints in the route planning
will be distinct depending on the purpose of the task,
including the shortest travel distance, the best resource
allocation, the best traffic flow control, etc. We consider
whether distinct sub-tasks can be promoted to a broader
scene in the future. In this scenario, the same FL is used
as the underlying service architecture.

More Efficient Sensor Configuration: The majority of
tasks in ITS rely on a large number of sensors, and
the data types and storage methods collected by these
sensors are not the same. Besides, how to measure the
contribution of distinct sensor data to the current task? Do
we need to customize networking and storage for distinct
data and tasks to maximize benefits? These are all worthy
of consideration.

Trade-off between Privacy and Performance: IoV’s
security and privacy has always been one of the most
important concerns. Additional resource allocation is
required in some private computing and message ver-
ification links. Particularly crucial is determining how
to allocate computing resources rationally and strike a
reasonable balance between privacy protection and model
precision.

o Edge Cache Authentication: In the event that a vehi-
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cle has limited computing capabilities, we note that a
portion of the computing tasks can be offloaded to edge
nodes. Static nodes like RSUs, on other hand, do not
move with the vehicles, which can result in the leaking
of information to newly entering vehicles. Additionally,
some auxiliary nodes are provided by third parties and
cannot be relied upon, i.e., the training results provided
by RSUs are not completely trusted. In the future, we can
consider designing a lightweight verification mechanism
to ensure that edge processing results are verifiable.

o Reduce Transmission Overhead: In the previous sec-
tion, we mentioned that by optimizing the communication
link, network robustness and communication latency can
be enhanced. Additionally, compression-based methods
are often used in traditional FL to reduce the amount of
data and transmission overhead, including pruning and
quantization. In model compression, the optimal model
structure needs to be designed, and distinct communi-
cation standards can be blended to improve the overall
network reliability based on FL.

o Deep Integration of ITS and FL: Although FL has
been widely used in ITS, there are few works dedicated
to the design of special FL architectures for distinct data
types and scene characteristics used for distinct tasks.
We hope that future research will consider increasing
the degree of coupling between FL and ITS, proposing
some better paradigms, and focusing more on the design
and implementation of the underlying architecture to
achieve deep integration of sensors, network computing,
and vehicle network integration.

e Commercial Products for ITS: Mature commercial
platforms can be explored for deployment in ITS in the
future. For example, OpenDaylight, an open source SDN
controller platform, can provide ITS with rich network
programming interfaces for supporting interoperability of
multiple communication protocols and data formats. It
can also be integrated with other security solutions to
provide security management and protection. Similarly,
Cisco Kinetic, an IoT management platform provided by
Cisco, can be deployed in ITS to manage large numbers
of devices.

VI. CONCLUSION

In this paper, we have investigated the integration of FL
and ITS. Analyzing several problems of centralized ITS and
the advantages of FL, we presented the reasons for using FL
architecture in ITS. Subsequently, we conducted a compre-
hensive survey on the applications of FL in ITS and identify
four distinct application scenarios. Then, from the viewpoint of
ITS characteristics and in conjunction with related works, we
elaborated on how the FL paradigm can address key challenges
in ITS, including uneven data distribution, limited computing
and storage resources, limited transmission, and data privacy
and security. We also discussed security mechanisms of the
blockchain and UAV-aided FL resource scheduling. Finally,
we highlighted open problems and proposed future research
directions. It is worth noting that due to the page limit, several



enabling technologies in ITS, such as integrated sensing, mo-
bile fog computing, cluster routing, deserve further discussion.
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