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Abstract—This paper proposes a novel design on the wireless
powered communication network (WPCN) in dynamic envi-
ronments under the assistance of multiple unmanned aerial
vehicles (UAVs). Unlike the existing studies, where the low-power
wireless nodes (WNs) often conform to the coherent harvest-then-
transmit protocol, under our newly proposed double-threshold
based WN type updating rule, each WN can dynamically and
repeatedly update its WN type as an E-node for non-linear
energy harvesting over time slots or an I-node for transmitting
data over sub-slots. To maximize the total transmission data
size of all the WNs over T slots, each of the UAVs individually
determines its trajectory and binary wireless energy transmission
(WET) decisions over times slots and its binary wireless data
collection (WDC) decisions over sub-slots, under the constraints
of each UAV’s limited on-board energy and each WN’s node
type updating rule. However, due to the UAVs’ tightly-coupled
trajectories with their WET and WDC decisions, as well as
each WN’s time-varying battery energy, this problem is difficult
to solve optimally. We then propose a new multi-agent based
hierarchical deep reinforcement learning (MAHDRL) framework
with two tiers to solve the problem efficiently, where the soft
actor critic (SAC) policy is designed in tier-1 to determine each
UAV’s continuous trajectory and binary WET decision over time
slots, and the deep-Q learning (DQN) policy is designed in tier-2
to determine each UAV’s binary WDC decisions over sub-slots
under the given UAV trajectory from tier-1. Both of the SAC
policy and the DQN policy are executed distributively at each
UAV. Finally, extensive simulation results are provided to validate
the outweighed performance of the proposed MAHDRL approach
over various state-of-the-art benchmarks.

Index Terms—Multiple unmanned aerial vehicles (UAVs) aided
network, Wireless Powered Communication Network (WPCN),
Trajectory and scheduling optimization, Multi-agent hierarchical
deep reinforcement learning (MAHDRL).

I. INTRODUCTION

The unmanned aerial vehicle (UAV) aided wireless pow-
ered communication network (WPCN) has emerged as one
promising technology to realize the energy-sustainable wire-
less communications. As compared to the traditional WPCNs
with fixed deployment on ground [1] and [2], the UAVs
with high mobility are able to provide more efficient radio
frequency (RF) wireless energy transmissions (WET) to the
low-power wireless nodes (WNs) over the largely shortened
energy transmission distances [3]. This not only evokes an
increased number of sufficiently-charged WNs and thus higher
communication throughput in UAV-aided WPCNs in general

[4], but also enables adaptive and on-demand wireless ser-
vices in different network scenarios [5]. Due to the WNs’
dynamically changing demands for energy harvesting and/or
information transmissions over time, the design of the UAV-
aided WPCN is generally challenging. In the literature, for
the ease of the WPCN design, either the WNs conform to the
coherent harvest-then-transmit protocol [6], or the UAVs are
pre-assigned to transmit energy or collect wireless data as sep-
arate groups [7]. The dynamics of the UAV-aided WPCN have
not been fully explored yet. This motivates us to investigate
both of the WNs’ time-varying service demands and the UAVs’
individually-adaptive trajectory and transmission designs, for
enabling the UAV-aided WPCN in dynamic environments.

A. Related work

UAV-aided wireless communications: Benefiting from the
air-to-ground (A2G) wireless channels with high quality, the
UAVs have been utilized as the aerial base stations (ABS)
to provide ubiquitous wireless connections [8]. The line-of-
sight (LoS) probability based A2G channel model has been
investigated in [9], which shows that the LoS probability
between the UAV and the WN on ground generally increases
with their in-between elevation angle. The joint design of the
UAVs’ trajectories and communication resource allocations
is essential for the UAV-aided wireless communications. For
the single-UAV scenario, the UAV’s trajectory and time re-
source allocation are usually alternatively optimized via the
successive convex approximation (SCA) technique to, e.g.,
maximize the WNs’ minimum achievable data transmission
rate [10] or minimize the age of information (AoI) of the
WNs’ transmission data [11] and [12]. The SCA technique has
also been employed in the multi-UAV communication scenario
[13], but the resultant system performance may be comprised
for the high complexity caused by the coupling between
the multiple UAVs’ trajectories and transmissions [14]. To
achieve higher downlink capacity, the deep reinforcement
learning (DRL) is leveraged in [15] and [16] to determine the
wireless data collection (WDC) schemes and the movements
of multiple UAVs.

UAV-aided WET: The feasibility of the UAV-aided WET
has been validated by the field tests in [17]. The joint design
of the UAV trajectory and WET has been widely studied in
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[18]–[20] for the single-UAV scenario or in [21] and [22]
for the multi-UAV scenario, respectively, to maximize the
total harvested energy at the WNs. However, all the above
studies ideally assumed that all the WNs not only have the
same energy demands, but also utilize linear energy harvesters,
where each WN harvests non-zero direct current (DC) energy
regardless of the UAVs’ transmission distances. It is noted
that for multi-UAV aided WET, [23] proposed a new metric
called the hungry-level of energy (HoE) to measure the WNs’
different and time-varying energy demands, and exploited the
DRL algorithm to design on-demand WET based on non-linear
energy harvesting at the WNs.

UAV-aided WPCN: Despite of the extensive studies on
the UAV-aided communications and the UAV-aided WET, the
design of the UAV-aided WPCN is not a simple combination
of them. Since the WNs use their harvested energy from the
UAVs’ WET in the downlink to support their data transmis-
sions in the uplink to the UAVs, the UAVs’ WET performance
may bottleneck the WNs’ data transmissions in the UAV-aided
WPCN. In the literature, the UAVs’ task period is usually
divided into a WET phase and a follow-up WDC phase [24]–
[26], where each phase has the same time length for all the
UAVs. While such a two-phase protocol simplifies the UAV-
aided WPCN design, due to the WNs’ generally different
energy demands, not all the WNs can harvest sufficient energy
in the UAVs’ WET phase, and thus not all the WNs’ data
transmission requirements can be satisfied in the UAVs’ WDC
phase. Moreover, in [7], instead of evoking adaptive WET and
WDC at each of the UAVs, multiple UAVs were divided into
two groups to separately transmit energy to or collect data
from the WNs, where the deep deterministic policy gradient
(DDPG) algorithm is applied to jointly design the multi-UAV’s
trajectory and resource allocations.

B. Our Contributions

In this paper, we propose a novel design of the wireless
powered dynamic communication network under the assis-
tance of multiple UAVs, where each of the WNs with different
energy demands can dynamically harvest energy whenever in
short energy supply and transmit data whenever sufficiently
charged. To adapt to the WNs’ different service demands, each
of the UAVs individually determines its trajectory and binary
WET decisions over time slots and its binary WDC decisions
over sub-slots. However, due to the UAVs’ tightly-coupled
trajectories with their WET and WDC decisions, as well as
each WN’s time-varying battery energy, the optimal network
design is very challenging to realize using the traditional
optimization techniques. By taking each UAV as an individual
agent, we then propose a novel multi-agent based hierarchical
DRL (MAHDRL) framework with two tiers, to address the
UAVs’ action decisions distributively over the two different
time scales of time slots and sub-slots.

Our main contributions are summarized as follows:
1) Practical System Model with Repeatedly Updating WN

Types: Section II models the multi-UAV aided WPCN by
exploiting the LoS-probability based A2G channel model.

Under the newly proposed double-threshold based WN type
updating rule, each WN repeatedly updates its node type as
an E-node for harvesting energy or an I-node for transmitting
data over time slots. In each time slot, if a WN is an E-node,
a practical non-linear energy harvesting model is applied for
its energy harvesting; and if a WN is an I-node, the sub-slot
based data transmission scheduling is used to alleviate the
UAVs’ received co-channel interference. The battery energy
management at each WN and each UAV are all addressed.

2) Novel Problem Formulaion Solved by MAHDRL Fram-
work: Section III formulates the problem to maximize the
total transmission data size of all the WNs over T slots, by
jointly optimizing the trajectory, the WET decisions, and the
WDC decisions of each UAV, under the constraints of each
UAV’s limited on-board energy and each WN’s node type
updating rule. Due to the high complexity to solve this problem
optimally, we propose the novel MAHDRL framework with
two tiers to solve the problem efficiently, where the soft actor
critic (SAC) policy is executed in tier-1 to determine each
UAV’s continuous trajectory and binary WET decision over
time slots, and the deep-Q learning (DQN) policy is executed
in tier-2 to determine each UAV’s binary WDC decisions over
sub-slots under the given UAV trajectory from tier-1.

3) Hierarchical Training of the Central SAC and the Local
DQN: Sections IV designs the central training of the SAC
policy for tier-1, due to its relatively higher complexity caused
by the entropy-based action space exploration, and Section
V designs the local training of the DQN policy with lower
complexity in tier-2, respectively. For both policies, due to
each E-node’s low battery energy and thus weak transmit
power to report its status, only UAVs nearby (if any) can
observe with its actual status, which generally leads to the
partially observable Markov decision process (POMDP) based
modeling at both the central trainer and the individual UAV.
Due to the mutually affected policy decisions among the two
tiers, the reward functions for both the SAC and the DQN are
designed to achieve the proper trade-off between satisfying the
E-nodes’ and the I-nodes’ different service demands under the
WN type updating rule. Once well trained, both of the SAC
policy and the DQN policy are executed distributively at each
UAV.

4) Extensive simulation results for Performance Evalua-
tion: Section VI validates the outweighed performance of
the proposed MAHDRL approach over various state-of-the-
art benchmarks in both of the training stage and the test
stage. A network example is also illustrated to elaborate
the dynamics of the WNs’ node type variations and the
UAVs’ adaptive trajectories. Moreover, the scalability of the
proposed MAHDRL approach in different network scales is
also validated.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a multi-UAV aided WPCN,
where each of the U ≥ 2 UAVs transmits wireless energy to
and/or collects wireless data from in total of W WNs for a
task period of T slots with T = {1, ..., T}, U = {1, ..., U}



Fig. 1. Multi-UAV aided WPCN with repeatedly changing WN types.

and W = {1, ...,W}. Each UAV flies at a fixed altitude of h
meters (m). To prevent the UAVs’ WET in the downlinks from
causing co-channel interference to their WDC in the uplinks,
each UAV is equipped with two antennas to enable separate
WET and WDC over different and non-overlapped frequency
bands at the same time.

Each WN is installed with a single antenna and a recharge-
able battery, and either harvests energy from or transmits data
to the UAVs in each slot. The WNs that harvest energy in slot
t are referred to as the E-nodes. Each of the E-nodes stores
the harvested energy in its rechargeable battery. The WNs that
transmit data in slot t are referred to as the I-nodes. All the
I-nodes in slot t have sufficient battery energy to support their
data transmissions. We use Fw[t] = {0, 1} to label the type of
WN-w in slot t ∈ T , where WN-w is an I-node if Fw[t] = 1,
or an E-node, otherwise. Correspondingly, the WN set W is
divided into the I-node subset I[t] ≜ {w|Fw[t] = 1, w ∈ W}
and the E-node subset E [t] ≜ {w|Fw[t] = 0, w ∈ W} in slot
t with W = E [t] + I[t]. Due to the time-varying WN battery
energy, each WN’s type and thus the elements in E [t] and I[t]
may all change over different time slots. TABLE I gives the
notations of the key parameters in this paper.

TABLE I
NOTATIONS OF KEY PARAMETERS

Notations Description

Fw[t] The type of WN-w in slot t
qu[t], qw Location of UAV-u or WN-w in slot t
du
w[t] Distance between UAV-u and WN-w in slot t
ϑ, ϱ Time length of a slot or a sub-slot

PW , PU Each WN’s or UAV’s transmit power
Gu

w[t] Channel gain between WN-w and UAV-u in slot t
Zu[t] UAV-u’s WET decision in slot t

Ehar
w [t] Harvested energy at WN-w in slot t

Dt
u,w[k] UAV-u’s WDC decison for WN-w at sub-slot k in slot t

Mt
u,w[k] WN-w’s transmission data size to UAV-u at sub-slot k in slot t

Cw[t] Aggregated transmission data size of WN-w in slot t
Bw[t], Bu[t] Battery level of WN-w or UAV-u in slot t

A. LoS-Probability based Channel Model

Denote the coordinate of WN-w as qw = (xw, yw, 0) and
that of UAV-u in slot t as qu[t] = (xu[t], yu[t], h), respectively,
∀w ∈ W and ∀u ∈ U . Since the time length ϑ of each slot
is generally very short, each UAV’s location is assumed to be

unchanged within each slot. The distance between UAV-u and
WN-w in slot t is obtained as duw[t] = ∥qw − qu[t]∥, where
∥·∥ is the Euclidean norm.

Let Pu
LoS,w[t] = (1 + a exp (−b(βu

w[t]− a)))
−1 denote the

LoS probability between UAV-u and WN-w in slot t [9], where
βu
w[t] = sin−1 (h/duw[t]) is their in-between elevation angle in

slot t, and a and b are two constant parameters measured from
the environment. The non-line-of-sight (NLoS) probability is
thus Pu

NLoS,w[t] = 1 − Pu
LoS,w[t]. The average channel gain

between UAV-u and WN-w in slot t is obtained as

Gu
w[t] = Pu

LoS,w[t]G0d
u
w[t]

−αL + Pu
NLoS,w[t]G0d

u
w[t]

−αN , (1)

where G0 is the average channel gain at a reference distance
of 1 m, and αL and αN with 0 < αL < αN are the LoS link
and NLoS links’ path-loss exponents, respectively.

B. UAVs’ Energy Transmissions to E-nodes
Denote Zu[t] ∈ {0, 1} as UAV-u’s WET decision in slot

t, where UAV-u transmits energy with a fixed transmit power
PU > 0 in slot t if Zu[t] = 1, or keeps silent on the frequency
band for WET, otherwise, to save its limited on-board energy.
We consider a non-linear energy harvester at each E-node,
which transforms its received RF power p at the antenna into
the DC power P̄ (p) stored in the battery nonlinearly as follows
[27]:

P̄ (p) =


0, p ∈ [0, Psen),

f(p), p ∈ [Psen, Psat),

f(Psat), p ∈ [Psat,+∞],

(2)

where Psen and Psat with 0 < Psen < Psat are the sensitivity
power and the saturation power of the energy harvester,
respectively, and f(·) is a non-linear power transform function
that can be obtained through the curve fitting technique [27].
From (2), no DC power is harvested if p < Psen and the
harvested DC power keeps unchanged if p ≥ Psat. Since
the received RF power at E-node-w from all the UAVs is∑U

u=1 PUZu[t]G
u
w[t], its harvested energy in slot t is

Ehar
w [t] = P̄

(
U∑

u=1

PUZu[t]G
u
w[t]

)
ϑ,∀w ∈ W. (3)

Due to the practically high value of Psen (with, e.g., -10 dBm
[28]), the UAVs with Zu[t] = 1 need to locate close to E-
node-w to assure its non-zero energy harvesting.

Denote Bw[t] as the battery energy level of WN-w ∈ W
at the begining of slot t ∈ T and Bmax

W as the WN battery
capacity, respectively. If WN-w is an E-node in slot t, i.e.,
Fw[t] = 0, based on (3), Bw[t+ 1] is updated as

Bw[t+1] = min
(
Bmax

W , Bw[t] + Ehar
w [t]

)
, ∀w ∈ E [t]. (4)

C. UAVs’ Data Collections from I-nodes
For the I-nodes, to alleviate the UAVs’ received co-channel

interference in each time slot, we increase the selections of
time resources by dividing each time slot into K ≥ 2 sub-
slots, as shown in Fig. 1. Each sub-slot is of time length ϱ
with ϑ = Kϱ. Denote Dt

u,w[k] ∈ {0, 1} as UAV-u’s sub-slot
based WDC decision, where Dt

u,w[k] = 1 represents that UAV-
u collects data from I-node-w at the k-th sub-slot in slot t, or
Dt

u,w[k]=0, otherwise. It is considered at any sub-slot k, each
UAV collects data from at most one I-node, and each I-node
transmits data to at most one UAV, which is expressed as

W∑
w=1

Dt
u,w[k] ≤ 1 and

U∑
u=1

Dt
u,w[k] ≤ 1, ∀u ∈ U , ∀w ∈ I[t]. (5)



Denote Γt
u,w[k] as the signal-to-interference-plus-noise-ratio

(SINR) received at UAV-u from I-node-w at the k-th sub-slot
in slot t. Denote PW > 0 as each I-node’s fixed transmit
power. Due to the sufficiently-short time slot length, Gu

w[t] in
(1) is assumed to remain unchanged over all sub-slots in slot
t. As a result, Γt

u,w[k] is obtained as

Γt
u,w[k]=

Dt
u,w[k]PWGu

w[t]∑
i∈U
∑

j∈I[t],j̸=wD
t
i,j [k]PWGu

j [t]+σ2
, (6)

where σ2 is the received noise power at each UAV. Denote
M t

u,w[k] as I-node-w’s transmission data size (bits/Hz) to
UAV-u at the k-th sub-slot in slot t ∈ T . We have M t

u,w[k] =
log2

(
1 + Γt

u,w[k]
)
ϱ. Hence, the aggregated transmission data

size of I-node-w over all the K sub-slots in slot t, denoted by
Cw[t], is obtained as

Cw[t] =

U∑
u=1

K∑
k=1

M t
u,w[k]. (7)

Denote Ctotal as the total transmission data size of all the
I-nodes over all the T slots with Ctotal =

∑T
t=1

∑W
w=1 Cw[t].

To support the data transmissions, each I-node-w consumes
an energy amount of

∑U
u=1

∑K
k=1 D

t
u,w[k]PWϑ in slot t from

its battery. Thus, if WN-w is an I-node with Fw[t] = 1, for a
given Bw[t], Bw[t+ 1] is updated as

Bw[t+ 1]=max

(
Bw[t]−

U∑
u=1

K∑
k=1

Dt
u,w[k]PWϑ,0

)
,∀w∈I[t]. (8)

D. Double-Threshold based WN Type Updating

At the beginning of each slot, based on each WN is an
E-node or I-node in the previous slot, each WN updates its
battery energy level according to (4) or (8), respectively. Based
on the Bw[t], WN-w updates its WN type at the beginning of
slot t according to a double-threshold based WN type updating
rule given as follows:

Fw[t]=

{
1, if Bw[t]≥BI or BE<Bw[t]<BI , Fw[t−1]=1,

0, if Bw[t]≤BE or BE<Bw[t]<BI , Fw[t−1]=0,
(9)

where BE and BI are the given E-node threshold and the I-
node threshold, respectively, with PWϑ < BE < BI . From
(9), WN-w becomes an E-node in slot t when Bw[t] ≤ BE ,
and an I-node in slot t when Bw[t] ≥ BI . When BE <
Bw[t] < BI , there are two cases: 1) if WN-w is an I-node
in the previous slot t − 1 with Fw[t−1] = 1, since Bw[t] is
still higher than the E-node threshold BE , it keeps transmitting
data as an I-node in slot t; and 2) if WN-w is an E-node in
the previous slot t−1 with Fw[t−1] = 0, since Bw[t] does not
exceed the I-node threshold BI , WN-w continues harvesting
energy as an E-node in slot t.

It is noted that unlike the widely-used single threshold to
determine each WN’s type in, e.g., [1], where each WN’s data
transmission is often suspended due to the frequently-changed
node type, by consuming the battery energy from higher than
BI to lower than BE with a sufficiently large BI −BE under
(9), each I-node’s data transmission becomes more reliable.

E. UAVs’ Energy Consumption Model

The energy consumption of each UAV is mainly caused by
the UAV’s movement, WET and WDC. Denote PI as the fixed
WDC power consumption at each UAV. The total WDC energy
consumption of UAV-u in slot t is

∑W
w=1

∑K
k=1 D

t
u,w[k]PIϱ.

From [29], UAV-u’s propulsion power consumption in slot t
is determined by its velocity Vu[t] ≜ 1

ϑ ∥qu[t+ 1]− qu[t]∥ as
follows:

Ppro(Vu[t]) = Pa

(
1 +

3Vu[t]
2

V 2
tip

)
+

1

2
f0ϖe1AVu[t]

3

+ Pb

(√
1 +

Vu[t]4

4e40
− Vu[t]

2

2e20

) 1
2

, (10)

where the details of the constant parameters Pa, Pb, Vtip, e0,
f0, ϖ, e1 and A are given in [29]. The propulsion energy
consumption of UAV-u in slot t is obtained as Ppro(Vu[t])ϑ.
The WET energy consumption of UAV-u in slot t is obtained
as Zu[t]PUϑ. Hence, UAV-u’s total energy consumption in
slot t is Eu[t] =

∑W
w=1

∑K
k=1 D

t
u,w[k]PIϱ + Ppro(Vu[t])ϑ +

Zu[t]PUϑ. Denote Bu[t] as the battery energy level of UAV-u
at the beginning of slot t ∈ T . We obtain that

Bu[t] = max (Bu[t− 1]− Eu[t− 1], 0) . (11)

Assume that each UAV is fully charged at the initial with
Bu[0] = Bmax

U , where Bmax
U is the UAV battery capacity.

At the end of the last slot t = T , UAV-u’s remained battery
energy, denoted by Bend

u , is obtained by substituting t=T +1
into (11).

III. PROBLEM FORMULATION AND MAHDRL
FRAMEWORK

A. Problem Formulation

We jointly optimize the trajectories Q = {qu[t]}, the
WET decisions Z = {Zu[t]}, and the WDC decisions
D = {Dt

u,w[k]} of all the UAVs, to maximize the WNs’
total transmission data size Ctotal, subject to the constraints on
each WN’s minimum required transmission data size, and each
WN’s battery energy and WN type variations over time, as
well as each UAV’s trajectory and battery energy constraints.
The problem is formulated as (P1).

In problem (P1), the constraint in (12) guarantees that the
overall transmission data size of each WN in T slots is no
smaller than the minimum required data size Cmin > 0; the
constraint in (13) ensures that each UAV’s velocity does not
exceed the maximum allowable velocity V max

U ; the constraint
in (14) guarantees that UAV-u’s remained battery energy at
the end is not lower than a required level Bmin

U for, e.g.,
its safe return; the constraints in (15) and (16) represent the
binary WDC and WET decisions of each UAV, respectively;
the constraint in (17) assures a safe distance of dmin between



any two UAVs.

(P1) : max
Q,Z,D

T∑
t=1

W∑
w=1

Cw[t]

s.t. (4), (5), (8), (9), (11),
T∑

t=1

Cw[t] ≥ Cmin, ∀w ∈ W, (12)

Vu[t]≤V max
U , ∀u ∈ U , ∀t ∈ T , (13)

Bend
u ≥ Bmin

U , ∀u ∈ U , (14)

Dt
u,w[k]∈{0, 1}, ∀u ∈ U ,∀w ∈ I[t], ∀t ∈ T , (15)

Zu[t] ∈ {0, 1}, ∀u ∈ U , ∀t ∈ T , (16)

du
′

u [t]≥dmin, ∀u, u
′
∈ U , u ̸=u

′
, ∀t ∈ T , (17)

Problem (P1) is a very complicated mixed-integer program-
ming problem, which is difficult to solve optimally. In partic-
ular, to maximize Ctotal, the WNs are expected to become
the I-nodes to transmit data in most of the T slots based on
(9), which in turn requires each E-node to harvest sufficient
energy rapidly. However, due to the E-nodes’ different battery
energy levels and thus different amounts of energy required
to harvest to reach the threshold BE in (9), it is difficult to
ensure that most of the E-nodes along each UAV’s trajectory
can become the I-nodes in each slot. Moreover, while the
multiple UAVs with binary WET decisions are encouraged
to stay close to enhance an E-node’s harvested energy, due to
the additive property of the harvested energy in (3), they may
also be required to stay far away from each other to alleviate
their received co-channel interference for WDC. As a result,
the multi-UAVs’ decisions on their trajectories and the binary
WET and WDC selections are all tightly coupled over time
under the time-varying WN types. In addition, all the UAVs
must use their limited on-board energy carefully to meet (13)
and (17). Therefore, problem (P1) is very challenging to solve.

B. Proposed MAHDRL Framework

Given the high complexity to solve problem (P1), the DRL
approach is leveraged. Since there lacks a central controller to
determine all the UAVs’ Q, Z and D, we consider a multi-
agent based DRL approach with each UAV as an agent [30]–
[32]. However, it is noted that the existing multi-agent based
DRL approach using a single DRL algorithm (e.g., DQN [33])
may not be able to solve the proposed problem (P1) properly,
mainly due to the following three reasons: 1) Problem (P1)
involves UAV-u’s policy decisions over two different time
scales, where one is over the time slots for determining {Zu[t]}
and {qu[t]}, and the other is over the sub-slots for determining
{Dt

u,w[k]}, and thus requires at least two DRL algorithms,
each for one time scale; 2) Since a more rapid decision is
required for {Dt

u,w[k]} over the sub-slots than {Zu[t]} and
{qu[t]} over the time slots, a lower DRL algorithm complexity
is required for the time scale of sub-slots than that over the
time slots; 3) Although Zu[t] and {Dt

u,w[k]} are binary, the
trajectory qu[t] is continuous. This requires the DRL algorithm
working over the time slots to have continuous action outputs.

To meet the above requirements, a multi-agent based two-
tier hierarchical DRL design is proposed to solve problem
(P1). As shown in Fig. 1, in the two-tier model at each UAV-
u, the SAC algorithm [34] with continuous action outputs is
employed in tier-1 to determine UAV-u’s trajectories and WET
decisions over slots; and in tier-2, based on the determined
trajectory in tier-1, the DQN with discrete action outputs is
applied to determine UAV-u’s WDC decisions over sub-slots.
Moreover, although the off-line trained SAC policy is distribu-
tively executed at each UAV at tier-1 in the implementation
stage, due to the higher complexity of the SAC algorithm than
the DQN, as well as the UAVs’ mutually coupled decisions
on Q, Z and D in problem (P1), the SAC is trained centrally
(at, e.g., the central trainer) by using the observations gathered
from all the UAVs in the training stage. The DQN in tier-2 is
both trained and executed at each UAV distributively. As will
be specified in the following two sections, since the UAVs
may not be able to obtain all the WNs’ status, both the SAC
and the DQN adopt the POMDP-based modeling.

IV. SAC IN TIER-1

A. Observation and POMDP State
As shown in Fig. 1, the central trainer gathers the local

observations of all the UAVs for the SAC’s training. Each UAV
observes the WNs’ status from their periodic status reporting
at the beginning of each slot t via a common ground-to-
air channel. For each E-node-w, it reports its current battery
energy level Bw[t] and the accumulated transmission data size∑t−1

t′=1
Cw[t

′
] from the first slot to the previous slot t − 1

to all the UAVs. However, due to its very limited battery
energy and thus weak transmit power for status reporting,
only (if any) UAVs that locate within a given horizontal
distance of dcov > 0 to E-node-w can receive its reporting.
Hence, depending on their horizontal distance durep,w[t] =√
(xu[t]− xw)2 + (yu[t]− yw)2 in slot t, the observation of

E-node-w’s battery level at UAV-u, denoted by Bu
w[t], is given

as

Bu
w[t] =

{
Bw[t], if durep,w[t] ≤ dcov,

Bu
w[t−1], otherwise,

, ∀w ∈ E [t], (18)

where if durep,w[t] ≤ dcov, Bu
w[t] is updated as E-node-w’s

actual battery energy Bw[t] or keeps unchanged as Bu
w[t−1].

Due to the generally high power sensitivity Psen in (2), if
durep,w[t] > dcov, it is assumed that E-node-w harvests zero
energy from UAV-u in slot t, i.e., P̄ (PUZu[t]G

u
w[t])ϑ = 0.

Similarly, denote UAV-u’s observation of E-node-w’s accu-
mulated transmission data size by Cu

w[t], which is obtained
as

Cu
w[t] =

{∑t−1

t
′
=1

Cw[t
′
], if durep,w[t] ≤ dcov,

Cu
w[t−1], otherwise,

,∀w ∈ E [t]. (19)

For each I-node-w, besides Bw[t] and
∑t−1

t′=1
Cw[t

′
], it also

reports its current WN type Fw[t] = 1 to all the UAVs. Due,
to their sufficient battery energy to support the status reporting,
it is assumed that each I-node’s reported information can be
well received at all the UAVs. Hence, for any UAV-u, we
have Bu

w[t] = Bw[t] and Cu
w[t] =

∑t−1
t′=1

Cw[t
′
], ∀w ∈ I[t].

Considering the very short reporting time period, we assume



that only trivial amount of energy is consumed at each E-node
and I-node for status reporting, and thus is ignored in (4) and
(8), respectively, for their battery energy updating1.

At each UAV agent, based on its received reporting from the
WNs at the beginning of each slot t, the observation of UAV-u
in slot t is given as oSu [t] = {F1[t], ..., FW [t], Bu

1 [t], ..., B
u
W [t],

Cu
1 [t], ..., C

u
W [t], xu[t], yu[t], Bu[t]}, which consists of all the

WNs’ actual node types in slot t, all the WNs’ battery
energy levels observed at UAV-u, all the WNs’ accumulated
transmission data size observed at UAV-u, and UAV-u’s own
horizontal location and battery energy in slot t. Denote OS as
the observation space with oSu [t] ∈ OS . Specifically, for the
observation of {Fw[t]}, UAV-u can easily identify the I-node
set I[t] as the set of WNs who report Fw[t] = 1 in slot t and
thus obtains the E-node set as E [t] =W − I[t]. By labeling
Fw[t] = 0 for any w ∈ E [t], UAV-u observes all the WNs’ ac-
tual node types. For the observation of {Bu

1 [t], ..., B
u
W [t]} and

{Cu
1 [t], ..., C

u
W [t]}, while the I-nodes’ actual battery energy

levels and accumulated data size are obtained based on their
reporting, the E-nodes’ battery energy levels and accumulated
data size are generally partially observable at UAV-u as given
in (18) and (19), respectively.

As a result, since U < W generally holds in practice,
the gathered observations from all the U UAVs at the central
trainer only provides partial information about all the W WNs’
status in slot t in general. This leads to a POMDP modeling at
the central trainer. Denote the POMDP state [35] in slot t as
s[t] = {oS1 [t], ..., oSU [t]}, which is stored in the replay buffer
at the central trainer, as shown in Fig. 2. The POMDP state
space is denoted as S with s[t] ∈ S.

B. Action and Reward Function

For each UAV-u, the output of the SAC policy in each slot
t contains UAV-u’s horizontal moving angle φu[t], velocity
Vu[t] and WET decision Zu[t], where qu[t] is easily obtained
from (φu[t], Vu[t]). We thus denote the action of UAV-u in
the POMDP model as aSu [t] = {φu[t], Vu[t], Zu[t]}, where
(φu[t], Vu[t]) is assured to satisfy the constraint in (13) by
using the range mapping function in [7]. Since the SAC has
continuous action output [34], to satisfy the binary WET
decision constraint in (16), we let Zu[t] = 1 when the
SAC policy network’s WET decision output is positive, or
Zu[t] = 0, otherwise. The action space is denoted as AS with
aSu [t] ∈ AS .

In each slot t, based on UAV-u’s observation oSu [t], it imple-
ments an action aSu [t] ∈ AS , and obtains a reward at the end of
slot t. As will be specified in the next subsection, the trajectory
determined by the SAC policy is used as a known state for the
POMDP modeling of the DQN for WDC decisions. Hence, to
find a proper trajectory for each UAV’s WET in tier-1 and
WDC in tier-2, the SAC reward function rSu [t] is designed to
achieve a proper trade-off between maximizing the E-nodes’

1For the I-nodes, we consider that BI in (9) is generally much higher than
the accumulated status reporting energy consumption over all T slots; For
the E-nodes, if E-node-w’s battery level becomes not sufficient for reporting
status in slot t, it keeps silent, and all the UAVs update Bu

w[t] = Bu
w[t− 1].

harvested energy and the I-nodes’ transmission data size under
the constraints given in (12), (14) and (17) for problem (P1).
To be specific, the reward function includes the following four
parts:

1) Reward on WET to E-nodes: Due to the generally
different battery energy of the E-nodes, their energy demands
are different in general. To provide on-demand WET to the
E-nodes, we adopt the metric of HoE to measure each WN’s
time-varying energy demands as in [23]. Denote Hw[t] as the
HoE of WN-w in slot t. If w ∈ I[t], WN-w is an I-node with
Hw[t] = 0; and If w ∈ E [t], WN-w is an E-node with its
Hw[t] given as:

Hw[t]=

{
Hw[t−1]+1, if Ehar

w [t−1]<Eexp,

max(Hw[t−1]−1,1) , if Ehar
w [t−1]≥Eexp,

(20)

where Eexp = BI−BE

T represents the average energy amount
that is expected to harvest at each E-node in each slot, such
that it can transform to an I-node based on (9) for at least one
time on average during the T slots. From (20), the HoE of
E-node-w is increased by 1 if Ehar

w [t−1]<Eexp, or reduced
by 1, otherwise. In each slot t, the minimum HoE is set to 1
for all the E-nodes. Denote UAV-u’s reward on WET to all
the E-nodes in slot t by bWET

u [t] and is given as

bWET
u [t] = Nu[t] ·

∑
w∈E[t]

Hw[t](B
u
w[t+ 1]−Bu

w[t]), (21)

where Nu[t] =
∑

w∈E[t]
P̄ (PUZu[t]G

u
w[t])ϑ

Bu
w[t+1]−Bu

w[t] is UAV-u’s WET

weight by charging all the E-nodes, with P̄ (PUZu[t]G
u
w[t])ϑ

Bu
w[t+1]−Bu

w[t]

representing the ratio of E-node-w’s harvested DC energy from
UAV-u to that from all the UAVs, and

∑
w∈E[t] Hw[t](B

u
w[t+

1] − Bu
w[t]) is the sum of each E-node’s increased battery

energy in slot t biased by its HoE. If Bu
w[t + 1] − Bu

w[t] is
zero for a particular E-node-w, since P̄ (PUZu[t]G

u
w[t])ϑ =

0 is also obtained, as detailed in Section IV-A, we set
P̄ (PUZu[t]G

u
w[t])ϑ

Bu
w[t+1]−Bu

w[t] = 0. It is easy to find from (21) that UAV-u
generally gets more reward by transmitting energy to the E-
nodes with higher HoE and/or higher Gu

w[t]. Hence, bWET
u [t]

reflects the effects of UAV-u’s WET on increasing all the E-
nodes’ battery energy according to their demands in slot t.

2) Reward on WDC from I-nodes: Let bWDC
u [t] represent

UAV-u’s reward on collecting data from the I-nodes in slot t,
which is expressed as

bWDC
u [t] =

∑
w∈I[t]

 t∑
t
′
=1

Cw[t
′
]− t

T
Cmin

 . (22)

In (22),
∑t

t′=1 Cw[t
′
] or t

T Cmin gives I-node-w’s accumu-
lated data size that is already transmitted or expected to
transmit on average from the first slot to the current slot t,
respectively. The larger value bWDC

u [t] achieves, the larger
reward UAV-u obtains to meet the constraint in (12). It is
noted that under the UAV’s trajectory from the SAC policy,∑t

t′=1 Cw[t
′
] is determined by the UAV’s WDC decisions

from the DQN policy in tier-2. Hence, the SAC policy and the
DQN policy in the two tiers are mutually affected in general.

3) Reward on Energy Saving: Denote bES
u [t] as UAV-u’s

reward on saving its own battery energy in slot t to meet the



constraint in (14). We have bES
u [t] = Bu[t+1]−Bmin

U , which
requires to be positive for maximizing UAV-u’s reward.

4) Reward on Safe Distance: Denote bSD
u [t] as UAV-u’s

reward on keeping the safe distance of dmin to any other UAV
to meet the constraint in (17), where we set bSD

u [t] = −1 if
the constraint in (17) is not satisfied, or bSD

u [t] = 0, otherwise.
Since all the four rewards have different units and mag-

nitudes, they cannot be directly summed up. We multiply
the non-negative coefficients ξ1, ξ2, ξ3 and ξ4 to bWET

u [t],
bWDC
u [t], bES

u [t] and bSD
u [t], respectively, to assure the dif-

ferent rewards have the same or similar magnitudes, and
obtain the overall reward function as rSu [t] = ξ1b

WET
u [t] +

ξ2b
WDC
u [t] + ξ3b

ES
u [t] + ξ4b

SD
u [t]. The values of the 4 coef-

ficients for simulations are given in Table II. We denote the
reward space as RS with rSu [t] ∈ RS .

Fig. 2. Central training of the SAC policy.

C. SAC Training at the Central Trainer

Given the limited computational resources available to each
UAV and the restricted range for the E-nodes’ status reporting,
the SAC policy is centrally trained at the central trainer,
to enhance the POMDP state observation completeness and
alleviate the computational burden on the UAVs. As shown in
Fig. 2, there are a total of U parallelly-trained SAC models
at the central trainer, each for one UAV. Each SAC model
consists of five neural networks, which are the policy network
Actor-u with parameter θu, the two state networks Vu,1 Net
and Vu,2 Net with parameters ϕu,1 and ϕu,2, respectively, for
V critic, and the two state-action networks Qu,1 Net and Qu,2

Net with parameters ηu,1 and ηu,2, respectively, for Q critic.
After the central training, the well-trained parameters of the
Actor-u network at the central trainer is then copied to UAV-u.

From Fig. 2, the two V critic networks and the two Q critic
networks, are used to assist the training of Actor-u, and the en-
tropy H(·) that is used to design the loss function can enhance
the agent UAV-u’s exploration of the environment [34]. To be
specific, the policy network Actor-u trains the policy function
πS
u (·) that maps the observation oSu [t] of UAV-u to its action

aSu [t], Vu,1 Net and Vu,2 Net train the state-action functions

Vu,1(·) and Vu,2(·), respectively, and Qu,1 Net and Qu,2 Net
train the state functions Qu,1(·) and Qu,2(·), respectively. The
state functions Vu,1(·) and Vu,2(·) estimate the value of the
cumulative discount reward received by UAV-u in state s[t].
We have Vu,1(s[t])=Ea′

u∼πS
u

[
Qmin

(
s[t], aSu [t]

)
−αuH(πS

u )
]
,

where H(πS
u ) = log

(
πS
u (a

′

u|oSu [t])
)

is the entropy of the

output action a
′

u based on policy πS
u in observation oSu [t],

a
′

u ∼ πS
u denotes the action a

′

u taken from the policy πS
u ,

Qmin(·) = min(Qu,1(·), Qu,2(·)), and αu is the temperature
coefficient (i.e., the entropy weight). Generally, αu should
be reduced with the number of trainings in order to ensure
the convergence of Actor-u. Moreover, the state-action func-
tions Qu,1(·) and Qu,2(·) estimate the cumulative discount
reward value when UAV-u executes the action aSu [t] in state
s[t]. We have Qu,m(s[t], aSu [t]) = rSu [t]+γE[Vu,2(s[t + 1])],
where γ is the discount factor and E[·] is the operation of
expectation. The goal is to find the optimal policy πS∗

u =
argmaxπS

u

∑
t∈T E[rSu [t] + αuH(πS

u )] that maximizes the
reward and the entropy gained at UAV-u.

The parameter θu of the Actor-u network is sent from
the central trainer to each UAV-u at regular intervals, and
each UAV-u copies the received parameter θu to its local
Actor-u network, which outputs UAV-u’s action aSu [t] ∈ AS

based on its local observation oSu [t] ∈ OS in each slot t.
After implementing the action aSu [t], UAV-u obtains the reward
rSu [t] ∈ RS and the new observation oSu [t+1] at the beginning
of slot t+ 1. As shown in Fig. 1, the central trainer receives
the combined information (s[t], aSu [t], rSu [t], s[t + 1]) from
each UAV with s[t] = {oS1 [t], ..., oSU [t]} as detailed in Section
IV-A, and stores it in the replay buffer.

The parameters of the five neural networks in the SAC
model u are updated to minimize the corresponding loss
functions shown in Fig. 2. Specifically, the j-th training of
the SAC model u is based on the experience of taking mini-
batch (sj , aSu,j , rSu,j , s

′

j) from the replay buffer. Denote ϕu,1 as
the parameter for the Vu,1 Net. UAV-u uses the loss function

LVu,1(ϕu,1)=E
[
1

2

(
Vu,1(sj)−Ea

′
u∼πS

u

[
Qmin(sj , a

′
u)−αuHj

])2]
,

(23)
where the entropyHj = log

(
πS
u (a

′

u|oSu,j)
)

. For the parameter
ϕu,2 of the Vu,2 Net, we apply a soft update with ϕu,2 ←
τϕu,2+(1−τ)ϕu,1, τ ∈ [0, 1). Moreover, denote ηu,m as the
parameter for the Qu,m Net, ∀m ∈ {1, 2}. The loss function
for the Qu,m Net is

LQu,m(ηu,m)=E
[
1

2

(
Qu,m(sj , a

S
u,j)−

(
rSu,j + γE

[
Vu,2(s

′
j)
]))2]

.

(24)
For the SAC policy network Actor-u, we apply the following
loss function:

LπS
u
(θu) = Eε∼χ

[
αuH

′
j −Qmin(sj , aθu(o

S
u,j ; ε))

]
, (25)

where unlike the entropy Hj in (23), the entropy H′

j =
log

(
πS
u

(
aθu(o

S
u,j ; ε)|oSu,j

))
is calculated from the noise-action

aθu(o
S
u,j ; ε), where ε ∼ χ is the noise sample taken from a

fixed distribution χ. According to [34], adding noise to the
actions during the training can avoid network overfitting, and



at the same time, increase UAV-u’s exploration of the envi-
ronment. At last, for the update of the temperature coefficient
αu, we use the loss function

Lαu(αu) = Ea
′
u∼πS

u

[
−αu log

(
πS
u (a

′
u|oSu,j)

)
− αuH̃

]
, (26)

where H̃ is a constant that is generally equal to the dimension
of the observation oSu (i.e., H̃ = |oSu |). All the parameters
ϕu,1, ηu,m, θu, αu are updated as the optimal values that
minimize the corresponding loss functions given in (23)-(26),
respectively, by using the Adaptive moment estimation (Adam)
optimization algorithm [36].

V. DQN IN TIER-2
A. POMDP Modeling for WDC Decisions

Based on the determined trajectory from the SAC in tier-
1, DQN in tier-2 is used to determine each UAV’s binary
WDC decisions over the K sub-slots. As compared to the
SAC training, since the DQN model is simpler, to avoid large
transmission overhead of neural network parameters with the
central trainer, the training of the DQN in tier-2 is performed
at each of the UAVs locally.

1) Observation: Similar to the case for observing the WNs’
status in Section IV-A, each UAV obtains its observation
via the WNs’ periodic status reporting. Here, considering
the trivially-changed environment over the sub-slots in the
same slot, instead of impelling each WN to additionally
report its status over sub-slots, we only use the WNs’ re-
ported status at the beginning of each slot t. Denote, the
observation of UAV-u at sub-slot k in slot t is oD,t

u [k] =
{xu[t], yu[t], C

u
1 [t], ..., C

u
W [t], k}, which consists of UAV-u’s

own horizontal location in slot t, all the WNs’ accumulated
transmission data size from t

′
=1 to the previous slot t−1, and

the sub-slot index k. In oD,t
u [k], (xu[t], yu[t]) is determined

by the SAC policy in tier-1, {Cu
w[t]} only provide partial

information on all the WNs’ accumulated transmission data as
specified in Section IV-A, and k is used to distinguish different
sub-slots. By using oD,t

u [k] as the observation for the DQN,
we also obtain a POMDP for the UAV-u’s WDC decisions.
Denote OD as the observation space with oD,t

u [k] ∈ OD.
2) Action and Reward: Denote aD,t

u [k] = w ∈ W as the
POMDP action of UAV-u at sub-slot k in slot t. Given
an observation oD,t

u [k] ∈ OD, the DQN’s output is a Q-
vector Q(oD,t

u [k]) of length W , where the w-th element gives
the probability of scheduling WN-w ∈ W . To satisfy the
one-to-one user association constraint in (5), we consider
the following steps to determine each Dt

u,w[k]: a) UAV-u
initializes a WN candidate set Wca = W; b) UAV-u sets
Dt

u,w[k] = 1 for w = argmaxw∈Wca
Q(oD,t

u [k]), and sets
Dt

u,i[k] = 0, ∀i ∈ W, i ̸= w; c) if the selected WN-w is
an I-node, UAV-u sends an association request to WN-w; if
WN-w is an E-node or WN-w feeds back UAV-u that UAV-
u

′
with u

′
< u also selects it, UAV-u sets Du,w[k] = 0,

updates Wca = Wca − {w}, and goes to step b). The above
steps repeat until the selected I-node WN-w feeds back an
association confirmation to UAV-u, or Wca = ∅ is obtained.
For the former case, UAV-u finds a proper I-node-w as its

POMDP action that meets the constraint in (5), and for the
latter case, UAV-u remains silent. Since U < W and the
required one-to-one association in (5), the above procedure
is rapid to find aD,t

u [k]. Denote the DQN action space as AD

with aD,t
u [k] ∈ AD. For UAV-u ∈ U , the reward function is

expressed as

rD,t
u [k]=

∑
w∈I[t]

M t
u,w[k]+

∑
w∈I[t]

(
Cu

w[t]−
t−1
T

Cmin

)
. (27)

In (27), the first item
∑

w∈I[t] M
t
u,w[k] is UAV-u’s received

data size at sub-slot k in slot t under the constraint in (5),
and the second item

∑
w∈I[t]

(
Cu

w[t]− t−1
T
Cmin

)
is the sum of

all I-nodes’ gap between their accumulated data size and the
expected transmission data size t−1

T Cmin over the past t−
1 slots. With proper WDC decisions, the UAV obtains large∑

w∈I[t] M
t
u,w[k] to assure the constraint in (12).

B. DQN Training at each local UAV

As shown in Fig. 3, the DQN model at each local UAV
contains two neural networks, which are the Evaluate-Q-u
network and the Target-Q-u network with parameter λu,1,
λu,2, respectively. The Evaluate-Q-u network is trained as
the state-action function QD

u,1(·), which gives the UAV-u’s Q-
value (i.e., the cumulative discount reward) distribution for
different actions under the observation oD,t

u [k]. The Target-
Q-u network is trained as a state-action function QD

u,2(·) to
guide the training of the Evaluate-Q-u network. The goal is
to enable UAV-u to maximize its own cumulative discount
reward QD∗

u,1(o, a). According to [33], we have QD∗
u,1(o, a) =

r + γ
∑

o′∈OD
Pa
o,o′

maxa′ QD∗
u,1(o

′
, a

′
), where o = oD,t

u [k],
a = aD,t

u [k], r = rD,t
u [k], o

′
= oD,t+1

u [k], a
′

is the action
with maximum Q-value at o

′
, and Pa

o,o′
is the probability that

UAV-u executes action a to get the next observation o
′

at the
current observation o.

The parameter λu,1 of the Evaluate-Q-u network is updated
according to the following loss function

LQD
u,1

(λu,1) = E
[
1

2

(
QD

u,1(o
D
u,j , a

D
u,j)−Qtarget

)2]
, (28)

where Qtarget =
(
rDu,j + γmaxa′ QD

u,2

(
oD,′

u,j , a
′
))

, and the
j-th training is performed based on the experience of taking a
mini-batch (oDu,j , aDu,j , rDu,j , oD,′

u,j ) from the local replay buffer.
For the Target-Q-u network with parameter λu,2, we perform
the asynchronous update based on the parameter λu,1, similar
to the process in [33].

C. MAHDRL Algorithm

Based on the SAC model in Section IV and the DQN
model in Section V, the MAHDRL algorithm to solve the
problem (P1) is given in Algorithm 1. In summary, for the
SAC training in tier-1, the maximization of the WET reward in
(21) guides the UAV to learn along the direction of increasing
each E-node’s battery energy so as to transform more E-nodes
into the I-nodes and, at the same time, the maximization of the
WDC reward in (22) leads each UAV to increase Ctotal from
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Fig. 3. Local training of the DQN at UAV-u.

the transformed I-nodes when determining its trajectory, while
the reward maximizations of bES

u [t] and bSD
u [t] guide the UAVs

to meet the constraints in (14) and (17), respectively. In tier-
2, the maximization of the DQN reward in (27) further leads
each UAV to maximize Ctotal under the constraint in (12).
The constraints in (5), (13) and (16) are properly satisfied by
the action output of the SAC and the DQN policies. Therefore,
the proposed MAHDRL approach can properly solve problem
(P1).

Algorithm 1 MAHDRL Algorithm
1: Initialize replay buffer, learning rate, discount factor γ, soft

update weight τ and temperature factor αu, u ∈ U . Initialize the
parameters of SAC’s all five networks and DQN’s two networks;

2: for Episode ← 1, ..., EPS do
3: Initialize the locations and battery levels of all UAVs and

WNs;
4: Initialize the observation oSu [0], oD,0

u [1], ..., oD,0
u [K] and SAC

state s[0], ∀u ∈ U ;
5: for t← 1, ..., T do
6: get action aS

u [t] and aD,t
u [k] based on Sections IV-B and

V-A2, respectively;
7: execute action aS

u [t], and aD,t
u [k], based on Sections IV-B

and V-A2, respectively;
8: store the experience

(
s[t], aS

u [t], r
S
u [t], s[t+1]

)
and(

oD,t
u [k], aD,t

u [k], rD,t
u [k], oD,t+1

u [k]
)

into the replay buffer;

9: using the loss functions in (23), (24), (25), (26) and (28)
to update the SAC’s parameters based on Section IV-C
and update the DQN’s parameters based on Section V-B,
respectively;

10: oSu [t]← oSu [t+1], oD,t
u [k]← oD,t+1

u [k] and s[t]← s[t+1];
11: end for
12: end for

We now analyze the time complexity of implementing
Algorithm 1. Let LA = 5 and NA,j , LV = 5 and
NV,j , and LQ = 5 and NQ,j represent the number of
fully connected layers and the number of neurons in
the j-th layer of Actor-u network, Vu,m (m ∈ {1, 2})
Net, and Qu,m Net, respectively. The time complexity
of training the SAC at one step according to [34] is
O
(∑LA

j=2 NA,j−1 ·NA,j+
∑LV

j=2 NV,j−1 ·NV,j+
∑LQ

j=2 NQ,j−1 ·NQ,j

)
.

Denote LE = 5 and NE,j as the number of fully
connected layers and the number of neurons in the j-th
layer of the Evaluate-Q-u network, u ∈ U , respectively.
The time complexity of training the DQN at one step

according to [33] is O
(∑LE

j=2 NE,j−1 ·NE,j

)
. Therefore, the

time complexity of the proposed MAHDRL algorithm is
O
(
U×EPS×T×

(∑LE
j=2 NE,j−1 ·NE,j+

∑LA
j=2 NA,j−1 ·NA,j

+
∑LV

j=2 NV,j−1 ·NV,j +
∑LQ

j=2 NQ,j−1 ·NQ,j

))
, which increases

linearly over the number of the UAVs.

VI. SIMULATION RESULTS

Simulation results are provided in this section to validate
the performance of the proposed MAHDRL approach in
Algorithm 1. As specified in Sections IV-C and V-B, in the
training stage, the SAC policy is first trained centrally at the
central trainer, where the well-trained parameters are then
copied to tier-1 in each of the UAV agent’s DRL model. The
DQN policy in tier-2 is trained locally at each of the UAV
agent. In the test stage, all the UAVs distributively make their
WET, WDC and trajectory decisions based on their own policy
networks.

We perform simulations based on python-3.9.12 and
pytorch-1.12.1. Unless otherwise stated, in all the simulations,
we consider an area of 400 m×400 m and set U = 4 UAVs
with random start locations, W = 10 WNs with random initial
battery energy in the range of [2, 4] mW·s, the mission period
T = 300 s, K = 4 sub-slots, and E-nodes’ reporting range
dcov =20 m. The UAVs’ propulsion power model parameters
follow that in [29]. For the neural networks of the SAC and
the DQN, we set the input layers with NA,1 = 3W + 3,
NV,1 = (3W+3)×U , NQ,1 = (3W+3)×U+3 and NE,1=W+2,
respectively, and set the output layers with NA,5=3, NV,5=1,
NQ,5=1 and NE,5=W , respectively. According to [16], [31]
and [37], for all the neural networks, 256 neurons are set in
the hidden layers. For the SAC in tier-1, we set the learning
rates for all the Actor, the Q Critic, and the V Critic networks
to 0.0003, and set the temperature coefficient αu’s learning
rate to 0.0002. For the DQN at tier-2, its learning rate is set
to decay from 0.01 to 0.000001, and its exploration rate of the
environment is set to decay from 0.9 to 0.02. Other simulation
parameters are given in TABLE II.

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value
h 5 m σ2 −90 dBm

PU , PW , PI 1 W, 0.1 mW, 10 mW Psen, Psat −10, 7 dBm
αL, αN 3, 5 BE , BI 2, 4 mW·s

Bmin
u , Bmax

u 3e4, 4e5 W·s dmin, Cmin 2 m, 100 bits/Hz
ϵ-greedy strategy 0.01 → 1e−6 ξ1, ξ2, ξ3, ξ4 20, 0.01, 1e−6, 1

γ, τ 0.99, 0.999 a, b for PLoS 12.08, 0.11
replay buffer’s size 131072 mini-batch’s size 128

A. Comparison with Benchmarks

1) Training stage: In the training stage, we compare the
proposed MAHDRL with a benchmark, where the widely-
used DDPG model in [7] is adopted to replace the SAC in
tier-1 in our proposed MAHDRL. For both approaches, the
same DQN model as specified in Section V is used in tier-2
for each UAV’s WDC decisions. The SAC in the proposed
MAHDRL and the DDPG in the benchmark have the same



Fig. 4. Comparison of MAHDRL with DDPG+DQN.

number of neural network layers and the same learning rate.
Fig. 4 shows the WNs’ total transmission data size Ctotal over
2000 trainings under both approaches. It is observed that our
proposed MAHDRL with the SAC outperforms the benchmark
with DDPG, due to the entropy-based loss function in the SAC
that encourages the UAVs to explore the environment more.
Although Ctotal under the proposed MAHDRL approach
fluctuates relatively wider than the benchmark, its fluctuation
is still within an acceptable interval to achieve convergence.

2) Test stage: In the test stage, where the UAVs apply the
well-trained policies to determine their actions, we compare
our proposed MAHDRL solution with the following four
different benchmark schemes:

Fig. 5. Comparison of MAHDRL with benchmarks.

(a) MAHDRL w./o. HoE: Each E-node’s HoE is not
considered in this scheme, and the reward in (21) is reduced to
bWET
u [t]=Nu[t]·

∑
w∈E[t](B

u
w[t+1]−Bu

w[t]). All the other parts
are the same as that in the proposed MAHDRL solution. (b)
Phase Division: This benchmark scheme applies the classic
time phase division for UAVs’ WET and WDC as in [6]. All
the UAVs only transmit energy in the WET phase from slot
t=1 to slot t= T̄−1, and only collect data from the I-nodes
from slot t = T̄ to slot t = T . We find use the optimal T̄ that
maximizes Ctotal via one-dimensional exhaustive search. (c)

TEAM: The TEAM scheme in [7] is applied, where the UAVs
are divided into two groups, one group is only responsible for
WET and the other is only for WDC. We equally divide the
UAVs into two groups. (d) Random WDC: The DQN in tier-
2 is replaced by the random scheduling of the I-nodes over
the sub-slots. For all the benchmark schemes, each UAV still
applies the SAC algorithm to find its own trajectory, and for
the former three benchmark schemes, each UAV applies the
DQN algorithm to schedule the I-nodes for WDC.

Fig. 6. Running time comparison.

First, Fig. 5 shows the variations of Ctotal over T under the
proposed and the above four benchmark schemes, respectively.
It is observed that our proposed MAHDRL significantly out-
performs all the benchmarks. This validates that by catering
to the dynamic WN type updating over time, the performance
of the multi-UAV aided WPCN can be largely improved.

Next, we compare the running time of the pro-
posed MAHDRL approach with that of the benchmarks.
It is easy to find from Section V-C that the MAH-
DRL w./o. HoE, the Phase Division and the TEAM
have the same time complexity as our proposed MAH-
DRL approach, and the time complexity of the Ran-
dom WDC approach is O

(
U×EPS×T×

(∑LA
j=2 NA,j−1 ·NA,j

+
∑LV

j=2 NV,j−1 ·NV,j +
∑LQ

j=2 NQ,j−1 ·NQ,j

))
without applying

the DQN algorithm, which is less than our proposed MAH-
DRL approach and the other three benchmark approaches. In
Fig. 6, since the MAHDRL w./o. HoE approach consumes
almost the same running time as the proposed MAHDRL
approach, we show the running time of the proposed MAH-
DRL, the Phase Division, the TEAM, and the Random WDC
approaches under different UAV numbers. The running time
of each approach is obtained as the average of 10 simulations,
where each simulation result is trained with 100 episodes. It is
observed from Fig. 6 that the running time of each approach
almost doubles as the number of UAVs is doubled. Moreover,
under each UAV number, the running time of the proposed
MAHDRL is very close to that of the Phase Division and
TEAM approaches, and the running time of the Random WDC
approach is always the lowest. This is in accordance with



Fig. 8. Network example: (a) WNs’ type variations. (b) WNs’ battery levels under MAHDRL. (c) WNs’ battery levels under MAHDRL w./o. HoE benchmark.

our time complexity analysis, and further verifies the good
performance of our proposed MAHDRL approach shown in
Fig. 5, as compared to the benchmarks.

B. Network Example

To further illustrate the performance of the proposed MAH-
DRL scheme, we consider a network of a smaller scale, with
2 UAVs and 4 WNs randomly locating within a horizontal
area of 300 m×300 m. Fig. 7 shows the UAVs’ trajectories
and WET decisions over time. The shortest distance between
the two UAVs in Fig. 7 is 2.74 m, which is larger than the
required safe distance dmin. It is also observed that each UAV
does not always select Zu[t] = 1 to save its energy.

Fig. 7. UAVs’ trajectories and WET decisions.

Fig. 8 (a) and Fig. 8 (b) show each WN’s type and battery
energy variations over time, respectively, where each WN’s
battery energy increases when it is an E-nodes, or decreases
when it is an I-node. The WN type updating under the two
thresholds BI and BE follows (9). It is also observed from
Fig. 7 that since only UAV-1 comes to WN-1 and WN-2
for WET, they have fewer chances to become I-nodes than
WN-3 and WN-4, where both UAVs fly to them and transmit
energy. However, once WN-1 and WN-2 become I-nodes, they
have higher chances to be scheduled to transmit data. The
total transmission data size (bits/Hz) of the 4 WNs in the

T slots is 263.42, 487.01, 638.49 and 733.88, respectively,
satisfying the constraint in (12). It is also interesting to observe
similar battery charging rates at WN-3 and WN-4 from time
slot 176 to slot 268 in Fig. 8 (b). This is mainly because
that, as observed from Fig. 7, UAV-1 or UAV-2 flies in the
neighborhood of WN-3 and WN-4 from slot 176 to slot 268
or slot 17 to slot 268, respectively. During the corresponding
time slots, each UAV transmits energy to WN-3 and WN-4
from sufficiently short distances, such that (close to) saturated
power is harvested at WN-3 and WN-4, which leads to their
similar battery energy charging rates. Also, since the closely
located UAV-2 can efficiently collect data from both WN-3 and
WN-4, the battery energy decreasing rates are also similar.

We also show each WN’s battery energy under the MAH-
DRL w./o. HoE benchmark in Fig. 8 (c). It is observed that
unlike Fig. 8 (b), where each WN can become an I-node
with its battery energy exceeding BI , WN-1 and WN-2 in
Fig. 8 (c) cannot harvest sufficient energy over all T slots
and thus cannot meet the constraint in (12). This matches
with Fig. 5, where our proposed MAHDRL outperforms the
MAHDRL w./o. HoE benchmark. In addition, at the end of
T = 300 slots, the remaining battery energy of the two UAVs
are 72399.97 W·s and 30115.61 W·s, respectively, satisfying
the constraint in (14).

Fig. 9. Impact of UAV number on Ctotal.

Next, in Fig. 9, to show the scalability of our proposed



MAHDRL approach, we gradually increase the network scale
and show the achieved Ctotal under different Cmin, where we
consider that the number of WNs always equals the twice of
the number of UAVs, i.e. W = 2U . When the number of the
UAVs increases from U = 1 to U = 30 in Fig. 9, the number
of WNs increases from W = 2 to W = 60 accordingly. It
is observed from Fig. 9 that when U = 1, the same Ctotal

is achieved under different Cmin, and when 1 < U < 12, a
larger Ctotal is always achieved under a larger Cmin under
each value of U , since most of the E-nodes can be properly
transformed into I-nodes to meet Cmin; however, when U ≥
12, due to the increased information transmission interference
under the large UAV number to meet a large Cmin, it is found
that a larger Ctotal is achieved under a smaller Cmin over each
value of U . It is also observed that under each Cmin, the value
of Ctotal always increases over the UAV number and thus the
network scale. This verifies the scalability of our proposed
MAHDRL approach.

Fig. 10. Impact of dcov on Ctotal.

At last, Fig. 10 shows the impact of the status reporting
distance dcov in (18) on Ctotal. It is observed from Fig. 10
that as dcov increases, more information of the E-nodes can be
obtained at the central trainer, and thus Ctotal increases; and
when dcov is sufficiently large, such that almost each E-node’s
complete status can be all obtained by the central trainer, the
POMDP modeled in Sections IV-A and V-A approaches an
MDP, respectively, where Ctotal is almost unchanged.

VII. CONCLUSION

This paper proposed a novel design of the multi-UAV
aided WPCN with repeatedly-changing WN types over time.
By applying the LoS-probability based A2G channels, we
utilized the practical non-linear energy harvesting model at
each E-node, and further developed all the UAVs’ and the
WNs’ battery energy management models. To effectively solve
the complicated total transmission data size maximization
problem, the new MAHDRL framework with two tiers was
proposed. We designed the central training of the SAC policy
and the local training of the DQN policy by exploiting the
interactions between the UAVs and the WNs. Once well

trained, both the SAC policy and the DQN policy are executed
distributivity at each UAV. Extensive simulations validated
that our proposed MAHDRL approach that adapts to the
network dynamics outperforms benchmarks. In practice, the
deployment of the central trainer and its available computation
resources may largely affect the performance of the multi-UAV
aided WPCN. In the future work, it is interesting to study the
UAV-enabled mobile central trainer and investigate the joint
transmission and computation design of the multi-UAV aided
WPCN.
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