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Efficient Large-Scale Multiple Migration Planning
and Scheduling in

SDN-enabled Edge Computing
TianZhang He, Adel N. Toosi, Member, IEEE, Rajkumar Buyya, Fellow, IEEE

Abstract—The containerized services allocated in the mobile edge clouds bring up the opportunity for large-scale and real-time
applications to have low latency responses. Meanwhile, live container migration is introduced to support dynamic resource
management and users’ mobility. However, with the expansion of network topology scale and increasing migration requests, the current
multiple migration planning and scheduling algorithms of cloud data centers can not suit large-scale scenarios in edge computing. The
user mobility-induced live migrations in edge computing require near real-time level scheduling. Therefore, in this paper, through the
Software-Defined Networking (SDN) controller, the resource competitions among live migrations are modeled as a dynamic resource
dependency graph. We propose an iterative Maximal Independent Set (MIS)-based multiple migration planning and scheduling
algorithm. Using real-world mobility traces of taxis and telecom base station coordinates, the evaluation results indicate that our
solution can efficiently schedule multiple live container migrations in large-scale edge computing environments. It improves the
processing time by 3000 times compared with the state-of-the-art migration planning algorithm in clouds while providing guaranteed
migration performance for time-critical migrations.
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1 INTRODUCTION

The introduction of edge computing [1] brings oppor-
tunities to improve the performance of the emerging user-
oriented applications by pushing computation and intel-
ligence to end-users, including Vehicle to Cloud (V2C),
Vehicle to Vehicle (V2V), Virtual Reality (VR), Augmented
Reality (AR), Artificial Intelligent (AI), or Internet of Things
(IoT) applications and so forth. Driven by container virtu-
alization, microservices are more suitable for dynamic de-
ployment on edge computing [2], [3] due to smaller memory
footprint and faster startup. By allocating the containerized
services in the Edge Data Centers (EDCs) or Mobile Edge
Clouds (MECs) [4], strict end-to-end (E2E) communication
delays between end-users and services can be guaranteed.

From the centralized cloud computing framework to de-
centralized edge computing, surveys [5], [6] investigated the
challenges faced by the infrastructure and service providers
regarding dynamic resource management and user mo-
bility. By providing non-application-specific compute and
memory state management, live migration is the solution
to these challenges. Live migration of VM [7] and con-
tainer [8] through the open-source Checkpoint/Restore in
Userspace (CRIU) software [9], which had kernel support
since Linux 3.11, aims to provide little or no disruption to
the running service during migrating in the edge comput-
ing. It iteratively copies unfinished computation tasks with
intermediate computation states in the memory from source
to destination until the memory difference between two
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synchronizing instances is small enough for the stop-and-
copy phase. In addition, for the container image, if the image
does not exist in the destination, it can be transferred from
the previous EDC or remote clouds or accessed through
shared storage. Thus, live migration performance highly
relies on the available bandwidth of the network routing
connecting source to destination.

Industrial infrastructure and service providers, such as
IBM, RedHat, Google, etc, have been integrating live con-
tainer migration into their productions [10], [11]. Google has
adopted live VM and container migration with CRIU into
Borg cluster manager [11], [12], [13] for reasons, such as,
higher priority task preemption, software updates, such as
kernel and firmware, or reallocating for availability or per-
formance. It manages all compute tasks and runs on numer-
ous container clusters each with up to tens of thousands of
machines. A lower bound of 1,000,000 migrations monthly
in the production fleet have been performed with 50ms
median blackout [13]. Live container migration provides
technical simplicity without handling state management
and application-specific evictions. However, it is also iden-
tified that writing and reading to remote storage through
network dominates the checkpoint/restore process and the
scheduling delay is the large source of delay regarding the
performance of multiple live migrations.

Recently, some works have focused on user or service
mobility in mobile edge computing through live container
migration [5], [6], [14], [15], [16], [17], [18]. With the limited
coverage range of each EDC, when a user moves from one
base station to another, the network latency could deterio-
rate after the network handover. To guarantee the Quality
of Service (QoS), the service may need to be migrated from
the previous EDC to the proximal one through live container
migration. Figure 1 illustrates an example scenario where an
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Fig. 1: User-mobility induced live container migration in
edge computing environments

autonomous vehicle sends workload to the corresponding
stateful service in the EDC for real-time object detection.
There is a total of 9 base stations assigned to 3 different
EDCs. Two autonomous vehicles move to a new position
from time t1 to t2. For vehicle user1, when leaving the
range of base station BS1

1 and entering the range of base
station BS1

2 at time t1′, there is a live container migration
from EDC1 to EDC2 induced by the user1’s movement.
Meanwhile, as user2 crosses the range boundary of the base
station BS1

3 to BS2
3 , since the two base stations both belong

to the same edge data center EDC3, the E2E delays of
the service can be guaranteed. Therefore, there is no live
migration induced by user2’s movement.

In cloud computing environments, dynamic resource
management policies triggers live migration requests pe-
riodically to optimize the resource usage or to maintain
QoS of applications [19]. However, in the edge environ-
ment, service migration/mobility is highly relative to user
mobility [6], [14], [15], [17], [18]. Migration requests of
containers or VMs from services and users may share and
compete for the computing and network resources, such as
migration source, destination, and network routings [20].
It brings more challenges for the multiple live migration
planning and scheduling. However, most research on live
service migration in edge and cloud computing neglects
the actual live migration cost regarding the iterative dirty
memory transmission [7] and resource competition among
migrations in both computing and network resources. As
a result, performing multiple live migrations in arbitrary
order can lead to service degradation [21], [22].

Few works focus on multiple VM migration planning
and scheduling in cloud data centers [21], [22]. The frame-
work of migration scheduling periodically triggered by
resource management policies with a long time interval
is not suitable for stochastic scenarios of mobility-induced
migration in edge computing. Furthermore, the network
scale, the numbers of end-users and live container migration
requests increase ten thousand times in edge environments.
Without proper modeling, the problem complexity will in-
crease dramatically as the number of migration requests

and network scale increase. As a result, the complexity
and processing time of current algorithms do not meet the
real-time requirement of the live migration at scale in edge
environments.

Moreover, to manage a highly distributed and dynamic
network environment, Software-Defined Networking (SDN)
[23] is introduced in edge computing, which allows dynamic
configuration and operations of computer networks through
centralized software controllers. Facilitated by OpenFlow
protocol [24] and Open vSwitch (OVS) [25], network man-
ager based on SDN controllers can perform network slicing
or create a separate network [26] to minimize the influence
of migration flows on other edge services. As a result,
the migration planning and scheduling algorithm can fine-
grained control the network resources for the migration
competition, including the network routing and available
bandwidth.

Therefore, in this paper, we propose efficient large-scale
live container migration planning and scheduling algo-
rithms focusing on mobility-induced migrations in edge
computing environments. It can still apply to multiple
migration scheduling for the general dynamic resource
management at scale. The contributions of this paper are
summarized as follows:

• We introduce the resource dependency graph of
the source-destination pair for resource competition
among migration requests to reduce the problem
complexity.

• We model the problem as finding the Maximum In-
dependent Set of the Dependency Graph iteratively.

• We propose iterative-Maximal Independent Set
(MIS)-based algorithms for efficient large-scale mi-
gration scheduling and prove the corresponding
Thermos.

• We implement an event-driven simulator to evaluate
the user mobility and live container migrations. The
experiments are conducted with real-world dataset
and traces.

The rest paper is organized as follows. We review the
related work in Section 2 and define the system architecture
in Section 3. In Section 4, we analyze and model the problem
of multiple container migration scheduling. Then we pro-
pose two main methods of large-scale migration scheduling
in Section 5. Section 6 shows the performance analysis of
proposed algorithms and Section 7 shows the experimental
design and evaluation with real-world dataset. Finally, we
conclude the paper in Section 8.

2 RELATED WORK

The live VM migration realization [27] and its application in
cloud data centers, such as dynamic resource management
[28], [29], have been matured last few years. The research on
live container migration in edge computing is an active field
[5], [6]. Clark et al. [7] proposed the live VM migrations and
discussed the details of pre-copy or iterative live migration.
He et al. [30] evaluated the performance of live VM migra-
tions and its overheads on the migration services in SDN-
enabled cloud data centers. On the other hand, the research
on live container migration is trending and becomes more
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TABLE 1: Comparisons of multiple migration planning and scheduling works

research real-time planning large-scale service correlations user-mobility deadline SDN-enabled Cloud DC Edge computing
CQNCR [21] − − X − − − X −
FPTAS [22] − − − − − X X −
Our work X X X X X X X X

mature in recent years. Mirkin et al. [8] represented the
checkpointing and restart features for the OpenVZ con-
tainer. The checkpointing function is also used for live
migration. Checkpoint/Restore In Userspace (CRIU) [9] is
a Linux software to migrate container’s in-memory state
in userspace. It is currently integrated with LXC, Docker
(runC), and OpenVZ to achieve the live container migration.
Nadgowda et al. also proposed [31] a CRIU-based memory
migration together with the data federation capabilities of
union mounts to minimize migration downtime. Similarly,
Ma et al. [15], [16] utilized the layered storage feature based
on AUFS storage drive and implemented a prototype sys-
tem to improve the performance of docker container migra-
tion. Furthermore, several works studied the performance
difference between container and VM live migration [2], [3].
Results show that the live container migration is much faster
than the live VM migration due to its much smaller memory
footprint and fast startup features.

More research recently focuses on dynamic resource
scheduling in fog and edge computing environments based
on the live container migration (details in survey [5], [6]).
In [14], [17], the authors modeled the sequential decision
making problem of generating service migration requests
using the distance-based Markov Decision Process (MDP)
framework. By reducing the state space, they proposed a
distance-based MDP to get the approximated results. The
research [18] also investigated the same problem by using
the MDP framework. The authors proposed a reinforcement
learning-based online microservice coordination algorithm
to learn the optimal strategy for live migration requests to
maintain the QoS in end-to-end delay.

Few studies focus on the optimization of the multiple
live VM migration planning in cloud data centers [21],
[22]. Bari et al. [21] investigated the multiple VM migration
planning in one data center environment by considering the
available bandwidth and the migration effects on network
traffic reallocation. The authors proposed a heuristic migra-
tion grouping algorithm (CQNCR) by setting the group start
time only based on the prediction model. Without an on-
line scheduler, the estimated start time of a live migration
can lead to an unacceptable migration performance and
QoS degradations. Moreover, the work neglects the cost of
the individual migration by only comparing the migration
group cost. Without considering the connectivity between
VMs and the change of bandwidth, Wang et al. [22] sim-
plified the problem by maximizing the net transmission
rate rather than minimizing the total migration time and
proposed a polynomial-time approximation algorithm by
omitting certain variables. However, the solution (FPTAS)
can create migration competing on the same network path
which degrades the migration performance in both average
individual migration time and the total migration time.

However, as shown in Table 1, current algorithms can
not meet the requirement of live container migrations in

edge computing. The framework of migration scheduling
[21] which are periodically triggered by resource manage-
ment policies with a long time interval is not suitable
for the mobility-induced migration scenario. Furthermore,
by modeling and calculating every resource competition
of migration directly, the problem complexity [21], [22]
increases along with the migration request number which
is not suitable for large-scale situation. The running time of
migration planning is also too large to schedule time-critical
live container migrations. The algorithms [21], [22] do not
consider the deadline or urgency (priority) of migration. In
addition, without an on-line scheduler, the start time of a
migration schedule is only based on the estimated migration
time which can lead to migration performance and QoS
degradation.

3 SYSTEM ARCHITECTURE

In the edge computing, there is no dedicated network for
the live migration to support the user mobility compared
with the traditional setups in cloud data centers [32]. By in-
tegrating the Software-Defined Networking (SDN) into edge
computing, the centralized SDN controller can dynamically
separate network resources from the service network [23]
to build a virtual WAN network for live migrations. The
available bandwidth and network routing are dynamically
allocated based on the reserved bandwidth of the service
network. This solution alleviates the overheads of live mi-
gration on other services and guarantees the performance
of multiple live migrations. To achieve a fine-grained live
migration scheduling, the migration scheduling service is
integrated with the SDN controller [30], such as OpenDay-
Light (ODL), Open Network Operating System (ONOS) and
Ryu, and container management and orchestration module,
such as Kubernetes and Docker Swarm, to control both
network and computing resources during each migration
lifecycle.

3.1 Migration Lifecycle

REQUEST_ARRIVAL WAITING

PLANNING

MIGRATION_PRE MEM_COPY

MIGRATION_POST

FAILED

isFeasible(true)

isFeasible(false)

SCHEDULING

sch

Fig. 2: Lifecycle for live container migrations

In this section, we introduce the framework of migration
scheduling in edge computing. Compared with periodically
arrived multiple live migrations in cloud data centers, the
arrival of live container migration induced by user mobility
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is stochastic. Therefore, we design the scheduling frame-
work for the planning and scheduling of live container
migration in edge computing with stochastic environments.
As shown in Fig. 2, when a migration request arrives, it
enters the WAITING state if it is feasible for scheduling,
which means the container is not in migration. Otherwise,
it will enter into the FAILED waiting migration list of the
corresponding container. The migration planning event is
triggered periodically within a short interval (such as every
1 second). It will generate the migration scheduling plan
according to both waiting and running migrations. Based
on the migration plan, the SDN-enabled on-line scheduler
starts the migration with the allocated bandwidth and rout-
ing. Then, the live container migration will start the pre-
migration phase to extract the container procedure tree.
This will trace the dirty memory in the userspace of the
source server and create an empty container instance in the
destination for state synchronization [9]. In MEM COPY, the
dirty memory is transferred iteratively to the synchronizing
instance in the destination. In the post-migration phase,
the network communication of the migrated service will
be redirected to the new instance in the destination. Then,
the migrated container will recover at the destination. It
will also trigger the start of subsequent resource-dependent
migrations in the plan and change the feasibility flag of the
first migration request of the same container in the FAILED
migration waiting list.

4 MOTIVATIONS AND PROBLEM FORMULATION

In this section, we first present the performance model
of single live migration. Then, we analyze the challenges
faced by multiple live container migrations scheduling in
edge computing: resource competition or dependency and
real-time planning and scheduling. Finally, we model the
problem as iteratively generating the Maximal Independent
Set (MIS) based on the resource dependency graph.

4.1 Single Migration Model
The performance of single live migration Tmig can be cate-
gorized into three parts: pre-migration computing, memory-
copy networking, and post-migration computing over-
heads, i.e., Tmig = Tpre + Tmem + Tpost. Due to the smaller
footprint and fast start up of containers compared to VMs,
the pre-migration and post-migration is much shorter [31].
Based on the iterative pre-copy container migration imple-
mented in CRIU [9], the migration performance in terms of
memory-copy can be represented as [30]:

Tmem =
ρ ·Mem

L
· 1− σi+1

1− σ
(1)

where the ratio σ = ρ · R/L, ρ is the data compression
rate of dirty memory, Mem is amount of kernel memory
the container uses, L is allocated available bandwidth, R is
dirty page rate which is the memory difference in pagemap
per second compared to the previous copy iteration, i is the
total migration round.

We consider three conditions to enter the stop-and-copy
phase: (1) reach the threshold of memory copy iteration;
(2) the transmission time of remained memory difference
is less than the downtime threshold; and (3) the allocated

(a) Average migration time (b) Iterations and downtime(dt)

Fig. 3: Migration performance against the number of migra-
tion sharing network bandwidth

bandwidth is less than the dirty page rate. The overhead of
disk transmission for the container data and image can be
ignored when shared network storage is available. The total
iteration rounds of memory copy can be represented as:

i = min

(⌈
logσ

Vthd
Mem

⌉
,Θ

)
(2)

where Θ denotes the maximum allowed number of iteration
rounds. The Θ = 0 when the dirty page rate is larger
than the allocated bandwidth at the start of migration.
Vthd = Tdthd · L is the remaining dirty pages need to be
transferred in the stop-and-copy phase, and Tdthd is the
configured downtime threshold.

4.2 Resource Competition

We first explain the network sharing competition overheads
in multiple migration scheduling. Two migrations may
share the same source, destination, or part of network rout-
ings. Therefore, performing multiple live migrations in arbi-
trary order can lead to service degradation and unacceptable
migration performance [21], [22]. A smaller bandwidth dur-
ing the live migration means a longer migration time and
more dirty pages need to transfer in order to limit the state
difference between two instances for the last stop-and-copy
phases which contributes as the downtime. Thus, the sum
of the individual migration time of several live migrations
is less than the total live migration time [30]. For example,
based on the live migration model, Fig. 3a and 3b show
the situation when several identical migrations sharing the
same network path. The container’s initial memory size
is 1 GB with a 20 MB/s dirty page rate. The downtime
and iteration threshold is configured at 0.5 seconds and 30
times, respectively. In this example, for the sake of a clear
comparison between the sum of individual migration time
and the total migration time, we start all migrations at the
same time. In this case, the average migration time as shown
also equals the total migration time.

The average execution time of live migrations scheduled
sequentially with 10 Gbps and 1 Gbps is 0.8482 and 7.5241
seconds. The average downtime is 0.0082 and 0.1048 sec-
onds. The iteration rounds are 3 and 4, respectively. How-
ever, the average migration time or total multiple migration
time of 5 live migrations sharing 10 Gbps and 1 Gbps is
3.604 and 88.43 seconds. The average downtime is 0.2048
and 0.3689 seconds with 3 and 12 iterations, respectively. As
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Fig. 4: Example live migration requests and the network
topology with 5 edge data centers

the number of migrations increases (Fig. 3a), the allocated
bandwidth decreases linearly. However, to achieve the re-
quired migration downtime, the average migration time will
increase exponentially. At 7 and 80 migrations sharing of 1
Gbps and 10 Gbps respectively, the iteration rounds reach
the threshold as 30 (Fig. 3b). Then, with more bandwidth-
sharing migrations, the dirty page rate is larger than the
allocated migration bandwidth. The downtime exceeds the
0.5 seconds threshold and increases significantly from 0.78
to 64.0 seconds and from 1.85 to 640 seconds. For the
time-critical live migrations, a longer migration time will
increase the possibility of migration deadline violation and
QoS degradation. Therefore, it is optimal to sequentially
schedule the resource-dependent migrations while concur-
rently schedule the independent ones. If there is a set of
independent migrations and no other resource-dependent
migrations are running, we can start all migration in such
a concurrent scheduling group. The objective of migration
scheduling is to maximize the number of migrations that
can be scheduled concurrently.

Figure 4 shows an illustrative example with twelve live
migrations requests on the edge network topology of 5 total
EDCs. Let msd

i denote the migration request that migrating
container i from EDC s to EDC d. For the sake of a con-
cise example, we limit the network interfaces used by the
migration traffic. In other words, migration traffics share
the same interfaces when the source or the destination is
the same. It can be easily extended to the set of network
interfaces in source {s} and destination servers {d} and
the corresponding network paths {p}. The network routing
policy considers the shortest network path with the minimal
number of migration flows. For example, there are two
network routes between EDC1 and EDC3. As there is one
migration from EDC2 to EDC3, it chooses network path
{EDC1, EDC4, EDC3} in this case.

Resource-independent migrations from one concurrent
scheduling group can be scheduled at the same time. The
planning algorithm needs to generate a scheduling plan
consists of several concurrent migration groups that each
group size is as large as possible. A larger concurrent
scheduling group indicates that there are more migrations
could be performed at the same time. As a result, the
better performance of multiple migrations in total migration
time and the QoS of migrating service can be guaranteed.
Note that two migrations from different migration groups
are not necessarily resource-dependent. As shown in Fig.
5, based on the network topology provided by the SDN
controller, we create an undirected graph of resource de-

        13 32 25 41 13 45 21 34 31 42 23 24

1 7 5 9 12 11 2 8 6 10 3 4, , , , , , , , , , ,m m m m m m m m m m m m

13v

23v

24v

25v

41v

42v

45v

31v

32v

34v

21v

Fig. 5: The resource dependency graph of example migra-
tions, iterative maximal independent set as concurrent mi-
gration groups, and two colored possible maximal indepen-
dent sets for the first iteration, and one possible concurrent
migration groups

pendency among migrations based on the source, desti-
nation, and network routing of migration requests. Each
node vsdp represents a list of migrations sharing the same
source s, destination d, and network path p. In other words,
migrations in one node list form a complete graph as all
migrations are resource-dependent to all others in the list.
For example, the migration list of node v13 is {m13

1 ,m
13
12}.

It significantly limits the problem complexity as the number
of migration requests increases. The edge of the dependency
graph indicates resource competition (network interfaces at
source or destination, or bandwidth sharing along network
routes) between migrations. A concurrent group equals to
an independent set of the resource dependency graph. A
maximal concurrent scheduling group is a set of resource-
independent migrations that is not a subnet of any other
concurrent group. In other words, there is no other migra-
tion outside the concurrent group can be added to it so that
all migrations can be performed at the same time. Therefore,
it equals a maximal independent set (MIS). The largest size
MIS is a maximum independent set. As shown in Fig. 5,
there are several combinations of migrations for a maximal
concurrent scheduling group. In the first iteration, one of
the maximum group is

{
m13

1 ,m
32
7 ,m

25
5 ,m

41
9

}
and one of

the maximal group is
{
m23

3 ,m
45
11,m

31
6

}
. Thus, the maximum

group is a better choice. After selecting the migrations from
the nodes of the maximal independent set, we delete these
migrations and update the dependency graph. One node
is deleted from the graph when there is no migrations left
in its migration list. For example, after the first iteration,
we only delete nodes v25, v41, v32, because there is still one
migration m13

12 left in node v13 list. Thus, it is essential to
select migrations carefully to achieve the maximum size of
the concurrent groups. At the end, the on-line scheduler
schedules all migration in the first group. Then, when there
is one migration finishes, the scheduler starts all migrations
blocked by the finished migration following the order of
migration groups.

Before discussing how to get the Maximum Independent
Set, the largest Maximal Independent Set (MIS), of the re-
source dependency graph, we first review some basic graph
concepts [33], such as clique C and independent set I . A
clique is a subset of vertices of an undirected graph G such
that every two distinct vertices in the subset are adjacent.
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The maximal clique is a clique that cannot be extended by
including one more adjacent vertex. On the other hand, an
independent set of a graph G is the opposite of a clique that
no two nodes in the set are adjacent. The maximum clique
or independent set is the maximal clique or independent
set with the largest size. α (G) denotes the size of the
largest MIS of graph G. Therefore, an independent set of the
resource dependency graph equals a concurrent migration
group. The migrations from the nodes in an independent
set I can be scheduled concurrently. Meanwhile, migrations
from the nodes in a clique are resource-dependent which
need to be scheduled sequentially.

4.3 Real-Time Planning
There are few multiple migration planning and scheduling
algorithms for live VM migration in cloud data centers
[21], [22]. However, the processing time of the scheduling
sequence of multiple live migrations based on the algo-
rithms in cloud data centers is not suitable for the real-
time requirement of mobility-induced migrations in edge
computing. For example, the processing time of FPTAS [22]
and CQNCR [21] for migration planning is about 5 and 10
seconds for 100 migrations. The processing time increases to
44.56 and 968.46 seconds for FPTAS and CQNCR to generate
the scheduling plan of 500 migrations. For traditional dy-
namic resource management, the algorithm triggered every
10 minutes or 30 minutes. This leaves enough time budget
for algorithms to generate the optimal scheduling sequence.
However, in the edge computing environment for mobility-
induce live migrations, the live migration requests arrive at
any time stochastically. Most of the migration requests are
also time-critical. Thus, the processing time of the planning
and scheduling algorithm for mobility-induced migrations
should be adapted to suit the real-time scenario.

4.4 Problem Modeling
The planning and scheduling algorithm is triggered periodi-
cally after every time interval ∆sch. We letM t

arriv denote the
set of arrival migration requests at planning time t. M t

wait is
the set of migration requests waiting for planning at time t.
M t
fail is the set of infeasible migrations, such as its requested

container is in migration. M t
plan is the set of migrations that

have been planned but not finished at time t, and M t
finish

is the set of finished migrations at time t.
The input of migration requests at every migration plan-

ning time t is M t
input = M t

plan ∪ M t
wait. For each live

container migration mj , we have source and destination
edge data center and allocated network routing, (sj , dj , pj),
available bandwidth lj , arrival time aj , estimated migration
time Tj , relative deadline Dj , start time bj , and finish
time fj . Therefore, the response time can be represented as
rj = fj − aj . The slack time of migration scheduling, the
remaining scheduling window that one migration will not
miss its deadline, is τj = aj + Dj − Tj − t. The objective
of live container migration planning and scheduling is to
maximize the number of running resource-independent live
migrations until the next planning time t+ ∆sch.

At every planning and scheduling time t, the resource
dependency graph G = (V,E) denotes the acyclic undi-
rected graph where |G| = |V |. Each node u ∈ |V | represents

the list of migrationsM(u) where migration shares the same
source s, destination d, and network routing p. By sharing
the same source and destination and network routing, mi-
grations in the list of a node are all resource-dependent.
Let (u, v) ∈ E denote the edge between node u and v. It
indicates the resource dependency between migrations from
both nodes. V (G) denotes the set of nodes of graph G.

We model the multiple migration planning problem as
generating the maximal independent set of the dependency
graph iteratively. In other words, in each iteration, we get
the maximal independent set of the remaining graph, then
update the graph by deleting corresponding migrations.
Let Gi+1 = Gi [V (Gi)− Si] represent the remained graph
by directly deleting vertex from set of nodes Si. Let Ii
denote the maximal independent set of graph Gi. Then, the
remained graph Gi+1 in each iteration can be represented
as:

Gi+1 = Gi [[V (Gi)− Ii]] = Gi [V (Gi)− Si] (3)

by deleting set of nodes Si = {u|u ∈ Ii,M(u) = ∅}, where
the migration list of the deleted node u is empty. Therefore,
for each migration planning, the objective is to generate the
iterative maximum independent set of dependency graph:

max |Ii| ,∀Ii ∈
{
Iiiter

}
(4)

where
{
Iiiter

}
= {I1, I2, ..., IK} is the total K iterative

independent sets and there is no vertices left in the K + 1
remaining graph as GK+1 = ∅. In other words, each it-
erative independent set size equals the size of maximum
independent set of remaining graph |Ii| = α (Gi).

We extend the model to generate the iterative maxi-
mum weighted independent set for migration with differ-
ent priorities, such as migration deadline. The weight of
an independent set is W (I) =

∑
u∈IW (u). The largest

weight of migration m̂ in the node migration list is the
weight of its corresponding node in the dependency graph
W (u) = W (m̂) that

W (m̂) ≥W (m) ,∀m̂,m ∈M (u) (5)

Then, the objective of multiple migration planning can be
represented as:

maxW (Ii) ,∀Ii ∈
{
Iiiter

}
(6)

The weight of node W (u) = 1 when there is no need
to differentiate migrations in different nodes. Generating
the maximum (weighted) independent set of an undirected
acyclic graph is a well known NP-hard problem [34], [35].
Therefore, generating the iterative maximum independent
set as the subset is also NP-hard.

4.5 Complexity Analysis
Because an independent set of G is a clique in the com-
plement graph of G and vice versa, the independent set
problem and the clique problem are complementary [33],
[34], [36]. In other words, listing all maximal independent
sets or finding the maximum independent set of a graph
equals listing all maximal cliques or finding the maximum
clique of its complement graph. Thus, in each iteration,
we can equivalently find the maximum independent set by
getting the maximum clique Ci of the complement graph
Ci
(
Ḡi
)

= Ii (Gi).
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It is known that all maximal cliques can be calculated
in a total time proportional to the maximum number of
cliques in an n-vertex graph [36]. In other words, each clique
is generated in a polynomial time in all maximal cliques
listing [34]. When we only consider vertex, the maximal
cliques listing algorithm (CLIQUES) [35], [36] based on
Bron-Kerbosch [33] is the optimal algorithm. The worst-case
running time of CLIQUES is O(3n/3). The upper bound of
all maximal cliques or independent sets of a graph is 3n/3

[37]. For the problem of finding one maximum independent
set, the time complexity is improved from O(2n/3) in [38] to
O(20.276n) [39]. Based on the work [39], the best-known time
complexity is O

(
2n/4

)
[40]. Therefore, it is computationally

impossible to solve the exact problem of listing all maximal
cliques (maximum clique) of its complement graph Ḡdep or
all maximal independent sets (maximum independent set)
of Gdep for the real-time live container migration schedul-
ing in edge computing which exhibits an exponential time
complexity.

5 MIGRATION PLANNING AND SCHEDULING

In this section, we present the proposed planning and
scheduling algorithms for large-scale live container migra-
tions in edge computing. With the waiting live container
migration requests and planned unfinished live migrations
as the input, the migration planner needs to efficiently
schedule arriving migrations while maintaining the QoS.
Based on the problem modeling in Section 4.4, this problem
is reduced to finding an MIS of the migration dependency
graph iteratively. Therefore, we propose two major ap-
proaches to generate the iterative MISs of the dependency
graph: (1) Direct iterative MIS generation and (2) Maximum
Cliques (MCs)-based MIS generation.

5.1 Direct iterative-Maximal Independent Sets
For the direct iterative MIS generation, we follow the ratio-
nals based on the planning model as follows: (1) Create de-
pendency graph Gdep based on the source, destination, and
network routing of the input migrations and the network
topology; (2) Generate the Maximum Independent Set (MIS)
I of G; (3) Delete the nodes u ∈ I from G if its migration list
M(u) is empty; and (4) Repeat the procedure 2 and 3 until
there is no vertices left Gdep = ∅.

5.1.1 The Approximation
For the approximation algorithm (approx) of creating the
iterative maximum independent set, the procedure is as
follows: In the approximation algorithm (Algorithm 1), we
use the approximating maximum independent sets algo-
rithm by excluding subgraph [41] to generate MIS in each
iteration. Note that we skip the MIS generation and re-
move the migrations directly if the node size of Gdep is
unchanged in the current iteration. In other words, if we
need to recalculate the MIS of the remaining graph, there is
at least one node removed from the graph Gi. Given total
m live container migrations, we create the corresponding
dependency graph with n vertices. Therefore, regardless of
the total number of migration requests, the upper bound of
the complexity of planning multiple migrations scheduling

is limited by the involved source, destination, and net-
work routing. In the worst case, the planning algorithm
only needs at most n iteration rounds to calculate the
concurrent migration group. In each iteration, it guarantees
O(n/(log n)2) approximate maximum independent set in
polynomial time [41].

Algorithm 1: Iterative approximation grouping

Input: {Gdep}
Result: migGroups {Iiter}

1 i← 0; Gi ← Gdep; {Iiter} ← ∅;
2 while V (Gi) 6= ∅ do
3 Ii ← APPROX_MIS(Gi);
4 Gi+1 ← Gi [[V (Gi)− Ii]];
5 {Iiter} ← {Iiter} ∪ Ii;
6 i← i+ 1;

Based on the newly generated scheduling plan {Iiter},
the SDN-enabled on-line migration scheduler will start
all feasible migrations in the first group I0, considering
the resource dependency with current running migrations.
Then, whenever a migration finishes, the scheduler starts all
remaining feasible migrations in each concurrent migration
group Ii followed by the scheduling plan order.

5.1.2 Greedy MIS Algorithm
The greedy algorithm (iter-GWIN) generates the concurrent
groups (MIS) of live migration iteratively. A greedy maximal
independent set algorithm (GWIN) [42] based on the weight
and the degree of a node is adapted to directly generate the
MIS in each iteration. Let ∆G denote the maximum degree
and d̄G is the average degree of G. The degree of node u in
G is dG (u) = |NG(u)|. NG (u) is the set of neighbor nodes
of vertex u and N+

G (u) = NG (u) ∪ {u}.

Algorithm 2: iter-GWIN

Input: {Gdep}
Result: migGroups {Iiter}

1 i← 0; Gi ← Gdep; {Iiter} ← ∅;
2 while V (Gi) 6= ∅ do
3 Ii ← ∅; Gj ← Gi; j ← 0;
4 while V (Gj) 6= ∅ do
5 select node û in Gj ;
6 Ii ← Ii ∪ {û};
7 Gj+1 ← Gj

[
V (Gj)−N+

G (û)
]
;

8 j ← j + 1;

9 Gi+1 ← Gi [[V (Gi)− Ii]];
10 {Iiter} ← {Iiter} ∪ Ii;
11 i← i+ 1;

As shown in Algorithm 2, from line 3-8, it selects the
node with largest score regarding the minimal degree and
maximal weight:

W (u)/(dGi
(u) + 1) (7)

It removes the selected node and its neighbors from the
graph and repeats the procedure until there is no vertices
left.



8

As mentioned in the problem modeling, the weighted
node equals the maximum weight of migrations from its
list. The migration weight could be arrival time, estimated
migration time, or correlation network influence [21] after
migration for non-time-critical migrations and the deadline
or slack time for real-time migrations scheduling. In this
paper, we consider the weight function regarding the slack
time τ as follows:

W (m) =


10 · β/τ

100 · |τ |/β
100

τ > β
τ < −β
other

(8)

where β is the slack time threshold. We set β = 1 in
this paper. The weight of node is W (u) = γ · W (m),
where γ is the coefficient regulator for the urgency of
the scheduling migration. We set γ = 1. Moreover, in
the situation that the priorities of all migrations are the
same, we only need to consider the size of MIS. The
node weight is set to 1 W (u) = 1. In each iteration, the
lower-bound of the maximum (weighted) independent set
is
∑
u∈V W (u)/(dG (u) + 1) [42]. As iteration is n in the

worst case, the time complexity of iter-GWIN is O(n2 log n)
for weighted graph and O

(
n2
)

for unweighted graph.

5.2 The Maximum Cliques-based Heuristics
In this section, based on the observation of the density prop-
erty of migration resource dependency graph, we propose
the iterative Maximum Cliques (MCs)-based algorithm. We
first discuss the rationals of the proposed algorithm.

The degeneracy of a graph G is the smallest number
d such that every subgraph of G contains a vertex of
degree at most d. It is a measure for the graph spareness.
For an n-vertex graph with degeneracy d, by introducing
the sequence ordering based on degeneracy, Bron-Kerbosch
Degeneracy algorithm [43] can list all maximal cliques in
timeO(dn3d/3). With a spare graph that n ≥ d+3, the upper
bound of all maximal cliques number is (n− d) 3d/3. Figure
6 illustrates the nodes and the density (degeneracy) of the
resource dependency graph of WAN network topologies
[44] and its complement. It shows that the degeneracy of the
complement graph Ḡdep is 4.34 times that of Gdep. For Gdep
and its complement graph, the average ratio of dependency
d to the total number of nodes n is 0.153 and 0.714, respec-
tively. The resource dependency graph is considerably more
sparse than its complement graph. Therefore, forGdep, there
are much fewer maximal cliques than the total MIS. As
a result, according to the theoretical time complexity, the
running time of listing all maximal cliques or maximum
clique of Gdep is much smaller than that of listing all
maximal independent sets or maximum independent set
of Gdep. Therefore, the iterative Maximum Cliques (MCs)-
based heuristics algorithm has two steps: (1) calculate the
list of iterative maximum cliques and (2) generate the iter-
ative maximal independent set based on the list. As nodes
from one maximal clique can not be included into the same
independent set, the iterative maximum cliques serve as a
heuristic pruning decider to speed up the algorithm.

5.2.1 Iterative-rounds MCs algorithm
Let Ĉi denote the maximum clique and

{
C̄i
}

denote the
maximal cliques list of round i graph. The iterative-rounds
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Fig. 6: Total number of nodes and degeneracy number of
resource dependency graph of WAN topologies [44] and its
complement graph

Algorithm 3: Iterative heuristic of migration group-
ing

Input: {Gdep}
Result: migGroups {Iiter}

1 {Citer} ← ∅;{Iiter} ← ∅;
2 while |Gdep| ! = 0 do
3 {Iterative creating Maximum Cliques}
4 Ĉi ← MAXIMUM_CLIQUE(Gdep);
5 Gdep ← Gdep

[
V (Gdep)− Ĉi

]
;

6 {Citer} ← {Citer} ∪ Ĉi;
7 while {Citer} 6= ∅ do
8 I ← ∅
9 foreach Ĉi in {Citer} do

10 m← ADDINDEP(I, Ĉi);
11 DELNODE (Ĉi , m);

12 {Iiter} ← {Iiter} ∪ I ;

13 return {Iiter}

Maximum Cliques (MCs)-based heuristic algorithm (Algo-
rithm 3) follows two steps: (1) generating the maximum
clique iteratively and (2) obtaining the MIS from the iterative
maximum cliques.

As shown in Algorithm 3, we first create dependency
graph Gdep as the input based on the source-destination of
the given migrations and the network topology. From line 1-
6, the algorithm calculates the iterative maximum cliques of
the dependency graph until there is no vertices left. In each
iteration, it generates the maximum clique (Bron-Kerbosch
Degeneracy algorithm) [43] of the remaining graph. It is
proved that the algorithm is highly efficient in a sparse
graph, such as the resource dependency graph [43]. Then,
it updates the remaining graph by deleting the nodes of
the maximum clique from Gdep. Let dG[C](u) = |NG[C](u)|
denote the degree of node u to the remaining graph which
excludes all nodes in the clique. The node score can be
represented as:

W (u)
/(
dG[C] (u) + 1

)
(9)

In the second step (line 7-12), it generates maximal
independent sets based on the iterative maximum cliques.
In each round (line 9-11), it selects the feasible node with
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maximum score of each maximum clique Ĉi and adds
largest-weight migration from its list into the independent
set. A node is feasible when it can be included in the
current independent set. If there is no migrations left in the
migration list of the selected node M(u), the selected node
is removed from the clique. As the largest possible number
of maximal cliques in an n-vertex graph with degeneracy d
is (n− d) 3d/3. Therefore, according the iter-MCs algorithm,
the upper bound of the size of the iterative maximum
independent set of each iteration is also (n− d) 3d/3. In the
worst case, the time complexity of iter-MCs is O(dn23d/3).

Theorem 1 (Correctness of MIS from Maximal Cliques). The
Independent Sets generated from maximal cliques are the maximal
independent sets of the graph.

Proof. Iq = {q0, q1, q2, ..., qd} is one of the independent
sets generated from the maximal cliques of G (V,E), where
one vertex comes from only one maximal clique q ∈ Cq .
Assume, for the sake of contradiction, there is at least one
vertex p, p ∈ Cp exists, that Iq ∪ {p} is also an independent
set. That is, there is no edge between p and any other vertex
∀q, q ∈ Iq , ¬∃ (p, q) ∈ E. Based on the definition of the
heuristic algorithm, we can get ∀r ∈ Cp, r /∈ Iq , that ∃q ∈ Iq ,
where (p, r) ∈ E. Thus, ∃p, q, where p ∈ Cp, q ∈ Iq , that
¬∃ (p, q) ∈ E and ∃ (p, q) ∈ E, which is impossible. Since,
we have a contradiction, it must be that Iq is a maximal
independent set.

5.2.2 Single-Round MCs Algorithm

Furthermore, we propose a single-round MCs-based algo-
rithm (single-MCs). It generates the optimal iterative max-
imum cliques only based on the all maximal cliques of the
initial dependency graph Gdep. The maximum clique size of
each iteration is the same as the iter-MCs. We also prove the
correctness of the proposed single-round iterative maximum
cliques algorithm.

Algorithm 4: Single-round iterative maximum
cliques

Input: {Gdep}
Result: migGroups {Citer}
SINGLE-ITER({Gdep}):

1 {Citer} ← ∅;
2
{
C̄
}
← FINDCLIQUES(Gdep);

3 while
{
C̄i
}
6= ∅ do

4 Ĉi ← MAX(
{
C̄
}

);
5 {Citer} ← {Citer} ∪ Ĉi;
6

{
C̄
}
← DELNODES (Ĉi,

{
C̄
}

);

7 return {Citer}

The first step of the iter-MCs algorithm is replaced by
Algorithm 4. The algorithm only generates the list of all
maximal cliques {C̄} once by using the Bron-Kerbosch
Degeneracy algorithm. Until there is no vertices left in the
clique list, it selects the maximum clique (largest maximal
clique) Ĉi from the list and deletes the nodes of the selected
maximum clique from all maximal cliques.

0 10 20 30 40 50 60 70 80
No. of Iterations

0

500

1000

1500

2000

De
gr

ee
 n

um

indep_approx
clique
indep_heu

Fig. 7: Degree of iteration cliques/independent set to the
remaining nodes

Theorem 2 (Correctness of the algorithm single-MCs). Given
a graph G = (V,E) V 6= ∅ , the single iteration algorithm
SINGLE-MCs generates all and only iteration maximum cliques.

Proof. It is proven that the Bron-Kerbosch Degeneracy al-
gorithm generates all and only maximal cliques without
duplications [43]. Then, we only need to prove the results
of iterative maximum cliques are the same in iter-MCs
and single-MCs, i.e., one can get all the iterative maximum
cliques based on the maximal cliques of the original graph
by deleting the vertices from the maximum clique in the last
round.

Let C (G) = {C0, C1, ..., Cd} denote all maximal cliques
of the original graph G, where |Ci| ≥ |Ci+1|. ∀Ci, Cj ∈
C (G), that Ci 6= Cj , Ci 6⊂ Cj . The next iteration
graph is G\C0 = G [V (G)− C0]. Then, C(G\C0) =
{C ′

1, C
′

2, ..., C
′

e}. The output of first round of single-MCs is
C (G) \C0 = {C ′′

1 , C
′′

2 , ..., C
′′

e }.
Assume, for the sake of contradiction, there is one max-

imal clique Cf = C
′′

i ∪ {q}, q ∈ V − C0, q /∈ C
′′

i , which
Cf ∈

{
C

′

j

}
and Cf /∈

{
C

′′

i

}
. Based on the algorithm single-

MCs and definition of maximal clique, due to {q} /∈ C0,
Cf ∪ C0 is also a maximal clique that Cf ∪ C0 ∈ C (G).
However, as C0 is the maximum clique of G, it is impossible
that Cf /∈ ∅. Since, we have a contradiction, the Cf is not
exist. Therefore, C (G) \C0 = C(G\C0).

6 GRAPH ALGORITHM PERFORMANCE AND
ANALYSIS

In this section, we evaluate proposed migration planning
algorithms for the problem of iterative MIS generation: (1)
iter-MCs (2) single-MCs; (3) approximation; and (4) iter-
GWIN, in processing time, maximal independent set size,
and iteration rounds. Based on more than two hundred
real network WAN topologies [44], we consider a set of
live migration requests with each source and destination
combination. Each migration request corresponds to one
combination with the network routing of the shortest path.
We run the computational experiments in Python 3.6.3 and
NetworkX package [45] version 2.4 as the graph library with
source code.

The iterative maximum clique generation of migration
dependency graph is faster than that of iterative MIS in
three aspects: (1) As the analysis of dependency graph in
section 5.2, dependency graph Gdep is more sparse than its
complement Ḡdep. Therefore, getting the maximum clique
of Gdep in one iteration is faster than that of Ḡdep; (2) The
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TABLE 2: Performance comparison with first, second, and third quartile of processing time, total MIS number (iteration),
maximum, mean, 95th, and 99th quartile of the independent set size in each result of the total 202 WAN topologies

algorithm proc. time (s) total sets |{I}| max({|I|}) mean({|I|}) 95%({|I|}) 99%({|I|})
single-MCs 8.8115 1.0047 0.1554 164.5 75.0 30.0 88.0 54.0 36.0 8.1594 6.1667 5.0 23.05 16.8 12.825 45.9 25.8 17.7
iter-MCs 49.1566 4.5807 0.4723 165.0 75.0 30.0 88.0 54.0 36.0 8.1594 6.2124 5.0 23.0 16.8 12.65 45.6 26.0 17.7
iter-GWIN 14.2786 1.4916 0.1610 159.5 76.0 31.0 88.0 54.0 36.0 8.2844 6.3448 5.1909 24.8 18.0 13.15 48.9 27.0 18.6
approx 1115.2929 57.2547 5.5257 171.5 84.0 32.0 59.0 36.0 25.0 7.7568 5.9492 4.6946 21.6 15.85 12.0 36.8 23.2 15.8

Fig. 8: Processing time comparison between iter-MCs and
approximation

Fig. 9: Processing time comparison between iter-GWIN, iter-
MCs, and single-MCs

maximum clique can reduce the complexity of the graph
much more efficiently in each iteration; and (3) There are
fewer iterative maximum cliques of Gdep than the iterative
independent sets. In other words, the number of iteration
rounds of the iterative maximum clique is smaller.

Figure 7 demonstrates an illustrative result of one of
the network topology (Australia’s Academic and Research
Network, AARNet). The dependency graph consists of a
total of 342 nodes and 11754 edges. It shows the degree of
the maximum clique and independent set in each iteration
to the remaining nodes. In other words, it is the edges of
the removed nodes in each iteration excluding the edges
between nodes from the maximum clique. Note that there is
no edges (degree is zero) between nodes in one independent
set. With the degree in the maximum clique and the degree
to the remaining graph, the complexity of Gdep is dropped
dramatically in the first three iterations. On contrary, by
removing the maximum independent set, the complexity
of the graph remains at a high level and declines steadily.
Furthermore, the number of total iterative maximum cliques
and iterative MISs is 47 and 70, respectively. Comparing the
result of the approximation (indep approx) with iter-MCs
(indep heu), the heuristic iterative MCs-based algorithm
achieves better performance in the size of the maximum
clique in each iteration and the total iteration rounds.

Since the processing time varies greatly, we use two
separated figures to represent the results of processing time.
Figure 8 shows the performance comparison between the

approximation (approx) and iter-MCs in processing time.
Figure 9 shows the comparison between iter-MCs, single-
MCs and iter-GWIN. The results of computational exper-
iments indicate that the approximation algorithm has the
worst performance in processing time. From approx to iter-
MCs (Fig. 8), the average processing time of all topologies
decreases by 91.32%. From iter-MCs to iter-GWIN and iter-
GWIN to single-MCs, the average processing time decreases
by 57.40% and 20.84%. Table 2 also illustrates the third
(Q3), second (mean), and first quartile (Q1) of the average
processing time. For the dependency graph with every
source and destination combinations of a relative small size
network, the single-MCs and iter-GWIN can both generate
the scheduling plan in around 0.15 seconds. However, the
performance difference in processing time increases with
the size of the network topology. For mean and the Q3
of all processing time results, the average processing time
of single-MCs decreased by 32.64% and 38.29% from iter-
GWIN, respectively. In summary, the single-MCs algorithm
has the best performance in processing time.

We also evaluate the size of the result list or iteration
rounds |{I}|. It is the number of sets the algorithm divides
into different concurrent groups for the given migrations.
For the approx algorithm, from Q3 to Q1, it generates 171.5,
84.0, and 32.0 many of iterative MIS in one planning result.
From approx to iter-MCs, the iteration number decreases by
3.79%, 10.71%, and 6.25%, respectively.

For the performance in iterative MISs of each graph, we
examine the size of the largest iterative MIS (max({|I|})) and
the mean size (mean({|I|})). As the first several rounds of
the result are the most essential factors on scheduling per-
formance, we also evaluate the algorithm in the 95-quartile
and 99-quartile of the iterative MISs size. The algorithm
iter-GWIN has the best performance in the large network
topology. The total number of iterative MIS is reduced by
3.04% compared to the results of single-MCs. Although the
mean results of the set size mean({|I|}) of approx algorithm
is close to other three algorithms, its performance in the
first several iterations is the worst. As a result, the total
set of approx algorithm is significantly larger than other
algorithms. For the maximum set size, single-MCs, iter-
MCs and iter-GWIN has the identical performance in Q1,
mean, and Q3 from all results of network topologies. For
the 95th and 99th quartile iter-GWIN for directly calculate
the maximum clique has a slightly better performance over
the iterative MCs-based heuristic algorithms even though
the processing time is higher.

7 SIMULATION AND PERFORMANCE EVALUATION

In this section, we evaluate proposed solutions using real-
world traces on an event driven simulator. We first describe
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the real-world telecom base station dataset and taxi GPS
traces used in the experiments. We explain the placement
of edge data centers and the network topology and re-
gion coverage of each EDC. The event-driven simulator for
software-defined network-enabled edge-cloud computing
CloudSimSDN [46] is extended to emulate the the user
movement and the live container migration in edge com-
puting. It provides a network operating system based on
the software-defined networking for dynamic service and
network resource monitoring and allocation. Compared to
the simulation results driven by mathematical models, this
can generate more realistic results without following the
strong assumption encoded in the proposed mathematical
modeling.

We compare and evaluate the performance of live con-
tainer migration planning and scheduling algorithm (iter-
GWIN and single-MCs) against a policy with no planning
scheduling and the state-of-art live VM migration cloud
algorithm FPTAS [22] in processing time, migration time,
downtime, transferred data, deadline violations, and net-
work transmission time.

7.1 Experimental Data
In this section, we describe the base stations coordinates pro-
vided by Shanghai Telecom dataset1 and Shanghai Qiang-
sheng taxi GPS trace dataset (April 1, 2018)2 used in our
experiments. The given data is preprocessed by limiting the
range of the longitude and latitude from 30.40◦ N to 31.35◦

N and 120.51◦ E to 122.12◦ E as there are some taxis travel
to nearby cities. The Shanghai Telecom dataset contains the
longitude and latitude coordinates of a total of 3233 base
stations as shown in Fig. 10a. We use K-means algorithms
[47] to generate the location of a total of 200 Edge Data
Centers (EDCs) based on the longitude and latitude of the
given base stations. Figure 10b illustrate the taxi GPS trace in
the first hour. Besides the GPS coordinates and timestamp,
each data record of the taxi dataset also includes the taxi
id, service status, such as alarm, occupation, taxi light, road
type, and breaking, as well as vehicle speed, direction, and
the number of connected satellites.

Figure 10c illustrates base stations are clustered and
connected to one of the regional Edge Data Centers. There
is no information on the physical network topology and
connectivity between EDCs. As shown in Fig. 10c, for the
geometric spanner, we choose Delaunay Triangulation [48]
to generate links between the gateway of each EDC. For
the network routing within the generated network topology,
we consider the shortest path, which is no longer than
4π/3

√
3 times the Euclidean distance between source and

destination. As a result, the boundary of EDC regions (Fig.
10d) is a Voronoi diagram [48] where the Euclidean distance
of any point to its corresponding EDC region is less than or
equal to its distance to any other EDC.

Similar to other research regarding the generation of
mobility-induced live migrations in edge computing [17],
[18], we combine these two datasets to simulate the sce-
narios where the user needs to connect to the services
and maintains the low end-to-end latency through live

1. http://sguangwang.com/TelecomDataset.html
2. http://soda.shdataic.org.cn/download/31

container migration in edge computing environments. Fig-
ure 11 demonstrates an example that the request of live
container migration is induced when a taxi moves across
the boundary between two clusters of EDCs. The deadline
of each live container migration is generated based on the
average mobility speed of users in the last 3 GPS records,
travel direction, and the signal strength of base stations.

7.2 Experimental Setup

TABLE 3: Multiple container migration scenarios

Scenario S1 S2 S3
vehicles 1000 2000 4000
migrations 9933 19522 37822

In this section, we describe details of the experiment
setup. The end-to-end delay between the user and the ser-
vice is the time interval from the user (taxi) sent workload to
the container assigned in the EDC to the result is received by
the user. To generalize computer vision use case workloads,
the service task generated during the experiments follows
the Poisson distribution with a mean of 24 per second (24
FPS). In each task, the network packet size sent from a user
is 16384 bytes (128 ∗ 128 bytes). The processing workloads
in the container are randomly generated from 500 to 1000
cycles per bit [18]. The result packet sent back from the
container to the user is 128 bytes. The sum CPU power
frequency for each EDC with multiple CPUs is 25 GHz [49],
[50]. To simulate the limited network resources for migra-
tions in the edge, we consider that the reserved network
bandwidth between a container and its user is 3 Mbps. The
physical network bandwidth is 1 Gbps. The network delay
between any based station to its regional EDC is 5 ms and
the delay between two EDCs is randomly generated in the
range 5 to 50 ms [18].

According to the evaluation results of container memory
and dirty memory size during live container migrations [16],
we generate the container memory from 100 MB to 400 MB.
The dirty page rate for each dirty memory transmission is
from 2MB/s to 8MB/s and the data compression rate is 0.8
[51]. We configure the downtime threshold and the maxi-
mum iterations for live container migration at 0.5 seconds
and 30 times [30], respectively. Based on the SDN controller,
the remaining network bandwidth between the source and
destination EDC which is not utilized by services is allo-
cated to the live container migration traffic. If several live
migrations are sharing part of their routings, the bandwidth
will be allocated evenly to each of the network flows.

From the experimental scenario S1 to S3 (Table 3), 1000,
2000 and 4000 vehicles are selected randomly. We consider
the GPS trace of selected vehicles within 1 hour. For the
initial placement at the start of the experiment, we allocate
corresponding containers for each vehicle at the same edge
data center according to its GPS coordinates. The nearest
edge data center first policy is considered for our exper-
iment to generate the live container migration requests.
According to the user mobility, one live container migration
will be triggered when one vehicle exits the coverage area of
its current edge data center. There are 9933, 19522, and 37822
migration requests induced by these vehicles’ movement,
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Fig. 10: Experimental dataset and configurations of longitude and latitude

Fig. 11: Example of live migration request triggered by user
movement of longitude and latitude

TABLE 4: Total processing time comparison in milliseconds

algorithm S1 S2 S3
iter-GWIN 306.9607 762.3356 3997.8309
single-MCs 332.5682 583.3951 1544.6291
FPTAS [22] 903597.39 1923036.81 4677990.57

respectively. During the live container migration, the dirty
memory of migrating container will be copied iteratively
from the source edge data center to the nearest edge data
center through the shortest network path. For the evaluation
sensitivity, the results of each scenario are an average of
10 individual experiments. In this experiment, we consider
that the container image as a universal service is already
available in all edge data centers or shared by the network
storage between EDCs. CloudSimSDN-NFV [46], an event-
driven simulator, is extended with corresponding compo-
nents to support the live container migration and user
mobility in edge computing environments.

7.3 Experimental Results and Analysis

In Section 6, we compare the algorithm performance in
terms of the size of iterative MISs and processing time. Thus,
we only evaluate the two best algorithms in this section.
We compare the experimental results between no migration
scheduler, iter-GWIN, single-MCs, and the current state-of-
the-art migration planning and scheduling in clouds FPTAS
[22]. In FPTAS, to maximize the total bandwidth utilized
by migrations, one migration can be started even there is
considerably limited bandwidth which is much lower than

the dirty page rate per second. The solution can cause devas-
tating migration performance. Thus, we improve FPTAS by
adding a bandwidth threshold (FPTAS-BW) that the avail-
able bandwidth must larger than the dirty page rate as the
migration start condition. As the vehicle number increases
from scenario 1 (S1) to scenario 3 (S3), the density of live
migration requests in certain areas increases dramatically.
The resource competition or resource dependency among
live container migration requests will also increase. As a
result, the complexity of the dependency graph may also
increase. When the requirements of live container migration
requests exceed the resource capacity provided by the edge
computing, it is inevitable that some of the deadlines of
some migration requests can not be satisfied.

Table 4 shows the total processing time of migration
planning and scheduling algorithms within 1 hour in mil-
liseconds. From S1 to S3, the average processing time of
single-MCs for each migration planning is 0.1175, 0.1936,
and 0.4904 milliseconds. Compared to iter-GWIN, the pro-
cessing time of single-MCs decreased by 61.36% in scenario
S3. The results are consistent with the algorithm evaluation
in Section 6. Furthermore, compared to FPTAS [22], the
performance of our solution in terms of processing time
has been improved by more than 3000 times. In S3, the
processing time of FPTAS is about 78 minutes. As a result,
even with any weight modification in the algorithm, the
migration deadline in seconds will be missed. Therefore,
as the results of FPTAS-BW in deadline violation are off
the limit of chart comparison, we only compare it in the
migration performance.

From S1 to S3, without migration planning and schedul-
ing, more live migrations compete with each other on the
network routing and the available bandwidth. As a result,
the average migration time increases dramatically from 2.25
and 4.59 seconds to 299.89 seconds (Fig. 12a). Particularly, in
S3, the allocated bandwidth may either be smaller than the
dirty page rate and cause a large downtime for some migra-
tions. Or, it causes a much longer migration time due to a
large number of memory-copying iterations. As a result, the
migrating service suffers a devastating consequence. Fur-
thermore, for FPTAS-BW, by maximizing the total migration
bandwidth rather than the resource competitions, it suffers
smaller average bandwidth per migration. Thus, as shown
in Fig. 12 the performance of our purposed solution in terms
of average migration time, average downtime, and total
transferred data are increased by up to 30.24%, 51.56%, and
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Fig. 12: Migration performance comparison with no scheduler, iter-GWIN, and single-MCs under different scenarios.

2.06%, respectively. Meanwhile, for the proposed planning
and scheduling algorithms iter-GWIN and single-MCs, the
performance of live migration can be guaranteed even with
severe resource competitions. Results (Fig. 12a, 12b) show
that the average migration time and downtime are optimal
at 1.9 sand 0.13 seconds as there is no bandwidth sharing
between resource-dependent migrations. Furthermore, for
all the migrations that arrive within the 3600 seconds time
interval in S3, iter-GWIN and single-MCs can finish the
scheduling of all migrations in 3603.91 and 3601.43 seconds.
However, the total migration time of no scheduler is 3603.43
seconds in S2 and 48878.65 seconds in S3. A shorter average
migration means less possibility of QoS degradation and
less occupation time on the network resource. A smaller
downtime equals fewer disruptions on the migrating ser-
vices.

Another critical migration performance is the transferred
data of the live migration. It is also highly related to
network energy efficiency. In S1 and S2, although average
migration time and downtime increase due to less allocated
bandwidth, there is no surge in the transferred data for the
no migration scheduling situation (Fig. 12c). Because of the
container’s small memory footprint, the shared bandwidth
can still satisfy the downtime threshold with relatively small
memory-copying iterations. However, when the bandwidth
becomes the bottleneck, a large number of memory-copying
iteration needed to meet the downtime threshold. There-
fore, the total transferred data in S3 increase by 114.47%
compared with the optimal result from single-MCs.

The deadline of a live migration request is highly related
to the QoS and SLA requirement of the real-time migrating
service. For iter-GWIN and single-MCs, the ratio of migra-
tion violation numbers to the total migration number is
0.071% and 0.107% in S2 and 0.756% and 1.002% in S3
(Fig. 12d). However, the ratio for no migration scheduler
is 3.07 times in S2 and 8.46 times compared to the best
result from iter-GWIN. The ratio of total violation time to

the service time of all containers in one hour is 0.00127%
and 0.00148% in S2 and 0.0425% and 0.0720% in S3, re-
spectively (Fig. 12e). In S3, although migration performance
in terms of migration time and downtime is optimized by
the migration scheduler, the network resource is insufficient
to schedule all 37822 migration requests on time with the
live migration competitions. It is inevitable to violate the
deadline of certain migrations with lower priority to satisfy
the deadline for others. As a solution, one needs to increase
the network resource by providing duplicate EDCs and
additional network routing or available bandwidth in the
hot spot to alleviate the deadline violation of real-time
migrations.

The end-to-end delay for the migrating edge service is
affected by the migration downtime and the duration of
deadline violation. For the network transmission time, we
compare the results of no user movement and no migration,
no migration requests with user movement, no scheduler,
iter-GWIN and single-MCs (Fig. 12f). In the scenario that
all vehicles stay at the s and do not move during the
experiment time (nomov), the average network transmis-
sion time to the service or the end-user is from 17.4 to
19.9 milliseconds from S3 to S1. Without the live migration
requests (nomig), the end-to-end delay can be not guar-
anteed due to the network delay between the EDC and
the end-user. Specifically, the average network transmission
time is around 56 milliseconds. The live migration planning
and scheduling algorithm (iter-GWIN and single-MCs) can
guarantee the average service network transmission time.
In S3, without a migration scheduler, the downtime and
deadline violation have a considerable impact on the service
network delay. The network delay increases by 6.62 times
compared to the result of iter-GWIN.

In summary, our proposed algorithms can efficiently
plan and schedule large-scale mobility-induced live con-
tainer migrations in edge computing. Even in the case of
a migration request surge, it guarantees the performance of
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live container migrations and maintains the QoS of migrat-
ing services. It significantly reduces average migration time
(up to 99.36%), average down time (up to 99.94%), total
deadline violations (up to 88.18%) and violation time (up to
99.94%).

8 CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the challenges of live con-
tainer migration scheduling in edge computing environ-
ments including (1) resource competition or dependency
among live migrations and (2) real-time migration plan-
ning and scheduling. We modeled the relationship of re-
source dependency among migrations as an undirected
graph. and the scheduling problem as generating the maxi-
mum independent set of the dependency graph iteratively.
We proposed a framework for user-triggered or mobility-
induced migration scheduling which is different from the
traditional scheduling for live VM migrations in cloud data
centers. The SDN is introduced to separate the computer
network to minimize the impact of migration flows on
other edge services. Based on the dynamic computing re-
sources, network resources and topology provided by the
container/VM orchestration engine and SDN controllers,
the migration management service can plan and schedule
multiple migration requests in a fine-grained manner. We
proposed two methods for large-scale migration planning
and scheduling algorithms based on iterative Maximal Inde-
pendent Sets. Computational experiments were conducted
to evaluate the algorithms’ performance. Furthermore, the
results of experiments based on real-world data indicate
that proposed algorithms can efficiently plan and schedule
large-scale mobility-induced live container migrations in a
complex network environment in a timely manner, while
maintaining the QoS of migrating services. It can optimize
the live migration performance and minimize the deadline
violation in migration scheduling. As part of the future
work, we intend to investigate base station clustering for
EDC placement based on user mobility information to re-
duce the number of live migrations.
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independent sets by excluding subgraphs,” BIT Numerical Mathe-
matics, vol. 32, no. 2, pp. 180–196, 1992.

[42] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy
algorithms for the maximum weighted independent set problem,”
Discrete applied mathematics, vol. 126, no. 2-3, pp. 313–322, 2003.
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