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Abstract

This paper focuses on an important query in scientific simulation data analysis: the Spatial

Distance Histogram (SDH). The computation time of an SDH query using brute force method is

quadratic. Often, such queries are executed continuously over certain time periods, increasing the

computation time. We propose highly efficient approximate algorithm to compute SDH over

consecutive time periods with provable error bounds. The key idea of our algorithm is to derive

statistical distribution of distances from the spatial and temporal characteristics of particles. Upon

organizing the data into a Quad-tree based structure, the spatiotemporal characteristics of particles

in each node of the tree are acquired to determine the particles’ spatial distribution as well as their

temporal locality in consecutive time periods. We report our efforts in implementing and

optimizing the above algorithm in Graphics Processing Units (GPUs) as means to further improve
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the efficiency. The accuracy and efficiency of the proposed algorithm is backed by mathematical

analysis and results of extensive experiments using data generated from real simulation studies.

Index Terms

Scientific databases; spatial distance histogram; quad-tree; density map; spatiotemporal locality;
GPU

I. Introduction

The advancement of computer simulation systems and experimental devices has yielded

large volume of scientific data. This imposes great strain on the data management software,

in spite of effort made to deal with such large amount of data using database management

systems (DBMS) [1]–[3]. But the traditional DBMSs are built with business applications in

mind and are not suitable for managing scientific data. Therefore, there is a need to have

another look at the design of the data management systems. Data in scientific databases is

generally accessed through high-level analytical queries, which are much more complex to

compute in comparison to simple aggregates. Many of these queries are composed of few

frequently used analytical routines which usually take super-linear time to compute using

brute-force methods. Hence, the scientific database systems need to be able to efficiently

handle the computation of such analytical queries. This paper presents our work related to

such type of a query that is very important for the analysis of molecular simulation (MS)

data.

Molecular (or particle) simulations are simulations of complex physical, chemical or

biological structures done on computers. They are extensively used as a basic research tool

for analyzing the behavior of natural systems under experimental framework [4], [5]. The

number of particles involved in MSs is large, oftentimes counting millions. In addition,

simulation datasets may consist of multiple snapshots (frames) of the system’s state at

different time points.

In order to analyze the MS data, scientists compute complex quantities through which

statistical properties of the data is shown. Often times, queries used in such analysis count

more than one particle as basic unit: such a function involving all m-tuple subsets of the data

is called an m-body correlation function. One such analytical query discussed in this paper,

is the so called spatial distance histogram (SDH) [6]. An SDH is the histogram of distances

between all pairs of particles in the system and it represents a discrete approximation of the

continuous probability distribution of distances named Radial Distribution Function (RDF).

Being one of the basic building blocks for a series of critical quantities (e.g., total pressure

and energy) required to describe the physical systems, this type of query is very important in

MS databases [4].

Objectives: Our goal with this work is to perform SDH computation on a high level of

efficiency and accuracy. Specifically, our approach fundamentally improves over existing

solutions by achieving on-the-fly query processing. This is accomplished via a number of
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techniques that take advantage of spatiotemporal locality within the data and multi-core

parallel processing architecture of modern Graphical Processing Units (GPUs). We provide

theoretical proof for guaranteed error bound that is validated with experimental results.

A. Problem Statement

The SDH problem can be formally described as follows: given the coordinates of N particles

and a user-defined distance w, we need to compute the number of particle-to-particle

distances falling into a series of ranges (named buckets) of width w: [0, w), [w, 2w), …, [(l −

1)w, lw]. Essentially, the SDH provides an ordered list of non-negative integers H = (h0, h1,

…, hl−1), where each hi(0 ≤ i < l) is the number of distances falling into the bucket [iw, (i

+1)w). We also use H[i] to denote hi in this paper. Clearly, the bucket width w is the only

parameter of this type of problem.

To capture the variations of system states over time, there is a need to compute SDH for a

large number of consecutive frames. We denote the count in bucket i at frame j as Hj [i].

B. Overview of Our Approach

This paper presents a highly efficient and practical algorithm for processing SDH of large-

scale MS data with improved efficiency and accuracy over existing solutions. To achieve

this, the algorithm takes advantage of the two types of uniformity widely present in MS data.

To further improve the running time of the algorithm, we utilize Graphics Processing Unites

(GPUs).

The first type of data uniformity used by the algorithm refers to the spatial distribution of

data points (e.g., atoms) in MS datasets. It is well known that parts of natural systems tend

to spread out evenly in space due to the existence of inter-particle forces and/or chemical

bonds [7], [8]. Because of this, there are many localized regions (we call uniform regions) in

the simulation space in which the particles are uniformly distributed.1 We treat such regions

as single entities when computing SDH. Once we identify these uniform regions (using the

χ2 test), we derive the Probability Distribution Functions (PDFs) of the distances between all

pairs of these regions by either:

• Mathematical analysis towards a closed-form, or

• Monte Carlo simulations;

Exploiting this property makes algorithm running time independent of the SDH bucket

width w – such dependency (as discussed in Section II) is the main drawback of existing

algorithms. On the other hand, working with the PDFs of distance distribution guarantees

very little error will be made, as shown by our rigorous analysis of the algorithm (Section

VI).

The second type of uniformity is about the significant similarity of the spatial distributions

among consecutive frames. We have observed that such similarity is reflected in the final

results of the SDH obtained for neighboring frames. So, given two frames f0 and f1, if we

1This does not make the data system-wise uniform. Otherwise, SDH computation becomes a trivial task.
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have already computed the SDH of f0, we can obtain the SDH of f1 by dealing only with the

regions that do not exhibit similarity between the two frames while ignoring regions that are

similar. To take advantage of such similarities among frames, we design an incremental

algorithm that can quickly compute SDH of a frame from the SDH of a base frame obtained

using traditional single-frame algorithms.

Finally, our algorithm takes advantage of the multi-core parallel processing feature of GPUs.

They provide a low-cost and low-power platform to improve efficiency as compared to

computer clusters. However, the GPU architecture imposes challenges in developing

software that takes full advantage of their computing capability. To address such challenges

we develop several techniques that are very different from those used in optimizing CPU-

based systems. The techniques generate significant boosts in performance (and energy

efficiency) as compared to straightforward GPU implementations.

C. Contributions and Paper Organization

We have implemented a composite algorithm combining the above ideas and tested it on

real MS datasets. The experimental results clearly show the superiority of the proposed

algorithm over previous solutions in both efficiency and accuracy. For example, with the

proposed algorithm, we are able to compute 11 frames of a 8-million-atom dataset in less

than a second! In addition to a highly efficient and practical algorithm for SDH processing,

we also believe that our success will open up new directions in the molecular simulation

paradigm. Our work builds a solid foundation for solving the more general and difficult

problem of multi-body (m-body) correlation function computation [9]. With a O(Nm)

complexity in nature, such problems can be addressed using the methodologies proposed in

this paper.

The major technical contributions presented here are:

1. Techniques to identify spatial uniformity within a frame and temporal uniformity

among consecutive frames;

2. An approximate algorithm to compute the SDH of large number of data frames by

utilizing the above properties;

3. Analytical and empirical evaluation of the above algorithm, especially rigorous

analysis of the tradeoff between performance and guaranteed accuracy; and

4. Implementation of the above algorithms in modern GPUs to boost performance,

with a focus on the optimization of such implementations in a GPU environment.

Preliminary results addressing the problem of computing approximate SDH using spatial

and temporal uniformities were first reported in [10] (contributions 1 and 2). This work

extends the idea of [10] by providing rigorous analysis, empirical evaluation of the

algorithm, and implementation in modern GPUs to boost performance.

The remainder of this paper is organized as follows: in Section II we give an overview of the

work done in the field related to the SDH problem. Then, in Section III we introduce the

main concepts and techniques utilized in our work. Sections IV and V discuss the utilization
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of the spatiotemporal properties of the data to enhance the algorithm. Then, in Section VI

the performance (running time and errors) of the proposed technique in utilizing the spatio-

temporal property of the data is analyzed. In Section VII we briefly look at the basic

architecture of the GPUs and their programming paradigms and we modify our algorithm to

map onto the GPU. Section VIII presents the results obtained through extensive

experiments. Finally, we conclude this paper with Section IX in which we also discuss our

future work. Due to space limitation, certain details are presented in respective appendices

which are part of the supplementary materials.

II. Comparison to Related Work

The brute-force method for SDH computation calculates the distances between all pairs of

particles and updates the relevant buckets of the histogram. This method requires quadratic

time. Some of the popular software for analyzing the MS data, like GROMACS [11], still

utilizes the brute-force method. But, the current state-of-the-art models for SDH

computation involve methods that treat a cluster of particles as a single processing unit [6],

[12]. Space-partitioning trees (like kd-trees [12]) are often used to represent the system, each

node of the tree representing one cluster. The main idea in such approach is to process all

the particles in each node of the tree as a whole. This is an obvious improvement in terms of

time over the brute-force method which builds the histogram by computing particle-to-

particle distances separately. A Density-Map based SDH algorithm (DM-SDH) using a

quad-tree data structure is presented in our previous work [6]. It has been proven that the

running time for DM-SDH is  for 2D data and  for 3D data. We will go over

the main idea of DM-SDH in more detail later in this paper. Although the DM-SDH

algorithm is an improvement over the brute-force method for SDH computation, it is still not

a practical and efficient solution for the following reasons:

1. The running time of DM-SDH increases dramatically as input size N increases and

the bucket width w decreases. Therefore, the running time can be greater than that

of the brute-force method [6]!

2. DM-SDH only addresses SDH computation of a single frame whereas MS data

analysis of any system requires computation over multiple consecutive frames. To

achieve this, DM-SDH needs to be run for every frame. This is not quite

acceptable, since usually the number of frames is of the order of tens of thousands.

An approximate SDH algorithm (ADM-SDH), with running time not related to the data size

N was introduced in [6]. But its running time is influenced by a guaranteed error bound as

well as by the bucket size w. Like the DM-SDH, it also can only be applied to a single frame

of the MS system. A thorough analysis of the performance of ADM-SDH is presented in a

recent paper [13]. Under some assumptions, that paper also derives an error bound of ADM-

SDH that is tighter than the one presented in [6]. We will briefly mention such findings in

Section VI-A2. To remedy the cons of the aforementioned algorithms, we direct our current

work in designing a new, improved algorithm with higher efficiency and accuracy.

Furthermore, we are able to substantially decrease the running time of the algorithm by

implementing and optimizing the code in a GPU programming environment. The result is a

solution that is both practical and efficient, delivering very accurate results in (almost) real-
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time manner. A shorter version of this paper can be found in [10]: this paper extends [10] by

introducing a rigorous analysis of the key distribution function in Section IV, a GPU version

of the algorithm in Section VII, and enhanced performance analysis in Section VI.

It is important to note that the SDH problem is often confused with the force/potentional

fields computation in the MS process [14], [15]. In the latter, the physical properties of a

particle are determined by the forces applied to it by all other particles in the system.

Although the force/potentional fields computation has similar definition to the SDH

problem, the algorithms used to solve such problem are not useful in computing the SDH.

There is a detailed comparison of the two problems in [16]. Here, we will just note that the

force field computation is for simulation of a system, while the SDH computation is for

system analysis.

The problem of SDH computation over multiple consecutive frames is related to persistent

data structures [17], [18], which allow for various versions of the computation results to be

maintained and updated over time for quick query processing. Building persistent index

schemes on complex spatio-temporal data allows for a time efficient retrieval [19]. There

has been a detailed survey of applications, made by Kaplan [20], in which persistent data

structure has been used to improve efficiency. Such structures are designed to resolve the

I/O bottleneck problem. But, the multi-frame SDH problem involves heavy computation at

each instance, overshadowing the I/O time. Thus, the techniques developed for persistent

data can hardly be used for efficient multi-frame SDH computation.

In recent years, there has been a growing interest in improving the performance of

computationally intensive tasks using special hardware, such as GPUs [21], [22]. These

devices were originally designed for processing graphics, but their parallel computing

capability can be utilized for general purpose computing via software frameworks such as

CUDA [23] and OpenCL [24]. A number of database operators are implemented on GPUs:

relational join [25]; relational operators and aggregations [26]; and sorting. An overview of

the GPU techniques is presented in a survey by Owens et al. [27]. In this work, we leverage

the computing power of the GPUs to achieve the goal of on-the-fly SDH computation with

guaranteed accuracy.

III. Background

In this section, we introduce the main concepts of our existing work [6] that will serve as a

foundation for the proposed algorithm. To represent the simulation data space we use a

conceptual data structure that we call density map (DM). A DM divides the simulation space

into a grid of equal sized cells (or regions). A cell is a square in 2D and a cube in 3D.2 To

generate a density map of higher resolution, we divide each cell of the grid into four equally

sized cells. We use a region quad-tree [28] to organize different density maps of the same

data. Each cell of the DM is represented by a tree node, so a density map is essentially the

collection of all nodes on one level of the tree. Each node of the tree contains the cell

location (i.e., coordinates of corner points) as well as the number of particles in it. One thing

2In this paper, we focus on 2D data to elaborate and illustrate the proposed ideas.

Kumar et al. Page 6

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to note here is that we stop building the tree when the number of particles in a node drops

below 5 because, otherwise the cost of resolving nodes could be higher than directly

retrieving the particles and calculating point-to-point distances [6]. We refer to such a tree as

the Density-Map Tree (DM-tree).

The fundamental part of the DM-SDH algorithm is a procedure we call ResolveTwoCells.

This procedure takes two cells (e.g., A and B in Fig. 1) from a density map as an input and

computes the minimum and maximum distance (denoted as u and v) between them in

constant time. The main task of this procedure is to determine whether the two cells are

resolvable or not. We call a pair of cells resolvable if both u and v fall into the same SDH

bucket i. In such case we increment the distance count of that bucket by nAnB, where nA and

nB are the number of particles in cell A and B, respectively. In the case of non-resolvable

cells, we either:

1. Go to the next density map with higher resolution and resolve all children of A with

those of B, or

2. Compute every distance between particles of A and B and update the histogram

accordingly, if it is the leaf-level density map.

To get the complete SDH of the MS system, the algorithm executes the ResolveTwoCells

procedure for all pairs of cells on a given density map DMk (the DM where the diagonal of a

cell is smaller than or equal to the bucket width w). So, basically, the algorithm calls

ResolveTwoCells recursively (i.e., action (1) above) till it reaches the leaf level of the tree

(i.e., action (2) above).

The idea behind the approximate algorithm (ADM-SDH) is to recursively call

ResolveTwoCells only for a predetermined number (m) of levels in the tree. If after visiting

the m levels, there are unresolved pairs of cells, heuristics is being used to greedily distribute

distances into relevant SDH buckets. We will study the heuristics for distance distribution in

Section IV. The main benefit of this algorithm is: given a user specified error bound ε, our

analytical model can tell what value of m to choose [6]. Although ADM-SDH is fast in

regard to the data size N, its running time is very sensitive to the bucket width w. The main

reason for this is: when w decreases by half, we have to start the algorithm from the next

level of the tree. As a result, the number of pairs of cells I increases by a factor of 22d (d is

number of dimension). Since the SDH is a discrete approximation of a continuous

distribution of the distances in the MS system, more information is lost with the increase of

w. Scientists prefer smaller values of w so that there are a few hundred buckets in the SDH.

Here, we present an efficient and accurate multi-frame SDH computing algorithm whose

performance is insensitive to both N and w. This new algorithm uses the same region quad-

tree for data organization as in the DM-SDH and ADM-SDH algorithms.

IV. SDH Computation Based on Spatial Uniformity

A. Algorithm Design

A DM-based algorithm depends heavily on resolving cells to achieve the desired accuracy.

It applies heuristics to distribute the distances into relevant buckets after visiting m levels of

Kumar et al. Page 7

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the tree or after reaching the leaf nodes. That is the main reason for the long running time.

Our idea to remedy that problem is to greedily distribute distances between very large

regions of the simulation space, even when no pairs of such regions are resolvable. In other

words, we use heuristics for distance distribution as early as possible. However, the

distribution of distances between two large regions may yield arbitrarily large errors.

Therefore, the key challenge is to design a heuristic with high accuracy even under large

regions.

Our first idea to address the aforementioned challenge is to take advantage of the spatial

distribution of data points in the cells. As illustrated in Fig. 2: two cells have a distance

range [u, v] which overlaps with three SDH buckets (i.e., from bucket i to i + 2). A critical

observation here is: if we knew the probability distribution function (PDF) of the point-to-

point distances between cells A and B, we can effectively distribute the actual number of

distances nAnB into the three overlapping SDH buckets. Specifically, the total number of

nAnB distances will be assigned to the buckets based on the probability of a distance falling

into each bucket according to the PDF. For the case in Fig. 2, the relevant SDH buckets and

the number of distances assigned to them are as follows:

(1)

(2)

(3)

where g is the PDF. The biggest advantage of the above approach is that the errors generated

in each distance count assignment operation can be very low, and the errors will not be

affected by the bucket width w, as long as the PDF is an accurate description of the

underlying distance distribution [29]. This is because each integration in the right column is

actually the probability of a distance falling into the corresponding bucket shown on the left.

Therefore, the main task of the proposed approach is to derive the PDF.

Methods for deriving the PDF: Note that in the work presented in [6], the distances are

proportionally distributed into the three buckets based on the overlaps between range [u, v]

and the individual buckets. Such a primitive heuristic, which is named Prop (short for

“proportional”), implicitly assumes that the distance distribution is uniform within [u, v].

However, our experiments show that a typical distance distribution in MS data is far from

being uniform. Hence, our proposed solution will naturally introduce less errors than the

Prop heuristics adopted by ADM-SDH.

In general, the PDF of interest can be obtained by the spatial distribution of particles in the

two relevant cells. The coordinates of any two particles - one from A and the other from B -

can be modeled as two random vectors v⃗A and v⃗B, respectively. The distance between these

two particles can also be modeled as a random variable D, and we have
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(4)

Given that, if we know the PDFs of both v⃗A and v⃗B, the PDF of D can be derived by one of

the following strategies:

1. generation of a closed-form via analyzing the PDFs of vA⃗ and v⃗B as well as Eq. 4;

or

2. Monte Carlo simulations using the PDFs of v⃗A and v⃗B as data generation functions.

In practice, it is difficult to get a closed-form PDF for D even when the particle spatial

distributions follow a simple form. In Section IV-B, we present the results of our efforts in

obtaining such a closed-form PDF for D under uniformly distributed v⃗A and v⃗B.

Monte Carlo simulations can help us obtain a discrete form of the PDF of the distance

distribution, given the PDFs of the particle spatial distributions [5]. One important note here

is that the method works no matter what forms the spatial distributions follow. However, to

generate the particle spatial distributions, it is infeasible to test the MS dataset for all

possible data distributions. Instead, we focus on testing if the data follows the most popular

distribution in MS - spatial uniform distribution. We should note here that the particle

spatial distribution is different from the distribution of distances between particles.

Pseudocode of the algorithm is shown in Algorithm 1. The algorithm identifies uniform

regions (Appendix B) and chooses a density map DMk (Section VI) before computing SDH.

Physical study of molecular systems have shown that it is normal to see a small number of

large uniform regions covering most of the particles, leaving only a small fraction of

particles in non-uniform regions [7], [8]. This is also verified by our experiments using real

MS datasets (Section VIII). This translates into high efficiency of the proposed algorithm.

Furthermore, the time complexity is unrelated to the bucket size w.

One detail skipped in the algorithm is that we also need to assign intra-cell distances to the

first few buckets of the SDH. In particular, given a cell A with diagonal length of q, the

distances between any two particles in A fall into the range [0, q], and can be modeled as the

following random variable:

(5)

where v⃗′A is an independent and identically distributed variable to v⃗A. Let us further assume

the range [0, q] overlaps with buckets 0 to j. Then we can follow the same idea shown in

Eqs. 1–3 to assign the distance counts of cell A into the relevant buckets (Appendix G).

B. Analysis of the PDF

In practice, it is difficult to get a closed-form PDF for D even when the particle spatial

distributions follow a simple form. There has been some work done in [30] that addresses

one special case: tackling the distribution of distance between points within a unit square –

this can be seen as a case of variable D′ shown in Eq. (5). The distribution of random

variable D is also studied in [31] under the special case that vA⃗ and v⃗B are from two adjacent
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unit squares. Both work show closed-form formulae that can be used in our algorithm (we

list their results in Appendix C). To the best of our knowledge, there has not been any work

that achieved derivation of a closed-form for the general cases.

In this part, we show the results of our efforts in obtaining an approximate closed-form for

the general case: finding distance distribution between points in any two cells. The main

claim is: if the data points in cells A and B are uniformly distributed, then the square of the

distance between the two cells’ points can be approximated by a Noncentral chi-square

distribution and the distribution is not related to the number of points in cell A or B.

To shed more light on the claim, we take a look at two randomly chosen cells A and B of

same size (i.e., from the same level of the DM tree). We start by assuming that the particles

in the cells are uniformly distributed. Our goal here is to give a representation of the PDF of

the distance between points in such two cells. Let us choose two random points PA and PB,

from cell A and B, and denote the coordinates of PA and PB as (XPA, YPA) and (XPB, YPB),

respectively. The square of the distance D between these two points can be expressed with

the following equation:

Since the points are chosen randomly, their coordinates can be regarded as random

variables. Furthermore, |XPA − XPB| and |YPA − YPB| can be viewed as random variables that

follow a triangular distribution. But using triangular distribution would make the result and

the analysis really hard (if not impossible) to achieve. In order to ease the analysis process

we will approximate the triangular distribution with a normal distribution. So, naturally, we

continue by first figuring out how much error will be introduced by such approximation. The

following subsection shows that the introduced error is only 10%.

1) Approximating Triangular with Normal distribution

Lemma 1: If X and Y are independent random variables uniformly distributed on (a, b) and

(c, c + b − a), and c ≥ a, then Y − X is a triangular random variable and can be regarded as a

normal random variable with total variation distance 0.1.

Proof: The probability density of X is

(6)

and the probability density of Y is

(7)

There are two cases to be considered: (1) when c is equal to a; and (2) when c is greater than

a.
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Case 1 (c = a): The probability density of Y − X (shown in Figure 3(a)) can be calculated as

follows

(8)

When 0 > z > a − b, the probability density of Y − X can be computed as follows

(9)

When 0 < z < b − a, the probability density of Y − X can be computed as follows

(10)

Case 2 (c > a):

When c − b < z < c − a, the probability density of Y − X can be computed as follows

(11)

When c − a < z < c + b − a, the probability density of Y − X can be computed as follows

(12)

Now, let us take a look at a different random variable Q. Assuming Q is a normal random

variable with parameters (c–a, ), the probability density of Q can be written as

follows:

(13)

Let , then the probability density of Q can be rewritten as follows

(14)

Let . Then, the probability density of Y − X can be rewritten as follows
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(15)

Now let us study how well the normal distribution approximates the triangular distribution.

Let P be the triangular distribution with PDF p(x) given by Eq. (15) and Q is the normal

distribution , the PDF of which is , x ∈ (−∞, +∞). Note that

the first two moments of the two distributions are exactly the same: E[P] = E[Q] = 0, and

. Although these indicate the similarity between the two distribution, we

still want to quantify how close the two probability measures are.

A natural measure of the difference between two probability measures P and Q is the total

variation distance defined as:

where  is the σ–field upon which the probability space is defined. Note that since P is

absolutely continuous with respect to Q in our case, then we have

Numerical computation shows that V(P, Q) = 0.1012.

Following the above reasoning, we conclude that we can use normal distribution instead of

triangular distribution, introducing an error of about 10%.

Using the aforementioned findings, we now regard the differences (XPA − XPB) and (YPA −

YPB) as random variables with normal distribution. In the following subsection, we continue

with the proof of our main claim. Here we show that the square of the distance can be

viewed as random variable with non-central chi-squared distribution.

2) Distance distribution of particles in two cells A and B—As we know, if XPA and

XPB are independent random variables uniformly distributed on (a, b) and (c, c + b − a)

respectively, (c ≥ a) then XPB − XPA follows a triangular distribution that we saw can be

approximated with normal, introducing an error of not more than 10%. Knowing this, XPB −

XPA can be regarded as a normal random variable with parameters (c − a, (b − a)2/6).

Similarly, YPB − YPA can be regarded as a normal random variable with parameters (c′ − a′,

(b − a)2/6). Since (b − a)2/6 is a constant, which is noted as σ2, we can write the following

equation for the distance D between the two points PA and PB:

(16)
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As it is known, the right hand side of the above equation is a Noncentral chi-square

distribution. This means that the distances between the two cells’ points can be described as

a Noncentral chi-square distribution with the parameters (2, λ), where λ can be defined as

follows:

(17)

where c − a and c′ − a′ are the means of the two normal distributions.

Note that, since our discussions started with the only assumption that points in A and B are

uniformly distributed, the parameters of above PDF have no relationship with the actual

number of points in cell A or cell B.

So, our conclusion is that the square of the distance between any two points from two cells

follows (can be approximated to) a Noncentral chi-square distribution. Since the PDF of a

Noncentral chi-square distribution has a closed form [32], the PDF of D (i.e., the square root

of the Noncentral chi-square) can be obtained through Jacobian transformation. However,

we stop here after obtaining the (approximated) PDF of D2 since it can already be used to

guide distance distributions in our algorithm with minor tweaks. Recall the scenario in

Figure 2: the share of distance counts that should go into bucket i is now  where

h(t) is the PDF of the Noncentral chi-square. The other buckets can be treated in a similar

way.

It is our belief, based on the work we have done on this matter, that to get an explicit and

more accurate closed form for the distribution of the distances between points of the cells is

a really challenging, if not impossible to solve, problem.

C. Monte Carlo Simulations

The distribution of distances between a pair of cells, say A and B, can be determined based

on their spatial distribution of particles, by running Monte Carlo simulations. Monte Carlo

simulation is a way to model a phenomenon that has inherent uncertainty [5]. If the spatial

distributions of particles in A and B are known to be uniform, the simulations can be done by

sampling (say ns) points independently at random from uniform distributions within the

spatial ranges of A and B. Then, the distance distribution is computed from the points

sampled in both cells. A temporary distance histogram can be built for this purpose. All 

distances are computed (bruteforce method), and put into buckets of the temporary

histogram (e.g., those overlapping with [u, v] in Fig. 2) accordingly. This temporary

histogram is used to obtain the PDF of point-to-point distances between cells A and B (the

g(t) of Eqs.1–3), which is then used to update the SDH buckets.

Sufficient number of points are needed to get reasonably high accuracy of the SDH

generated [29]. The cost of running such simulations can be high if we were to perform one

simulation for each pair of uniform regions. This, fortunately, is not the case. First, let us

emphasize that the simulations are not related to the number of particles (e.g., nA and nB) in

the cells of interest - the purpose is to approximate the PDF of distance distribution. Second,
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and most importantly, the same simulation can be used for multiple pairs of cells in the same

density map, as long as the two cells in such pairs have the same relative position in space.

A simple example is shown in Fig. 1: cell pairs (A, B) and (A, B1) will map to the same

range [u, v] and can definitely use the same PDF. A systematic analysis of such sharing is

presented in following theorem.

Theorem 1: The number of distinct Monte Carlo simulations performed in a density map of

M cells, is O(M).

Proof: See Appendix D.

Theorem 1 says that, for the possible O(M2) pairs of uniform regions on a density map, there

are only a linear number of simulations needed to be run. Furthermore, as we will see in

Section V, the same cells exist in all frames of the dataset, thus a simulation run for one

frame can be shared among all frames. Given the above facts, we can create a lookup table

(e.g., hash-based) to store the simulation results to be shared among different operations

when a PDF is required.

Remark 1: If we were given the PDF of the random variable D and use the integration of

the PDF to guide distance distribution in step (2) of our algorithm, the number of distinct

integrations is also O(M).

V. SDH Computation Based on Temporal Locality

Another inherent property of the MS is that the particles often exhibit temporal locality

which can be utilized to compute the SDH of consecutive frames even faster. The existence

of temporal locality is mainly due to the physical properties of the particles in most of the

simulation systems [7]. More specifically, such properties can be observed at the following

two levels:

1. Particles often interact with each other in groups and move randomly in a very

small subregion of the system;

2. With particles moving in and out of a cell, the number of particles in that cell does

not change much over time.

A. Basic Algorithm Design

We discuss the algorithm in terms of only two frames f0 and f1, although the idea can be

extended to an arbitrary number of frames. Suppose DM-trees T0 and T1 are built for the two

frames f0 and f1, respectively. Since the DM-trees are built independently from the data they

hold, the number of levels and cells, as well as the dimensions of corresponding cells in both

DM-trees will be the same. First, an existing algorithm (e.g., DM-SDH or ADM-SDH) is

used to compute the SDH H0 for the base frame f0. Then we copy the SDH of frame f0 to

that of f1, i.e., H1 = H0. The idea is to modify the initial value of H1 to reach its correct form

by only processing cells that do not show temporal locality.
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Let  and  be the density maps, at level k, in their respective DM-trees T0 and T1.

We augment each cell in  with the ratio of particle count of that cell in  to the

particle count of the same cell in . A density map that has such ratios is called a ratio

density map (RDM). The next step is to update the histogram H1 according to the ratios in

the RDM. Let rA and rB (A ≠ B) be the density ratios of any two cells A and B in the RDM,

we have two scenarios:

Case 1: rA × rB = 1. In this case, we do not make any changes to H1. It indicates that the two

cells A and B contributed the same (or similar) distance counts to the corresponding buckets

in both histograms H0 and H1.

Case 2: rA × rB ≠ 1, which indicates that some changes have to be made to H1. Specifically,

we follow the Prop heuristic, as in ADM-SDH, to proportionally update the buckets which

overlap with the distance range [u, v]. For example, as shown in Fig. 2, consider the distance

range [u, v] overlapping three buckets i, i+ 1, and i+2. The buckets and their corresponding

count updates are given in Eqs. 18–20.

(18)

(19)

(20)

where  and  are counts of particles in cells A and B, respectively, in density map 

of frame f0. Similarly,  and  are counts of particles in corresponding cells of density

map  in frame f1. Note that we have  and . The total number of

distances to be updated in the buckets is . This actually gives us the

number of distances changed between cells A and B of density map DMk, going from frame

f0 to frame f1. There are also intra-cell distances to be processed here, details of which can

be found in Appendix A.

B. Algorithmic Details

Pseudocode in Algorithm 2 shows the algorithm using temporal locality. An efficient

implementation of this idea requires all pairs of cells that satisfy the Case 1 condition to be

skipped. In other words, our algorithm should only process the Case 2 pairs, without even

checking whether the product of two cells is 1.0 (explained later). The histogram updates can

be made efficiently if cells with equal or similar density ratios are grouped together. Our

idea here is to store all the ratios in the RDM in a sorted array (Fig. 4). The advantage in

sorting is that the sorted list can be used to efficiently find all pairs of cells with ratio

product of 1.0. In other words, for any cell D with density ratio rD, find the first cell E and
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the last cell F in the sorted list with ratios 1/rD, using binary search. Then, pair cell D with

all other cells except the cells between E and F in the sorted list. Fig. 4 shows an example of

a cell (D1) with ratio 1.0 – we mark the first cell E1 and the last cell F1 with ratio of 1.0.

Then we pair D1 with rest of the cells in the list. Take another example of cell (D2) with

ratio 0.2: we will effectively skip all the cells (E2 to F2) with ratio 5.0 (as 1/0.2 = 5.0), and

start pairing D2 with those cells that do not have ratio 5.0 (to the left of E2 and right of F2).

In practice, a tolerance factor ε can be introduced to the Case 1 condition such that the cells

with ratio product within the range of 1.0±ε are skipped from the computations. While

saving more time by allowing more cell pairs untouched, the factor ε can also introduce

extra errors. However, our analysis in Section VI shows that such errors are negligible. Our

experimental results in [10] show that there are a large number of pairs of cells whose

density ratio products are around 1.0, thus providing sufficient savings of computation.

The proposed techniques are based on temporal and spatial uniformity of data set. Such cell

wise uniformity is not only observed in MS, but also in many traditional spatiotemporal

database applications [33]. Hence, it can be applied to very different data sets such as crowd

of people and stars in astronomical studies.

VI. Performance Analysis

A. Analysis of Spatial Uniformity Impact

1) Time analysis—The running time of the algorithm utilizing only the spatial uniformity

property is contributed by the following factors:

1. Quad-tree construction time O(N log N) where N is the number of particles in

simulation;

2. Identification of uniform regions. This can also be bounded by O(N log N), as the

count in each leaf node is used for at most log N chi-square tests;

3. Distribution of distances into buckets; For this, all pairs of cells on a DM need to be

computed - in a DM with M cells, the time is O(M2).

4. Monte-Carlo simulations that require O(MTs) time according to Theorem 1. Here

Ts is the time of each individual simulation.

Theoretically, the first two costs will dominate as their complexity is related to system size

N. In practice, the O(M2) time for factor (3) can dwarf others if we choose a density map on

the lower levels of the quad-tree - M approaches N when the level gets lower (this happens

to the ADM-SDH algorithm when the bucket width w gets smaller). However, evaluation of

our experimental results shows that M is orders of magnitude smaller than N.

Factor (4) is also worth a special note. Although the simulation time Ts can be regarded as a

constant (as it is unrelated to N and w), a larger number of points in the simulation is

preferred for better accuracy. Thus, it is crucial to study how many data points we have to

simulate to reach desired accuracy. Such analysis is shown in Section VI-A2.
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2) Error analysis—Based on the sources, two types of errors are introduced by utilizing

the spatial uniformity feature:

I. error (eu) by pairs of cells that are both uniform, and

II. error (ea) by those with at least one non-uniform cell.

Type I error is basically the simulation error, i.e., the expected percentage of distances put

into the wrong buckets when both cells have uniformly distributed data points. According to

the Law of Iterated Logarithm (LIL) [34], such error is up to the order of ,

where Sm is simulation size. Since we compute the Euclidean distance between two

randomly selected points which are uniformly distributed in the two cells, we have ,

where ns is the number of points simulated in each cell. Clearly, the error drops dramatically

with the increases of ns. Considering a scenario where nA and nB are of the order of 102, the

simulation error is slightly smaller than the order of 10−2. In other words, we can effectively

control the Type I error without suffering from a heavy simulation overhead.

The Type II error is obviously no greater than the error achieved by the Prop heuristic. It is

hard to get a tight error bound when the distribution of points in a cell is not uniform. But it

is easy to see that the error for one single distribution using Prop can be arbitrarily large.

Unlike the Type I error, error in this category cannot be controlled. At this point, we can at

least conclude that, due to the small Type I error, our algorithm will be more accurate than

existing solutions based on Prop, such as ADM-SDH [6].

An important note here is that our analysis has so far concentrated on the errors introduced

in an individual distribution operation (i.e., between one pair of cells). However, our work

[6] has revealed the fact that errors generated by different pairs of cells can cancel out, and

reduce the error in the whole SDH to a great extent. We call such a phenomenon error

compensation. In particular, our qualitative study shows that the error (at the entire SDH

level) caused by Prop can be loosely bounded by 10%. Since this is not a tight bound, we

expect to see much smaller errors in practice, as shown in our experimental results for the

ADM-SDH algorithm (Section VIII-B). For the same reason, the effects of Type I error can

also be reduced by error compensation, making the Type I error a negligible quantity.

3) Error/performance tradeoff—Given the above analysis, we show our algorithm is

tunable in that the user can choose a level of DM-tree to get a desired error guarantee.

Suppose pu is the fraction of pairs of cells that are uniform on a given level, the total error ξ

produced by our algorithm based on spatial uniformity is

(21)

A remark here is: as compared to ADM-SDH that is based on Prop heuristics, our algorithm

shows an advantage in accuracy: error will be lower by (ea − eu)pu.

From Eq. 21, we can solve pu to obtain a guideline on the level of the DM tree from which

we run the algorithm:
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(22)

In other words, a user will choose to work on a DM where the fraction of uniform cells is at

least , in order to get an error lower than ξ. More details about the percentage of the

cells marked as uniform can be found at the end of Appendix H.

B. Analysis of Temporal Locality Impact

1) Time analysis—The running time is determined by the number of cell pairs that do not

satisfy the temporal locality condition, i.e., ratio products are not in the range of 1.0 ± ε. Due

to the sorted list of ratios in the RDM, all cell pairs satisfying the above condition are

skipped by the algorithm. Suppose pr is the fraction of such cell pairs, only (1−pr) pairs of

cells need to be processed by the algorithm. The sorting and searching of the cells can be

performed in O(M log M) time. Hence, the running time of the algorithm is bound by

(1−pr)T+O(M log M) where T is the time for processing the base frame. In other words, by

utilizing the temporal locality, we achieve a (1 − pr)-factor improvement in running time.

2) Error analysis—We tackle this by studying the extra errors our algorithm generates for

a frame f1 on top of those in the base frame f0. The error introduced when utilizing the

temporal locality can be categorized based on two cases:

1. temporal locality property is satisfied, and

2. temporal locality property is not satisfied.

Case 1: Error is produced by temporal locality property only when the cell pairs satisfy the

condition rA × rB = 1.0 ± ε. A small error equal to the fraction ε is introduced. When the

fraction ε = 0, there is no change in the number of distances between the two cells. In both

situations, a negligible error, very hard to compute, is produced due to small change in

position of the points. The fraction ε is negligible when the pairs of cells have uniformly

distributed points in both the frames f0 and f1. Actually, the small movement of particles has

minimal effects on the distance distribution.

Case 2: This case will not cause any additional errors. When the temporal locality condition

is not satisfied for a pair of cells in f1, we update the histograms as if we are running the

algorithm for the base frame. Therefore the error will be on the same level as in the base

frame. On the other hand, we do not save any processing time in such cases.

From the above analysis, we conclude that the error in the derived frame is on the same level

as that of the base frame.

VII. SDH Computation on Graphics Processors

In this section, we look at the basic architecture of the GPUs and their programming

paradigms. Then we modify our algorithm of utilizing spatiotemporal uniformity to map

onto the GPU programming environment. Our discussions, however, will focus on how to
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optimize our algorithm in a typical GPU architecture rather than a straightforward

implementation. This is because the GPU architecture is very different from that of CPUs

thus, code optimization requires special (and sometimes unintuitive) techniques. For

example, the GPU hardware provides a hierarchy of programmable memories with

heterogeneous capacity and performance. For that, the data can be organized, on these

memories, in such a way that the access latency is minimized.

A. GPU Architecture

The basic GPU architecture, for both NVIDIA [23] and AMD [35] products, is illustrated in

Fig. 5. The GPU consists of many multiprocessors that execute instructions on a number of

GPU cores in SIMD (Single Instruction Multiple Data) manner at any given clock cycle.

The GPU devices have a considerable amount of global memory with high bandwidth. For

example, the NVIDIA GTX 570 we used has 15 multiprocessors, each of which

encapsulates 32 GPU cores. It also has about 1.2 GB of global memory with a bandwidth of

152 GB/s.3 Apart from the global memory, the GPUs have programmable, very fast cache

memory (called shared memory). This type of memory is on-chip and shared by all GPU

cores in a single multiprocessor. Since it is on-chip the access latency is very low. In

contrast to that, the global memory has high access latency (400 to 800 clock cycles [23]).

Therefore, the access pattern should be optimized to reduce the overall latency caused by

global memory.

A large number of threads can be executed in SIMD fashion on the GPUs. The major

difference between CPU and GPU threads is that the GPU threads have low creation and

context-switch time. We follow the terminology of NVIDIA’s compute unified device

architecture (CUDA) [23] to describe the operation of GPU multiprocessors. A group of

threads executing on a multiprocessor is called block. The blocks are scheduled dynamically

on different multiprocessors. Threads within a block share all the resources, such as

registers, L1 cache etc., available on the multiprocessor. 32 consecutive threads make a

warp. Threads within a warp execute in lock-step. Any divergence in instuctions causes

them to execute in sequence (determined by the scheduler). The multiprocessor views a

block of threads as group of warps, and is responsible for scheduling them. An interesting

feature of the memory in GPUs is that different threads in a block can read different memory

locations simultaneously. This is achieved only when threads read consecutive memory

locations. The underlying hardware groups the consecutive memory access requests into one

access. This process is called coalesced access.

B. Optimization Through Coalesced Access

The information related to each cell in the density map is placed in GPU memory such that

coalesced access is possible. We create arrays of cell properties in the memory. For

example, a contiguous block of memory is allocated to store the number of atoms present in

cells of a given density map. When all threads need atom count from the cells, that they are

responsible for to process, coalesced access is made from the GPU memory. Therefore, we

create contiguous array of cells’ properties instead of array of cells with their properties

3In high-end cards such as Tesla C2075, global memory can reach 6GB.
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scattered in the global memory. Other properties like coordinates of cells in the simulation

space are also stored in contiguous arrays. Details of different properties of the cells in

density map are discussed in [6].

C. GPU Memory Optimization

The speed of memory access can be improved by placing the cells of the density map in

shared memory. Each thread can access distinct pairs of cells from the shared memory. Let

M be the number of cells in a density map and shared memory can hold 2MS cells. We

divide the shared memory into two sections, each holding up to MS cells. With MS as the

size for group of cells, we have Gc = M/MS number of groups out of M cells of the density

map. Each CUDA block can process two groups of cells in shared memory. Fig. 6 shows the

mechanism of processing these groups. First, the cells belonging to groups Gi and Gj are

loaded into shared memory. One cell is chosen from each group to form an inter-group pair

that is processed further. Inter-group pairing is repeated for all cells in Gi and Gj. Cells

within each group are processed by forming intra-group pairs. Intra-group pairing is

required to account distances that are not covered by inter-group pairing process. Next, the

second group Gj is evicted and a new group Gk is brought into the shared memory. This is

repeated for all the groups of the density map until all the cells are processed. We can easily

see that such a cell grouping strategy can significantly reduce the number of global memory

accesses.

Bank conflicts: The shared memory is organized as banks in the hardware such that the

threads read different banks in parallel. If threads read different addresses in the same bank,

it gives rise to an access conflict called bank conflict. Fig. 7 shows an example of bank

conflicts. The contiguous array of properties technique used for coalesced access helps us in

eliminating the bank conflicts. Memory banks can be accessed in parallel when every thread

requests 4 bytes of data from different bank [36]. The cell properties, like coordinate or atom

count, are actually of 4 bytes. Contiguous palcement of these properties in the shared

memory places them in different banks. When threads within a CUDA warp access these

banks in parallel, there are no bank conflicts.

Memory access latency: The operations of our algorithm are computation intensive rather

than memory access. Once, the information about cells is accessed into shared memory, a

large number of operations are performed. Moreover, the coalesced memory access pattern

reduces number of read requests issued to global memory. The NVIDIA GPUs used in our

experiments can access up to 128 bytes of memory in single request [23]. Thus the

combination of computation intensive property of the algorithm and special features of GPU

shadows the latency involved in global memory accesses.

D. Efficient Simulation

We utilize the shared memory to optimize the Monte-Carlo simulations on GPU. Given two

cells, a set of random numbers are generated between range 0.0 to 1.0, for each cell, in the

shared memory. These random numbers are mapped to the boundaries of the cells. The

numbers are organized in the shared memory such that all the accesses belong to different

banks. Then we perform the simulations and compute the distance distribution. The
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distributions are stored in a hash table that is created on global memory (as shared memory

contains simulated points). The hash table is then used by the algorithm, eliminating the

factors that would affect GPU performance in performing all need-based simulations.

VIII. Experimental Evaluations

A. Experimental Setup

We tested the following algorithms to evaluate the performance of our approach.

A1 The ADM-SDH algorithm [6] to process individual frames using Prop heuristic;

A2 The algorithm utilizing only temporal locality to compute SDH continuously

over multiple frames;

A3 The algorithm utilizing only spatial uniformity to compute SDH frame by frame;

A4 The algorithm utilizing both temporal locality and spatial uniformity to compute

SDH continuously.

Implementation details of the last technique and thorough comparison of all of these

techniques are discussed in Appendix E and F, respectively. Errors in the algorithms are

computed by comparing the approximate SDH results with the correct SDH of each frame.

The error (in percentage) of each frame is calculated as

where H[i] and H′[i] are the correct and approximated distance counts in bucket i of the

histogram, respectively.

Data Sets: Two datasets from different simulation systems were used for experiments. The

first dataset consists of 10, 000 frames captured from a collagen fiber simulation system

made of 890, 000 atoms. The second dataset is collected from a cross membrane protein

system with about 8, 000, 000 atoms and 10, 000 frames. We randomly selected a chunk of

100 consecutive frames from the first dataset and 11 frames from the second dataset for our

experiments. The main bottleneck in testing the algorithms is computing the correct

histogram of the frames, needed to compute the error. Obtaining correct histogram is

basically running the naive or DM-SDH algorithm, which is computationally expensive.

Therefore, we could only get the correct histograms of 11 frames from the 8 million dataset

(by brute-force in 27 days!).

The percentage of cells with uniform data distribution (i.e., uniform regions) at different

levels of the density map tree is shown in Fig. 8. The leaf level of the tree is not used to

determine the uniformity, as very few particles fall into small cells. For both datasets, we

started to see considerable amount of uniform regions at level 6 of the tree. Note that level 6

is still at the higher end of the tree (total number of levels is 9 for the smaller dataset and 11

for the larger one) and the total number of cells is only 46 = 4, 096. At level 8, the
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percentage of uniform regions is over 90%. This confirmed the potential of using spatial

uniformity to save time in SDH processing.

B. Results of CPU Experiments

A comparison of average errors and running times of all the algorithms are presented in

Appendix F, which clearly shows method A3 stands clear winner in accuracy and

performance of the results. In this section, we focus on results related to new techniques that

are not presented in [10].

Using noncentral χ2 distribution: The noncentral χ2 distribution approximation of the

distances between two cells is applied to compare with the Monte-Carlo simulations.

Specifically, for each pair of cells, we distribute the distance counts into the relevant buckets

based on the values obtained from the Cumulative Distribution Function (CDF) of the

noncentral χ2 distribution. Such values are computed by calling a MATLAB library [37] and

cached into a hash table to avoid repeated computations (exactly the same as what we did

for the Monte Carlo simulation results). Fig. 9 shows the comparison of errors in the SDH

obtained and the running time. The errors generated by using the CDF of noncentral χ2 are

slightly higher than those by the Monte Carlo simulation. This is expected as we know there

is a systematic error in using the CDF (Lemma 1) while the Monte Carlo simulations are

shown to be very accurate (Section VI-A2). The simulation-based method also beats the

CDF-based method in efficiency. This is because the CDF of noncentral χ2 distribution has a

very complex form [38] therefore the time used for numerical computations in Matlab is

non-trivial.

Summary: Computation of SDH based on spatial uniformity delivers the significant

performance boost over existing algorithm while generating more accurate results. The idea

of utilizing the temporal locality can work on top of the spatial uniformity idea to achieve

higher performance and also better performance/accuracy tradeoffs. This idea by itself did

not show clear advantage, as demonstrated by the bad performance of A2 under small bucket

width. Monte Carlo simulation should be the choice in making distance distribution

decisions, although the approach based on the CDF of noncentral χ2 is only marginally

worse. The simulation-based approach generates very little error even when the simulation

size is small, making it a winner over the CDF-based approach. The advantages of the new

algorithm over ADM-SDH become small under large bucket width, but this does not

generate a concern since the target of the new algorithm is the smaller bucket width, which

is preferred in scientific data analysis.

C. Results of GPU Experiments

The GPU versions of the proposed algorithm were implemented under CUDA, v.4.0 [23].

The performance of the algorithms was evaluated on NVIDIA GeForce GTX 570. We report

results for processing the 8-million-atom dataset.

Main results: A comparison of results of different implementations of the proposed

algorithms are shown in Fig. 10 and Fig. 11, in which we show the performance of
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processing the first frame only using. The running time on GPU shows the trend similar to

that on CPU, but much faster. The speedup of varies with the use of different types of

memory. When only the global memory is used, the speedup achieved by A3 ranges from 7X

to 10.4X. The use of shared memory pushes the speedup further by a factor of 2 (i.e., actual

speedup ranges from 14.9X to 25.8X). The speedup is limited by the random memory access

patterns emerging due to divergence in the thread computation. The thread divergence also

serializes the execution of some of the threads. The size of the DM cells that are stored in

the memory also affect the access patterns due to bank conflicts in shared memory.

The huge speedup under small w values is due to two factors: (1) All cells of the density

map are processed in parallel (2) Reduced divergence in the threads of each GPU block.

Even though the computations diverge in processing some pairs of cells, the speedup is

achieved by processing on different multiprocessors. Each multiprocessor has its own

dedicated shared memory and does not interfere with other multiprocessors’ execution.

The separation of simulation and other computations made the algorithm running time

almost constant for consecutive frames, for fixed bucket width. Fig. 12 shows the processing

time of all 10 frames using the A3 algorithm implemented in both CPU and GPU.

Employing the GPUs reduces the computation time of first frame significantly. Also, all the

simulations can be done within 100ms, significantly reducing their contribution to the

algorithm’s running time. Hence, the SDH can be computed efficiently in real time.

In order to compare the other algorithms on GPUs, we implemented their global memory

versions. Algorithm A4 achieves a small improvement in the running time (and speedup)

from the temporal locality of atoms. Similarly, the performance of algorithms A1 and A2 are

compared with their CPU implementations, as shown in Fig. 11. We observed speedup in

the range 3X–18.5X for approxmate algorithm A1. In obtaining this result, we restricted the

tree traversal up to two levels. Further traversal causes thread divergence and un-coalesced

memory accesses, killing the performance gain, making it worst than CPU implementation.

GPU implementation of algorithm A2 showed speedup from 4X to 23X (again, due to

temporal locality). The speedup numbers give an impression that A1, A2 are much faster

than A3 and A4. But, actual running times are much higher than algorithm A3 (compare Fig.

10(a) and Fig. 11(a)). Use of shared memory for other algorithms would not improve the

performance due to following reasons: (1) multiple tree levels can’t be loaded into (limited

size) shared memory for A1; (2) advantages of temporal locality in A2 and A4 are shadowed

by time required to load into, and access from, shared memory. Also, the temporal locality

property in A2 and A4 increases histogram erros [10].

Energy efficiency: Energy consumption has become a major concern in database system

design [39]. The product of computation time and active power4 consumed for SDH

processing define the energy efficiency of the algorithms. Fig. 13 plots the energy consumed

by both CPU and GPU versions of the A3 algorithm. Although the active power

4Active power: Power measured for the entire database server less the system idle power. It can be viewed as the power used for
processing the workload. We used WattsUp power meter in our experiments.
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consumption of a GPU is a couple of times higher than that of the CPU (46 watts vs. 17

watts as we recorded), the efficiency of the GPU algorithms makes it an energy efficient

device for SDH computation - active energy consumption is 5.39 to 9.13 times lower for the

GPU code using shared memory. Even for the one that uses only global memory, energy

efficiency is 2.51 to 3.81 times higher. To calculate the total energy consumption for the

whole machine, we have to add an idle power of 114.5 watts to the active power readings

and that will translate into even larger energy savings for the GPU implementations.

Summary: The GPU versions of our algorithm demonstrate the great potential of GPUs in

large-scale data analytics. For the SDH problem we tested, speedup over the single-CPU

implementation reaches 25X - that is a significant improvement of performance. The

speedup decreases under larger bucket width, but it is always the cases of smaller bucket

width that make the SDH problem difficult. Such diminish of speedup, as well as the

different optimization strategies, however, indicate that GPU programming is a non-trivial

task. Finally, the combination of multi-core GPU’s and efficient algorithm to utilize the

spatiotemporal uniformity, delivers very high performance. As a result, we are able to

analyze scientific simulation data in a real time manner.

IX. Conclusions and Future Work

An efficient approximate solution to the spatial distance histogram query is provided in this

paper. The algorithm presented in this work achieves higher efficiency and accuracy by

taking advantage of the data locality and statistical data distribution properties. It makes it

practically feasible to perform SDH analysis on data with large number of frames

continuously. The efficiency and accuracy claims are supported by mathematical analysis

and extensive experimental results. We have also shown that, through experiments, utilizing

power of modern GPUs gives very significant improvement in the performance. The

scientific data analysis can be performed in real time by using such modern hardware

systems.

An important direction of research would be to study computation of general m-body

correlation functions in scientific databases. Such functions, despite the high scientific value

they carry, have not been used for MS system analysis due to their computational

complexity. We strongly believe the idea based on spatial uniformity as well as GPU

programming can be extended to m-body correlation function computation. Another

direction of our future work might be the extension of spatiotemporal idea in 3D space and

the integration of our algorithm into simulation software so that effective tuning of the

simulation process becomes feasible.
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Appendix A. Intra Cell Distances

We assume the cell of interest has diagonal length q, and the distance range [0, q] overlaps

with buckets 0, 1, …, j. If an individual cell is with an RDM of 1.0, nothing needs to be

done. For those cells whose RDM is not 1.0, the following rules are used to update the

counts.

(23)

(24)

(25)

Appendix B. Identification of Uniform Regions

Given a spatial region (represented as a quad-tree node), how do we test if it is a uniform

region? We take advantage of the chi-square (χ2) goodness-of-fit test to solve this problem.

Here we show how the χ2 test is formulated and implemented in our model.

Definition 1

Given a cell Q (i.e., a tree node) in the DM-tree, we say Q is uniform if its probability value

p in the chi-square goodness-of-fit test against uniform distribution is greater than a

predefined bound α.

To obtain the p-value of a cell, we first need to compute two values: the χ2 value and the

degree of freedom (df) of that particular cell. Suppose cell Q resides in level k of the DM-

tree (see Fig. 14). We go down the DM-tree from Q till we reach the leaf level, and define

each leaf-level descendant of Q as a separate category. The intuition behind the test here is:

Q is uniform if each category contains roughly the same number of particles. The number of

such leaf-level descendants of cell Q is 4t−k, where t is the leaf level number. Therefore, the

df becomes 4t−k − 1. The observed value, Oj, of a category j is the actual particle count in

that leaf cell. The expected value, Ej, of a category is computed as follows:
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(26)

Having computed the observed and expected values of all categories related to Q, we obtain

the χ2 test score of cell Q through the following equation:

(27)

Next, we feed these two values, the χ2 and the df, to the R statistical library, which computes

the p-value. We then compare the p-value to a predefined probability bound α (e.g., 0.05). If

p > α, we mark the cell Q as uniform, otherwise we mark it as non-uniform. Note that the χ2

test performs poorly when the particle counts in the cells drop bellow 5. But, we already had

similar constraint in our algorithm while building the DM-tree, essentially making the cells

in the leaf level contain more than 4 particles. Hence, we choose leaf level nodes as the

categories in the test.

To find all the uniform regions, we traverse the DM-tree starting from the root and perform

the above χ2 test for each node we visit. However, once a node is marked uniform, there is

no need to visit its subtree. The pseudo code shown in Algorithm 3 represents this idea – to

find all uniform regions, we only need to call procedure MarkTree with the root node of the

DM-tree as input.

Appendix C. Distance Distribution Within and Between Two Unit Squares

If two points are randomly and uniformly taken from the same unit square (i.e., one with

lateral length 1), the distribution of the distance between such two points has the following

probability density function:

For two points uniformly sampled from two adjacent unit squares, the distance has the

following distribution function:
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Appendix D. Total Number of Simulations Performed

The density map is organized as a grid of M = n × n cells. We represent the position of each

cell by an ordered pair (x, y), where x and y are the horizontal and vertical displacements

respectively, of the cell from the top-left corner of the density map. A cell C with

displacements i, j is represented by C(i, j). The width or side of each cell is denoted by t (see

Fig. 15). We discuss the number of Monte Carlo simulations performed in a density map

through a special feature called L-shape (Definition. 2). The number of simulations

performed is directly related to the number of distinct L-shapes found in the density map.

Definition 2

L-shape of two cells A and B, L(A, B), is a subset of the density map that includes the two

end cells A(xA, yA) and B(xB, yB) and all the cells with positions

or the positions

Without loss of generality we assume xA < xB and yA < yB in rest of the discussion. It is to be

noted that both cells, A and B, have only one neighbor cell in the L(A, B)-shape.

Definition 3

The size of an L(A, B) shape, which is denoted as d(L(A, B)), is the ordered pair (a, b) where

a is the horizontal distance (counted in number of cells) and b is the vertical distance

between the cells A and B.
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Definition 4

Equivalent L-shapes: Let L(A, B) and L(C, D) be two L-shapes with sizes d(L(A, B)) = (a, b)

and d(L(C, D)) = (c, d). Then L(A, B) is equivalent to L(C, D) (i.e,. L(A, B) ≡ L(C, D)) iff (a

= c and b = d) or (a = d and b = c).

Lemma 2

L(A, B) ≡ L(C, D) iff the minimum and maximum distances between A, B and between C, D

are equal. In other words, L(A, B) ≡ L(C, D) iff distmin,max(A, B) = distmin,max(C, D).

Proof

Consider two L-shapes, L(A, B) and L(C, D) with sizes d(L(A, B)) = (a, b) and d(L(C, D)) =

(c, d).

If L(A, B) ≡ L(C, D) then, by the definition 4, d(L(A, B)) = d(L(C, D)). Thus, a = c and b = d

or a = d and b = c.

Fig. 15 shows maximum distance between cells A and B.

Similarly for the minimum distance between cells A and B,

Let two pairs of cell (A, B) and (C, D) have same minimum and maximum distance between

them i.e.,

or in an equivalent form:

The equation holds only if (a = c and b = d) or (a = d and b = c). Thus, d(L(A, B)) ≡ d(L(C,

D)). By definition, if two L-shapes have same size, they are equivalent.
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Theorem 2

The number of distinct L-shapes (regardless of position) in a density map with M = n2 cells

is .

Proof

The form of each L-shape L(A, B) is defined by its size d(L(A, B)) = (a, b), where 0 ≤ a ≤ n −

1 and 0 ≤ b ≤ n − 1. But, since the L shapes with size (a, b) are equivalent to the L-shapes

with size (b, a) we need only to count the L-shapes with size (a, b) where b ≥ a and b ≠ 0.

The number of such L-shapes for given values of a = 1, 2, … n−1 are n − 1, n − 2 …, 1

respectively. For a = 0 there are n − 1 L-shapes. Obviously, the total number of all distinct

L-shapes of size (a, b) is .

As the number of distinct Monte Carlo simulations performed in an RDM is equal to the

number of distinct L-shapes, the total number of simulation performed to compute SDH is

bound by O(M).

Appendix E. Putting Both Ideas Together

The continuous histogram processing is sped up by utilizing both spatial uniformity and

temporal locality properties. An overview of the technique is shown in the flow diagram of

Fig. 16. The left branch (decision A ≡ B) is to compute the intra-cell distances. In the right

branch we check the locality property of every pair of cells before checking for uniform

distribution of the particles. Any pair that satisfies the locality property is skipped from

further computations. The pairs that fail the locality property check are tested for the

uniformity property. Based on the results of the check, subsequent steps are taken and the

histogram buckets are updated.

The Monte Carlo simulation step introduced in our algorithm is expensive when computing

SDH of a sequence of frames. As mentioned in Section IV, the cost can actually spread over

when we are processing a sequence of frames. It is an interesting fact that the tree building

process is such that a cell in the DMs of same level in all frames is of same dimensions.

Therefore, a simulation done once can be reused in all other frames. Given a pair of cells A

and B and their respective distance range [u, v], we compute the proportions of distances that

map to each bucket covered by [u, v] through Monte Carlo simulation. For each distinct [u,

v] range, we store such (and only such) proportions of distance distributions in a universal

hash table.

For every pair of uniform cells that do not resolve and have distance range [u, v], we look

into the hash table to get the proportions to distribute the distances into buckets. If an entry

is available in the hash table, we use it directly. Otherwise, a new simulation is done and

proportions are calculated. This new simulation information is stored in the hash table. The

hash table is universal and is used for computing the histogram of all the frames for a given

bucket width.

Kumar et al. Page 32

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The same strategy can be followed if we were to use closed-form PDFs (if available) to

determine the proportions of distances.

To simplify the implementation, one decision we made was to choose a level k in the DM-

tree and process cells on that level only (instead of working on uniform regions on different

levels). We need a level that balances both SDH computation time and the error – choosing

a level close to the leaves may increase the time, while a level close to the root will

introduce higher errors in the SDH. An important feature of our algorithm is that the user

can choose a level to run the algorithm according to her tolerance of the errors. Such

choices can be made beforehand by analysis as discussed in Section VI-A3. Note that all the

cells in the DM-tree that are uniform are marked before the continuous SDH processing

begins.

Appendix F. Experimental Results on CPU

The proposed continuous SDH computation algorithm was implemented in C++

programming language and tested on real MS data sets. The experiments were conducted on

an Apple Xserve server with two Intel quad-core processors and 24 GB of physical memory.

The Xserve was running OS X 10.6 Snow Leopard operating system.

The running time of the algorithms on different data sets are measured for comparison,

along with the errors introduced due to approximation. The errors are computed by

comparing the approximate SDH results with the correct SDH of each frame.

We also observed significant temporal similarity a-mong frames of both datasets. The

success of utilizing the temporal similarity property depends on the total fraction of cells

that exhibit such property. In fact, the running time of the technique is affected by the

number of cell pairs (A, B) for which rA × rB = 1 ± ε. Figs. 18(a) and 18(b) show the density

of ratios and ratio products at each level of the DM-tree in two consecutive frames, chosen

randomly from the dataset of 890, 000 atoms. For all levels we tested, majority of the cells

(cell pairs) show ratio (ratio product) that is close to 1.0. The number of cell pairs with ratio

product of 1.0 increases as we descend down the tree.

Main results

The average running time of all the algorithms for different bucket widths is shown in Fig.

19(a) and 19(c). It can be noted that the running time of A1 can be orders of magnitude

longer than our proposed algorithms. The important observation to be made about algorithm

A1 is that the running time increases dramatically with the decrease of w (note the

logarithmic scale). Method A2 is similar to A1 but, utilizes temporal locality while working

on only one level. When the bucket width is small, both methods work on lower tree levels,

with small number of atoms in the cells. The utilization of locality gives scope to save some

running time in A2. Unlike the first two methods, the time spent by methods A3 and A4 does

not change much with the change of bucket width w. The data size however, limits the levels

at which the algorithms work. Changing levels would affect the running time. The

algorithms run at tree levels 6 and 7 for 890K and 8 million data set, respectively.5 Such

levels are chosen to ensure that 80% of the area is covered by uniform regions (see Fig. 17).
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We generate 75 points from each of the two cells in Monte Carlo simulations - this number

is chosen based on our empirical results about sufficient simulation size (Fig. 22). Note that

the average running time presented here have amortized all “start-up” costs including that

for running Monte Carlo simulations and spatial uniformity test. The running time for larger

bucket width is close to algorithm A1 and A2. This is because, in A1 and A2, the processing

level is closer to root than the (fixed) level of tree used in algorithms A3 and A4. When we

choose to have A3 and A4 run on a higher level, their time will clearly beat A1 and A2, as we

have shown in [10]. The performance of A2 under smaller bucket width is bad because it

works for lower levels of the tree, and the temporal locality is weak due to the small number

of particles in each cell. For example, if there are 4 atoms in a cell in the base frame and one

atom moves out of it in the derived frame, the density ratio is as low as 3/4 = 0.75.

The average errors (in percentage) of each method are shown in Fig. 19(b) and 19(d) for

different values of w. The errors rendered by A3 and A4 are always lower than those by

method A1. However, the errors of A2 are slightly higher than A1 for small bucket width.

The number of distances to be distributed between two cells is very small, as the algorithm

works close to leaf level. Therefore, by utilizing the temporal locality property the small

errors are added on top of the Prop method applied for other cell pairs. Although method A4

is faster than A3, the price for that is an error rate that is slightly higher, as we expected

based on our analytical results (Section VI-B). However, it provides a good tradeoff as the

improvement of performance is of larger magnitude than the loss of accuracy. The method

A3 stands clear winner in accuracy of the results. The distance distribution curve computed

by Monte Carlo simulations diminishes the error that would have been introduced by

heuristically distributing distances as in A1. The errors in method A1 stay low (still equal to

or higher than other methods) for smaller bucket width but goes higher under larger w

values. The reason being, proportions for small buckets are almost similar in all the

algorithms. Number of distances that are in the range of very small buckets are few and

therefore their proportional distribution are not much different. Hence, the error is low. With

the increase of bucket width, A1 would end up distributing the distances equally in all the

buckets while our methods accurately compute the proportions of distances that should go

into each bucket. For both datasets, A2 has the same level of errors with those of A1,

although the error fluctuates in the spectrum of different bucket width and tends to be larger

under smaller bucket width. The reason for this, again, is because A2 works for lower levels

of the tree and the number of particles is small.

Deeper insights on the performance/error tradeoff of different algorithms can help users

make justifiable choices. One way to quantify the performance/error tradeoff is the product

of time and error - an algorithm with lower time–error product (TEP) is obviously

preferred. We calculated the TEPs of all tested algorithms and found that, among all settings

and algorithms, A4 stands the winner by producing the smallest TEPs under all bucket

widths (Fig. 20), although its advantage over A3 is very small in the 8-million atom dataset.

Algorithm A3 is only second to A4 with slightly higher TEPs, beating A1 and A2. This

clearly shows that A4, although carries a larger error than A3, can still be a viable choice –

5In [10], we run experiments on levels 5 and 6 of these two datasets, respectively, and very similar results are reported.
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its performance gain overshadows the loss of accuracy as compared to A3. The gain or loss

in time and error may compensate each other in some cases, producing similar TEPs. It is

user’s choice to pick either A3 or A4. Again, A2 only shows its advantage over A1 under

larger w values, indicating that using temporal locality alone is not a viable choice.

Number of simulations

Much time in computation of the first few frames is spent in performing the simulations to

update the hash table entries. In our experiments on the dataset of 890K atoms, the number

of simulations performed for each frame dropped quickly. In total, 100 frames were

processed to compute SDH using algorithm A3. Fig. 21 shows the distribution of simulations

performed over 100 frames. We can see that the first frame peaks at 120 simulations. In

most of the other frames, no simulations are performed except for few frames for which less

than 25 simulations are performed. This clearly states that the hash table utilized in A3 saves

running time by reusing the simulations performed in previous frames.

Simulation size

The number of points used in every Monte Carlo simulation does not affect the SDH results,

as long as sufficient number of points are generated. The error shown in Fig. 22 does not

change when the number of points in the Monte Carlo simulations goes beyond 50. Thus,

our analysis of the Type I error in Section VI-A2 only gives a loose error bound whereas the

actual errors are much lower.

Appendix G. Assigning Distance Counts from a Single Cell

(28)

(29)

(30)

where gD′ (t) is the PDF for random variable D′, and can also be generated by mathematical

analysis or approximated by Monte Carlo simulations.

Appendix H. Percentage of Uniform Cells

One special note about pu is: defined as the fraction of actual uniform cell pairs, pu is

smaller than the percentage of cell pairs marked as uniform by our algorithm. This is

because it is not a deterministic decision to mark a cell uniform, and cases of false positive

can happen. In marking the cells, the chance of getting a false positive consists of the

approximation error of the Pearson’s χ2 test statistic [34] and the probability bound α used
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in the test. The test statistic error is up to the order of , where ν is degree of freedom

and Ot is the number of observations in χ2 test. In our environment, Ot tends to be a large

number, as we often see large uniform regions. The α value is user tunable and usually set

around 5%. When ν is sufficiently large, the error in marking a cell uniform is γ = α+1/Ot ≈

α. Thus, if the percentage of pairs of cells marked uniform by our algorithm is , we have
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Fig. 1.
Computing minimum (i.e., length of solid lines) and maximum distance (i.e., length of

dashed lines) range between two cells
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Fig. 2.
Distance range of non-resolvable cells overlaps with more than one bucket of the SDH
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Fig. 3.
(a) The distribution of Y-X. (b) The difference between normal and triangular distributions
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Fig. 4.
Grouping cells with equal density ratios by sorting the cell ratios in the RDM
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Fig. 5.
The basic architecture of modern graphics processors (GPUs)

Kumar et al. Page 41

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6.
Grouping cells in global memory and loading into shared memory for improving

performance
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Fig. 7.
Illustrating bank conflicts in shared memory access on GPU
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Fig. 8.
Percentage area of uniform regions at different levels of the DM tree
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Fig. 9.
Histogram errors and computation time using non-central χ2 distribution function (CDF) and

Monte Carlo simulation (Sim)
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Fig. 10.
Comparing running time and speedup on GPU using different memories. MM: host main

memory; GM: GPU global memory; SM: GPU shared memory
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Fig. 11.
Comparing running time and speedup on GPU using different memories. MM: host main

memory; GM: GPU global memory; SM: GPU shared memory
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Fig. 12.
Processing time of consecutive frames on GPU with w = 50
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Fig. 13.
Active energy consumption of CPU and GPU implementations of A3 algorithm under

different bucket width
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Fig. 14.
Sub-trees of nodes P and Q with their leaf nodes
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Fig. 15.
Illustration of L-shape L(A, B) of size d(L(A, B)) = (a, b) in a density map
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Fig. 16.
Steps in dealing with two cells of the composite algorithm for computing SDH
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Fig. 17.
Percentage of the area of uniform regions at different levels of the DM tree
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Fig. 18.
Temporal similarity between two consecutive frames chosen randomly from the dataset of

890K atoms
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Fig. 19.
Comparison of average running time and percentage errors of different algorithms. Both

algorithms A3 and A4 process level 6 of the DM tree. (a)–(b) The results from 890, 000

atom dataset. (c)–(d) Results from 8 million atom dataset
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Fig. 20.
Time–Error Product (TEP) of different SDH computation algorithms
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Fig. 21.
Number of simulations performed per frame to process 100 frames together under bucket

width of 1450
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Fig. 22.
Effects of simulation size on SDH error
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Algorithm 1

Computing SDH using uniform regions

1: procedure UniformRegionSDH(root Q, X%)

2:  Identify uniform regions (cells) in tree rooted at Q

3:  Choose level k in Q if % of uniform cells ≥ X

4:  for each cell A in DMk do

5:   if A is uniform region then

6:    Derive distance distribution PDF gD′(t)

7:    Update H[0 … j] using gD′(t)

8:   else

9:    Update H[0 … j] using PROP heuristic

10:  for each pair A, B (A ≠ B) of cells in DMk do

11:   if both A and B are uniform regions then

12:    Derive distance distribution PDF g(t)

13:    Update H[i … j] using g(t)

14:   else

15:    Update H[i … j] using PROP heuristic
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Algorithm 2

Computing SDH using temporal locality

1:

procedure TemporalSDH( , ε)

2:  Compute ratio density map r

3:  for each cell A in r do

4:   if rA ≠ 1 ± ε then

5:    Find bucket range [0, j] where distances fall

6:    Update H[0 … j]

7:   else

8:    Do nothing. Cell A does not affect H

9:  for each pair A, B (A ≠ B) of cells in r do

10:   if rA × rB ≠ 1.0 ± ε then

11:    Find bucket range [i, j] where distances fall

12:    Update histogram H[i … j]

13:   else

14:    Do nothing. A, and B do not affect H
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Algorithm 3

Marking uniform regions

1: procedure MarkTree(node Q, level a)

2:  CheckUniform(Q, a)

3:  if Q is NOT uniform then

4:   for each child Bi of cell Q: i := 1 … 4 do

5:    MarkTree (Bi, a + 1)

6:

7: procedure CheckUniform(node Q, level a)

8:  Go to leftmost leaf level (t) descendent of Q

9:  for k = 1 to 4t−a do

10:

χ 2 : = χ 2 +
(Ok - Ek )2

Ek

11:  Get pval(χ2) using R library

12:  if pval > significance value α then

13:   mark Q as uniform

14:  else

15:   mark Q as not uniform
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