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Abstract — Lowering radiation dose per view and 
utilizing sparse views per scan are two common CT scan 
modes, albeit often leading to distorted images 
characterized by noise and streak artifacts.  Blind image 
quality assessment (BIQA) strives to evaluate perceptual 
quality in alignment with what radiologists perceive, which 
plays an important role in advancing low-dose CT 
reconstruction techniques.  An intriguing direction involves 
developing BIQA methods that mimic the operational 
characteristic of the human visual system (HVS).  The 
internal generative mechanism (IGM) theory reveals that the 
HVS actively deduces primary content to enhance 
comprehension. In this study, we introduce an innovative 
BIQA metric that emulates the active inference process of 
IGM.  Initially, an active inference module, implemented as 
a denoising diffusion probabilistic model (DDPM), is 
constructed to anticipate the primary content. Then, the 
dissimilarity map is derived by assessing the interrelation 
between the distorted image and its primary content.  
Subsequently, the distorted image and dissimilarity map 
are combined into a multi-channel image, which is inputted 
into a transformer-based image quality evaluator. 
Remarkably, by exclusively utilizing this transformer-based 
quality evaluator, we won the second place in the MICCAI 
2023 low-dose computed tomography perceptual image 
quality assessment grand challenge.  Leveraging the 
DDPM-derived primary content, our approach further 
improves the performance on the challenge dataset.   

 
Index Terms—Blind image quality assessment, 

denoising diffusion probabilistic model (DDPM), primary 
content, transformer-based image quality evaluator.  

I. INTRODUCTION 

-RAY image quality assessment (IQA) plays a crucial role 

in computed tomography (CT) imaging, facilitating the 

advancement of novel algorithms for low-dose CT 

reconstruction. Two strategies for low-dose CT scans are either 

reducing the X-ray tube current or acquiring sparse views. 

However, these strategies often introduce noise and/or streak 

artifacts in the filtered backprojection (FBP) images. To address 

these problems, deep learning-based methods have been used 

for low-dose CT image denoising [1-5] and sparse view CT 

reconstruction [6-10]. When the quality of these reconstructed 
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images is assessed, radiologist’s opinions serve as the gold 

standard. Nonetheless, collecting these opinions is an expensive 

and intricate process, making it impractical for real-time and 

large-scale IQA tasks. Consequently, peak signal-to-noise 

(PSNR) and structural similarity index measure (SSIM) have 

been widely used as surrogate metrics [11]. However, both 

PSNR and SSIM have shown limited correlation with 

radiologists’ opinions on image quality, primarily due to their 

reliance on mathematical models that do not account for the 

intricacies of human perception. Moreover, the requirement for 

reference images to calculate these metrics poses challenges in 

clinical environments; for example, obtaining high-quality 

images is infeasible without increasing patient radiation 

exposure. To overcome these limitations, one direction is to 

develop no-reference image quality metrics that correlates well 

with radiologists’ opinion on image quality. 

No-reference image quality assessment (NR-IQA), also 

known as blind IQA (BIQA), is widely used to evaluate the 

quality of natural images [12-13]. Traditional BIQA methods 

typically comprise three steps. First, some handcrafted 

descriptors are employed to extract quality-aware features of 

training images. Then, the statistical distribution of the 

extracted features serves as the guidance. Some approaches also 

involve parameterizing this distribution through modeling. 

Finally, a mapping function, such as support vector regression 

(SVR) [14], is designed to convert the distributions into a 

quality score. In traditional BIQA, features are derived from 

various sources including discrete wavelet transform (DWT) 

[15-17], discrete cosine transform (DCT) [18] and spatial 

domain measures [19-20] to predict the perceptual quality. 

Alternatively, it is assumed that the human visual system (HVS) 

gauges image quality by discerning features like gradient [21], 

luminance contrast [22] or local binary pattern [23]. Certain 

approaches combine these extracted features to improve image 

quality assessment further [24-25]. Nevertheless, due to the 

complexities of image contents and distortion patterns, the 

representation capabilities of handcrafted features are often 

unsatisfactory. 

In recent years, the convolutional neural network (CNN) has 

gained major attention in BIQA tasks because of its potent 

X 
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feature representation power [26-27] and started gaining 

momentum [28-33]. Rank-IQA utilizes synthetically generated 

distortions and a Siamese network to rank images based on their 

quality [29]. DBCNN demonstrates effectiveness with both 

synthetic and authentic image distortions [30]. Hyper-IQA 

segregates features into low-level and high-level categories, 

then transforms the latter to reshape the former’s influence [31]. 

Meta-IQA employes meta-learning to train the networks on 

distinct types of distortions, thereby acquiring prior knowledge 

[32]. More recently, vision transformers (ViTs) [33] have 

emerged as competitive alternatives to CNNs. Their self-

attention mechanism empowers ViT to grasp global contextual 

information from an entire image, ensuring a comprehensive 

consideration of all image features of significance for task-

specific prediction. This attribute aligns well with the 

requirements of BIQA task, which involves predicting a quality 

index globally [34-40]. MSTIQA leverages a Swin transformer 

to amalgamate features from multiple stages to enhance quality 

assessment [38]. MANIQA introduces a multi-dimensional 

attention network for BIQA. This approach introduces the 

transposed attention block and the multiscale Swin transformer 

block to strengthen global and local interactions [39]. 

MAMIQA employs a lightweight attention mechanism that 

utilizes decomposed large kernel convolutions to extract 

multiscale features. Furthermore, it includes a feature 

enhancement module to enrich local fine-grained details and 

global semantic information at multi-scales [40]. Among the 

various transformer-based BIQA methods, MANIQA has not 

only achieved the state-of-the-art performance in BIQA tasks 

but also secured the first place in the no-reference track of 

NTIRE 2022 perceptual image quality assessment challenge 

[41]. Intriguingly, the top three methods in this challenge all 

rely on transformer-based techniques, highlighting the efficacy 

of the transformers in BIQA tasks. Nonetheless, the lack of 

reference information poses a challenge, preventing these 

methods from aligning seamlessly with the HVS and may 

adversely impacting their overall performance. 

The theory of internal generative mechanisms (IGMs) 

suggests that the HVS engages in an active process of deducing 

the primary content of an image during human evaluations [42-

44]. In this process, IGM initially analyzes pixel correlations 

within an input image. In conjunction with intrinsic prior 

knowledge, IGM deduces the corresponding primary content as 

an active comprehension of the input image [45]. The primary 

content consists of essential scene information, representing the 

structured, meaningful elements within the image, which is 

transported to the high level of HVS for interpretation [46]. 

Thus, the ability to generate high-quality primary content 

becomes critical in emulating the HVS. Notably, recent 

successes in adapting and applying the denoising diffusion 

probabilistic model (DDPM) and other diffusion models have 

showcased their amazing capabilities in both image generation 

and restoration [47- 49]. These qualities underscore a huge 

potential of diffusion models in generating high-quality primary 

content, particularly in the context of low-dose CT imaging [50, 

51] which is featured by uniquely intricate noise and streak 

artifacts, quite different from what in natural images. 

Low-dose CT images frequently suffer from conspicuous 

noise and streak artifacts, being the primary culprits of the 

image quality deterioration. Specifically, the streak artifacts 

exhibit directional appearance contributing to globalized 

artifacts in a whole image [6]. This makes the existing datasets 

of natural images inadequate for accurately predicting quality 

scores of low-dose CT images. On the other hand, given the 

scarcity of open datasets for low-dose CT BIQA, experiments 

have been conducted using disparate datasets, yielding results 

that are challenging to compare and interpret [52, 53]. These 

challenges demand a standardized image quality metric in 

general, and for low-dose CT imaging in particular. Notably, a 

low-dose CT BIQA dataset has recently been unveiled for the 

MICCAI 2023 low-dose CT perceptual image quality 

assessment grand challenge [54]. As low-dose CT images are 

obtained by reducing the number of projections per rotation 

and/or the X-ray tube current, the combination of sparse view 

streaks and noise needs to be dealt with in the challenge so that 

the best-performing IQA model can be identified and made 

applicable in real clinical environments.  

Given the globalized artifact patterns in low-dose CT images, 

we utilized a transformer-based quality evaluator [39] and won 

the second place in the MICCAI 2023 low-dose CT perceptual 

image quality assessment grand challenge [54]. We found in 

our study that directional artifacts may sometimes be 

misleading by resembling genuine anatomical structures. To 

further improve the performance, inspired by IGM here we 

propose a novel approach utilizing a DDPM-based active 

inference for low-dose CT BIQA. At the outset, given DDPM’s 

capability to simultaneously eliminate noise and streak artifacts, 

we employ DDPM to generate high-quality primary content, 

closely mimicking the HVS. Recognizing the heightened 

sensitivity of HVS to structures, the dissimilarity map is 

extracted from the distorted image and its primary content. 

After that, incorporating such diverse prior information as input, 

a multi-channel image is synthesized, amalgamating content, 

distortion, and structural characteristics for comprehensive 

quality prediction. The final step involves employing a 

transformer-based quality evaluator to predict the score.  

Empirical trials conducted on the low-dose CT BIQA challenge 

dataset systematically affirm the efficacy of our proposed 

method. 

In brief, the main contributions of this paper can be 

summarized as follows: 

1) We propose a conditional DDPM to emulate the active 

inference process of IGM. The proposed DDPM-based active 

inference module can effectively predict the primary content of 
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Figure 1. Workflow of the conditional DDPM that maps low-dose CT images to normal dose counterparts. 

distorted images which contain intricate noise and streak 

artifacts from both low-dose and sparse view CT imaging.  

2) Based on the primary content, we introduce a transformer-

based quality evaluator to predict the image quality on a low-

dose CT BIQA dataset. Note that we secured the runner-up 

position in the MICCAI 2023 low-dose CT perceptual image 

quality assessment grand challenge by only employing this 

transformer-based quality evaluator. On that basis, we have 

improved the image quality assessment performance even 

further, as explained in detail below. 

The remainder of the paper is organized as follows.  Section 

II outlines the process of utilizing a conditional DDPM to 

acquire both the primary content and the dissimilarity map, 

while also detailing the transformer-based quality evaluator. 

Section III reports our evaluation results on the low-dose CT 

BIQA challenge dataset.  Section IV discusses relevant issues 

and makes the conclusion.   

II. METHODOLOGY 

A. Conditional DDPM for Low-Dose CT 

To generate high-quality primary content for emulating the 

HVS, a typical deep learning method trains a network to learn 

a mapping from low-dose CT images to normal-dose CT 

images. Let us assume that 𝒚 ∈ ℝ𝑁 and 𝒙 ∈ ℝ𝑁 are paired low-

dose CT and normal-dose CT images. The parameters of the 

network can be trained as follows: 

min
𝜃

‖𝐷𝜃(𝒚) − 𝒙‖2
2                                   (1) 

where 𝐷𝜃  is the network parameterized by 𝜃, which is the key 

for producing high-quality images. 

Recently, DDPM has demonstrated superior performance in 

generating high-quality images from their distorted 

counterparts, particularly in complex scenarios involving 

multiple distortions, such as CT imaging.   

The architecture of the conditional DDPM is shown in Fig. 1.  

DDPM starts with a forward process that gradually adds noise 

to the normal-dose CT image 𝒙0 ∼ 𝑞(𝒙0) over the course of 𝑇 

timesteps according to a variance schedule 𝛽1, ⋯ , 𝛽𝑇: 

𝑞(𝒙𝑡|𝒙𝑡−1) = 𝒩(𝒙𝑡; √1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝑰)              (2) 

𝑞(𝒙1:𝑇|𝒙0) = ∏ 𝑞(𝒙𝑡|𝒙𝑡−1)

𝑇

𝑡=1

                     (3) 

where 𝒙1, ⋯ , 𝒙𝑇 are latent variables of the same dimensionality 

as the sample  𝒙0 ∼ 𝑞(𝒙0).   

According to the properties of the Gaussian distribution, the 

sampling result 𝒙𝑡 at an arbitrary timestep 𝑡 can be written in 

the following closed form: 

𝑞(𝒙𝑡|𝒙0) = 𝒩(𝒙𝑡; √𝛼̅𝑡𝒙0, (1 − 𝛼̅𝑡)𝑰)              (4) 

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼̅𝑡 = ∏ 𝛼𝑖
𝑡
𝑖=1 .  

After the forward process, 𝒙𝑇  follows a standard normal 

distribution when 𝑇  is large enough. Thus, if we know the 

conditional distribution 𝑞(𝒙𝑡−1|𝒙𝑡) , we can use the reverse 

process to get a sample under 𝑞(𝒙0)  from 𝒙𝑇~𝒩(𝟎, 𝑰) . 

However, 𝑞(𝒙𝑡−1|𝒙𝑡) depends on the entire data distribution, 

which is hard to calculate. Hence, a neural network was 

designed to learn a latent data distribution by gradually 

denoising a normal distribution variable, which corresponds to 

learning the reverse process of a fixed Markov Chain of length 

𝑇 conditioned on a low-dose CT image 𝒚. The reverse process 

can be defined as: 

𝑝𝜃(𝒙𝑡−1|𝒙𝑡 , 𝒚) =  𝒩(𝒙𝑡−1; 𝝁𝜃(𝒙𝑡 , 𝒚, 𝑡), 𝜎𝑡
2𝑰)            (5) 

𝑝𝜃(𝒙0:𝑇|𝒚) = 𝑝(𝒙𝑇) ∏ 𝑝𝜃(𝒙𝑡−1|𝒙𝑡 , 𝒚)

𝑇

𝑡=1

                   (6) 

where 𝑝(𝒙𝑇)  is the density function of  𝒙𝑇 . In Eq. (6),  

𝝁𝜃(𝒙𝑡 , 𝒚, 𝑡)  and 𝜎𝑡
2  are needed to solve 𝑝𝜃(𝒙𝑡−1|𝒙𝑡 , 𝒚) .  

According to the Bayes theorem, the posterior 𝑞(𝒙𝑡−1|𝒙𝑡 , 𝒙0 ) 

are defined   as 

𝑞(𝒙𝑡−1|𝒙𝑡 , 𝒙0 ) = 𝒩(𝒙𝑡−1; 𝝁̃𝑡(𝒙𝑡 , 𝒙0), 𝜎𝑡
2𝑰)      (7) 

where 

𝝁̃𝑡(𝒙𝑡 , 𝒙0) =
√𝛼𝑡(1 − 𝛼̅𝑡−1)

1 − 𝛼̅𝑡

𝒙𝑡 +
√𝛼̅𝑡−1(1 − 𝛼𝑡)

1 − 𝛼̅𝑡

𝒙0   (8) 
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𝜎𝑡
2 =

(1 − 𝛼̅𝑡−1)(1 − 𝛼𝑡)

1 − 𝛼̅𝑡

                      (9) 

Since 𝜎𝑡
2 is a constant, the most natural parameterization of 

𝝁𝜃(𝒙𝑡 , 𝒚, 𝑡) is a neural network that predicts 𝝁̃𝑡(𝒙𝑡 , 𝒙0) directly. 

Alternatively, given that 𝒙𝑡 = √𝛼̅𝑡𝒙0 + √1 − 𝛼̅𝑡𝝐, 𝝐~𝒩(𝟎, 𝑰), 

the posterior expectation in Eq. (8) can be expressed as 

𝝁̃𝑡(𝒙𝑡 , 𝒙0) = 𝝁̃𝑡 (𝒙𝑡 ,
1

√𝛼̅𝑡

(𝒙𝑡 − √1 − 𝛼̅𝑡𝝐))            

=
1

√𝛼𝑡

(𝒙𝑡 −
1 − 𝛼𝑡

√1 − 𝛼̅𝑡

𝝐)                (10) 

Since 𝝁̃𝑡(𝒙𝑡 , 𝒙0) can be represented by  𝝐, we can also use a 

neural network model 𝐷𝜃  to predict the noise 𝝐, which has been 

proved to work well by Ho et al. [47]. Hence, the corresponding 

objective can be simplified to 

ℒ = 𝔼𝒙,𝒚𝔼𝝐,𝑡[
(1−𝛼𝑡)2

2𝜎𝑡
2𝛼(1−𝛼̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ‖ 𝝐 − 𝐷𝜃(√𝛼̅𝑡𝒙0 + √1 − 𝛼̅𝑡𝝐, 𝒚, 𝑡)‖

2

2

]   

(11) 

with 𝑡 uniformly sampled as {1, ⋯ , 𝑇}.  

In this study, the latent space is diffused into Gaussian noise 

using 𝑇 = 1000  steps. A U-Net [55] model 𝐷𝜃  is trained to 

predict the noise 𝜖 in the latent space. To obtain high-quality 

primary contents, samples can be computed as follows: 

𝒙𝑡−1 =
1

√𝛼𝑡
(𝒙𝑡 −

1−𝛼𝑡

√1−𝛼̅𝑡
𝐷𝜃(𝒙𝑡 , 𝒚, 𝑡)) + 𝜎𝑡𝒛               (12)  

where 𝒛~𝒩(𝟎, 𝑰). For clarify, the pseudo codes of Algorithms 

1 and 2 are presented for training and inference, respectively.  

Through the emulation of IGM for active inference using 

conditional DDPM, we successfully obtained the primary 

content. It is important to note that conditional DDPM is not 

intended to completely restore a distorted image to the reference 

image, but the predicted primary content may present the 

reference image much better than the distorted input. Therefore, 

our goal is to estimate a dissimilarity map from this primary 

content, rather than merely quantifying the disparity between 

the distorted image and its primary content. The process for 

generating this dissimilarity map is depicted in Fig. 2.   

After we obtain the primary content with the conditional 

DDPM, we calculate the SSIM map between the distorted 

image and the primary content, which assigns values between 0 

and 1 to each and every pixel, with 0 indicating the lowest 

dissimilarity and 1 representing the perfect similarity. As 

dissimilarity indicates the presence of distortion, a critical 

factor in assessing image quality, we subtract the SSIM map 

from an all-one matrix 𝑰 to obtain the dissimilarity weights, 

where larger values signify more severe distortions. Finally, we 

calculate the Hadamard product between the distorted image 

and the dissimilarity weights to obtain the dissimilarity map. 

With this dissimilarity map as an input, the subsequent image 

quality evaluator can more effectively leverage the 

characteristics of IGM for BIQA. We call our method as 

distortion-based BIQA or D-BIQA. 

Algorithm 1:  Training DDPM 

𝜃 ← Randomly Initialize parameters of DDPM 

𝑇, 𝛽𝑡 ←Iinitialize time steps and variance schedule 

repeat 

    (𝒙0, 𝒚) ←Get minibatch from a training dataset 

𝑡 ← Uniform ({1,2, … , 𝑇 }) 

    𝝐 ← 𝒩(𝟎, 𝑰) 

    g ← ∇ℒ Calculate gradient 

    𝜃 ←Update parameters 

until Epoch is completed 

return 𝜃 

 

Algorithm 2:  Inferencing with DDPM 

𝜃 ← Load parameters from the trained DDPM 

𝑇, 𝛽𝑡 ←Iinitialize time steps and the variation schedule 

𝒙𝑇~𝒩(𝟎, 𝑰) 

for 𝑡 = 1,2, … , 𝑇 

        𝒛~𝒩(𝟎, 𝑰) 𝑖𝑓 𝑡 > 1 𝑒𝑙𝑠𝑒 𝒛 = 𝟎  

        𝒙𝑡−1 =
1

√𝛼𝑡
(𝒙𝑡 −

1−𝛼𝑡

√1−𝛼̅𝑡
𝐷𝜃(𝒙𝑡, 𝒚, 𝑡)) + 𝜎𝑡𝒛  

end 

return Primary content 

 

Figure 2. Dissimilarity map computed from the distorted image and the 
corresponding primary content. 
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Figure 3. Transformer-based quality evaluator. a: general overview of the architecture; b: multi-scale vision transformer; c: transposed attention 
block; d: scale Swin transformer block; e: patch-weighted quality prediction; and f: legend of the submodules. 

 

B. Transform-based Quality Evaluator 

After obtaining the dissimilarity map, we integrate it with the 

distorted image, resulting in a multi-channel image (a tensor in 

general). Our primary goal is to create a quality evaluator that 

can effectively process the multi-channel data tensor consisting 

of these input images. To comprehensively utilize information 

with both the spatial and channel dimensions, we introduce a 

transformer-based model tailored for perceptual quality 

prediction based on MANIQA [39].  The overall architecture of 

this transformer-based quality evaluator is depicted in Fig. 3a. 

The core components of the transformer-based quality 

evaluator include: 1) vision transformer; 2) transposed attention 

block; 3) scale Swin transformer block, and 4) patch-weighted 

quality prediction. 

1)  Vision Transformer  

Fig. 3b shows the architecture of ViT. In the context of a given 

multi-channel image, denoted as  𝑬 ∈ ℝ𝐻×𝑊×3, where 𝐻 and 

𝑊 represent the height and width respectively, we employ the 

ViT denoted by 𝑓𝜑  with a learnable vector of parameters 𝜑 . 

From the ViT, we extract features  𝐹𝑖 ∈ ℝ𝑏×𝑐𝑖×𝐻𝑖𝑊𝑖  

corresponding to the i-th layer, where 𝑖 ranges from 1 to 12, 𝑏 

denotes the batch size, 𝑐𝑖  represents channel size, 𝐻𝑖  and 𝑊𝑖 

denote the dimensions of the i-th feature. Specifically, we 

utilize 4 layers to extract features with varying semantic 

significance. Then, we concatenate 𝐹̂𝑖 , where 𝑖 ∈ {7,8,9,10} , 

yielding a composite feature tensor denoted as 𝐹̃ ∈

ℝ𝑏×∑ 𝑐𝑖𝑖 ×𝐻𝑖𝑊𝑖 . 

2) Transposed Attention Block 

To enhance channel interaction within these concatenated 

features, we employ a transposed attention block. Unlike the 

conventional spatial attention, this block facilitates self-

attention across channels, effectively computing cross-

covariance between channels to generate an attention map that 

encodes global contextual relations. Beginning with the feature 

tensor 𝐹̃ ∈ ℝ𝑏×∑ 𝑐𝑖𝑖 ×𝐻𝑖𝑊𝑖 , the transposed attention block first 

generates query (Q), key (K) and value (V) projections through 

independent linear projections. These projections are utilized to 

encode pixel-wise cross-channel dependency. The query and 

key projections are reshaped for dot-product interaction, 

producing a transposed-attention map A∈ ℝ𝐶×𝐶. Note that 𝐶̃ is 

equal to 𝑐𝑖 . It is noteworthy that the layer normalization and 

multi-layer perceptron components from the original 
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transformer structure are omitted. Mathematically, the 

transposed attention block is defined as follows: 

𝑿̂ = 𝑊𝑝𝐴𝑡𝑡𝑛(𝑸̂, 𝑲̂, 𝑽̂) + 𝑿                       (13) 

Attn(𝑸̂, 𝑲̂, 𝑽̂) = 𝑽̂ ∙ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑲̂ ∙ 𝑸̂/𝛼)         (14) 

where 𝛼  denotes the spatial dimension of Q, K and V. The 

specifics of the transposed attention block are illustrated in Fig. 

3c. 

3) Scale Swin Transformer Block 

The scale Swin transformer block is shown in Fig. 3d. The 

scale Swin transformer block consists of Swin transformer 

layers and convolutional layers.  Given an input feature 𝐹𝑖,0, the 

scale Swin transformer block first encodes the feature tensor 

through 2 Swin transformer layers: 

𝐹𝑖,𝑗 = 𝐻𝑆𝑇𝐿𝑖,𝑗
(𝐹𝑖,𝑗), 𝑗 = 1,2,                  (15) 

where 𝐻𝑆𝑇𝐿𝑖,𝑗
(∙) represents the j-th Swin transformer layer in 

the i-th stage, 𝑖 ∈ {1,2} . After the encoding process, a 

convolutional layer is applied before the residual connection.  

The output of the scale Swin transformer block is formulated as 

𝐹𝑜𝑢𝑡 = 𝛼 ∙ 𝐻𝐶𝑂𝑁𝑉 (𝐻𝑆𝑇𝐿(𝐹̃𝑖,2)) + 𝐹̃𝑖,0              (16) 

where 𝐻𝐶𝑂𝑁𝑉(∙)  is the convolutional layer, and 𝛼  denotes a 

scale factor for the output of the Swin transformer layer. 

4) Patch-Weighted Quality Prediction 

 A dual-branch structure for patch-weighted quality 

prediction is shown in Fig. 3e. Given the feature tensor, we 

generate weight and score projections, which are achieved 

through 2 independent linear projections. The final patch score 

of the distorted image is generated by multiplying the score and 

weight of each patch, then the final score of the whole image is 

generated by the summation of all the final patch scores.  

C. Dataset 

1) DDPM Training Dataset 

For training DDPM, we simulated images with varying levels 

of dosage, by adding realistic noise to the dataset used in the 

2016 low-dose CT grand challenge [56]. With the assumed use 

of a monochromatic source, the projection measurements from 

a CT scan follow the Poisson distribution, which can be 

expressed as 

              𝑛𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛{𝑏𝑖𝑒
−𝑙𝑖 + 𝑟𝑖},    𝑖 = 1, ⋯ , 𝐼                (17) 

where 𝑛𝑖 is the measurement along the i-th ray path. 𝑏𝑖 are the 

air scan photons, 𝑟𝑖  denotes read-out noise. In Eq. (17), the 

noise level can be controlled by 𝑏𝑖. This allowed us to obtain 

three additional noise levels equivalent to 50%, 25% and 10% 

of the normal dose for the 2016 low-dose CT grand challenge 

dataset. Streak artifacts are generated using a similar pipeline to 

noise insertion, but by reconstructing with different numbers of 

projections. There are three different numbers of projection 

views used in our study, which are 720, 360, and 180 views 

equiangularly distributed over a full scan. For each noise level 

we obtain 3 different sparse view, hence we obtained 12 

reconstructed images for each normal dose scan. We selected 

1,222 abdomen normal dose images from the 2016 low-dose 

CT grand challenge dataset and simulated 14,664 images with 

different noise levels and numbers of projection views to train 

our DDPM model. 

2) Low-dose CT BIQA Dataset 

The low-dose CT BIQA dataset comprises a total of 1,000 

distorted abdominal images, which exhibit both noise and 

streak artifacts. These images were generated at four different 

dose levels: 100%, 50%, 25%, and 10%. Additionally, three 

numbers of projection views were uniformly selected over a full 

scan, resulting in a total of 12 different types of image 

degradation. Out of these images, 900 were allocated for the 

training phase, while the remaining 100 were reserved for the 

testing phase. In this dataset, CT values exceeding 350 

Hounsfield Units (HU) were capped at 350 HU, resulting in a 

CT value range from -1000 HU to 350 HU. These CT values 

were then transformed to a normalized range from 0 to 1. The 

CT image quality assessment was performed using the 

abdominal soft-tissue window, defined by the width/level 

setting of 350/40, and evaluated by five proficient radiologists. 

The ultimate human perceptual score for each image was 

determined by averaging the individual ratings by these 

radiologists. The specific criteria for this assessment are 

detailed in Table I. 

Table I. Image scoring criteria. 

Score Quality Diagnostic quality criteria 

0  Bad Desired features are not shown 

1 Poor Diagnostic interpretation is impossible 

2     Fair Suitable for compromised interpretation 

3 Good Good for diagnostic interpretation 

4 Excellent Anatomical features are clearly visible 

D. Network Training  

For training the DDPM model, we set the total number of time 

steps 𝑇 to 1,000. The model underwent training using the Adam 

optimizer, with a learning rate of 1 × 10−4 . The training 

process demonstrated convergence after 5 × 105 iterations on a 

computing server equipped with four Nvidia Tesla V100 GPUs. 

Upon completing the training process, we employed the trained 

DDPM to obtain the primary contents from the low-dose CT 

BIQA challenge dataset. Subsequently, we computed the 

dissimilarity map, resulting in a multi-channel image. 

To train the transformer-based quality evaluator, we selected 

the ViT-B/8 model as our pre-trained model. This model was 

initially trained on ImageNet-21k and fine-tuned on ImageNet-

1k, using a patch size of 8. To accommodate the varying input 

sizes of our datasets, we applied central cropping to resize the 

images to 448×448, as the edges of the images typically 

represent air and have limited influence on the overall image 

quality score. Furthermore, we resized these cropped images to 

a final size of 224×224. Then, we combined a dissimilarity map 

and two duplicated distorted images to form a three-channel 

image tensor.  

The transformer-based quality evaluator consists of two 

stages, each comprising 2 transposed attention blocks and 1 

scale Swin transformer block. The dimensions of the hidden 

layer, the number of heads, and the window size are set to 768, 
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4, and 4 in each scale Swin transformer block. We set the scale 

parameter to 0.8 in the scale Swin transformer block. For 

training, we established the learning rate at 1 × 10−5 and used 

a batch size of 8. The Adam optimizer was used with a weight 

decay of 1 × 10−5  and cosine annealing for learning rate 

scheduling. The selected loss function was the mean square 

error (MSE). As our transformer-based quality evaluator was 

built upon the foundation of MANIQA [39], we still call the 

transformer-based quality assessment method without primary 

content as MANIQA throughout this paper. Our experiments 

were conducted on an NVIDIA RTX A4000 using PyTorch 

2.0.1 and CUDA 11.8 for both training and testing. 

E. Evaluation Criteria  

We use Pearson’s linear correlation coefficient (PLCC), the 

absolute value of the Spearman’s rank order correlation 

coefficient (SROCC), and the Kendall rank-order correlation 

coefficient (KROCC) as the metrics to evaluate the 

performance of our models. The PLCC is defined as  

𝑃𝐿𝐶𝐶 =
∑ (𝑠𝑖 − 𝜇𝑠𝑖

)(𝑠̂𝑖 − 𝜇𝑠̂𝑖
)𝑀

𝑖=1

√∑ (𝑠𝑖 − 𝜇𝑠𝑖
)

2𝑀
𝑖=1

√∑ (𝑠̂𝑖 − 𝜇𝑠̂𝑖
)

2𝑀
𝑖=1

        (18) 

where 𝑠𝑖  and 𝑠̂𝑖  respectively indicate the ground-truth and 

predicted quality scores of the i-th image, 𝜇𝑠𝑖
 and 𝜇𝑠̂𝑖

 indicate 

their means, and 𝑀 denotes the testing images. Let 𝑑𝑖  denote 

the difference between the ranks of the i-th test image in 

ground-truth and the predicted quality score. The SROCC is 

defined as 

𝑆𝑅𝑂𝐶𝐶 = 1 −
6 ∑ 𝑑𝑖

2𝑀
𝑖=1

𝑀(𝑀2 − 1)
                          (19) 

The KROCC is defined as: 

𝐾𝑅𝑂𝐶𝐶 =
2(𝑀𝑐 − 𝑀𝑑)

𝑀(𝑀 − 1)
                            (20) 

where 𝑀𝑐 is the count of data pairs sharing the same rank, and 

𝑀𝑑 is the count of data pairs with different rank. We use the 

absolute values of all the metrics, PLCC, SROCC and KROCC, 

are all in the range of [0, 1]. A higher value indicates better 

performance. The overall metric is defined as 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑃𝐿𝐶𝐶 + 𝑆𝑅𝑂𝐶𝐶 + 𝐾𝑅𝑂𝐶𝐶             (21) 

III. RESULTS 

A. Inspection of Primary Contents 

As obtaining high-quality primary contents is of paramount 

importance in mimicking the HVS, our initial focus is on 

evaluating primary contents across various quality scores and 

comparing the outcomes using distinct reconstruction methods. 

We employed the four classic methods for this purpose: 1) FBP: 

Reconstructing the original image from the low-dose CT BIQA 

challenge dataset using FBP; 2) RED-CNN: Utilizing CNN for 

low-dose CT reconstruction; 3) SU-Net: Combining the U-Net 

architecture with the Swin transformer for low-dose CT 

reconstruction; and 4) DDPM: Known for its powerful image 

generation capabilities in low-dose CT reconstruction. 

 
Figure 4. Visualization of the primary contents produced using different 

reconstructed methods. (a1)–(a3) the input distorted images at different 

distortion levels, of which quality scores are 0.2, 2.0 and 4.0, 

respectively; (b1)–(b3) the primary contents reconstructed by RED-

CNN; (c1)–(c3) the primary contents reconstructed by SU-Net; and (d1)–

(d3) the primary contents reconstructed by DDPM. The display window 

(width/level) is set to 350/40 HU. 

In Fig. 4, we present three representative samples from the 

low-dose CT BIQA challenge dataset, with assigned quality 

scores of 0.2, 2.0, and 4.0 respectively. It can be seen that the 

FBP-reconstructed image with a quality score of 0.2 exhibits 

distortions caused by both noise and streak artifacts. Crucial 

features are not discernible. At a quality score of 2.0, the FBP-

reconstructed image displays noticeable streak artifacts, but the 

main structural features are still recognizable. In the FBP 

reconstruction with a quality score of 4.0, the anatomical 

structure is highly visible, qualified as a reference image. The 

RED-CNN method successfully mitigates noise artifacts but 

sometimes amplifies streak artifacts. This effect is particularly 

pronounced in the image with a quality score of 0.2, exerting a 

negative impact on image quality. SU-Net effectively 

suppresses both noise and streak artifacts. However, the 
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resultant image appears overly smooth, deviating from the 

authentic appearance of the real clinical counterpart. The 

DDPM approach emerges as an accurate yet robust solution, 

effectively suppressing noise and streak artifacts while 

simultaneously preserving intricate details. Furthermore, the 

distribution of the images closely aligns with that of real clinical 

reference images. As a result, opting for DDPM to generate 

high-quality primary contents proves feasible and 

advantageous, facilitating an accurate emulation of the IGM 

principle within the HVS.  

B. Visualization of the Prior Information 

By employing primary contents generated through DDPM, 

we can glean insights into the proposed method. In Fig. 5, the 

first row showcases distorted images across varying levels of 

distortions. From the second to the last row, we present 

corresponding primary contents and dissimilarity maps. The 

effectiveness of the IGM becomes evident in its ability to 

mitigate noise and infer high-quality primary content, as 

evidenced in Fig. 5(d)-(f). Concurrently, as depicted in Fig. 

5(g)-(i), when subjected to distinct levels of artifacts, the 

dissimilarity map exhibits diverse patterns. Notably, Fig. 5(i) 

demonstrates lower dissimilarity, implying less content 

degradation in Fig. 5(c). 

 
Figure 5. Generative prior information with DDPM. (a)–(c) the input 

distorted images at different distortion levels, with image quality scores 

of 0.2, 2.0 and 4.0 respectively. The lower the quality score, the higher 

the distortion level and the worse the perceptual quality; (d)–(f) the 

primary contents generated by DDPM; and (g)–(i) the dissimilarity maps 

calculated by SSIM.  

 
Figure 6. Visualization of several exemplary images from the test 

dataset. From left to right are the distorted images, the weight maps, and 

scores. From top to bottom are five representative example images with 

the radiologist scores of 0.0, 1.0, 2.0, 3.0 and 4.0 and our model 

predictions respectively. 

C. Visualization of Exemplary Images 

In Fig. 6, we visualize distorted images and weight maps for 

five represetative examples from the low-dose CT BIQA test 

dataset. These weight maps clearly highlight salient subjects, 

which are significant areas that strongly influence human 

perception. When humans view an image, features of interest 

greatly affects our perception, and therefore these features 

receive higher weights as depicted in Fig. 6. Furthermore, as the 

score increases, the weight also becomes larger. Regarding the 

predicted scores for the images, we observed some bias relative 

to the radiologists’ scores, indicating that there is still room for 

improvement. 

D. Performance Comparison within the Low-dose CT 
BIQA Challenge Dataset 

Given the absence of reference images in the dataset, we 

straightforwardly partition the dataset based on distorted 

images. We compared our method against one traditional BIQA 

method and two CNN-based methods, along with one 

transformer-based method. For the traditional approach, we 

selected the natural image quality evaluator (NIQE) as a 

representative method as implemented in the official code. 
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Among the CNN-based methods, we used DBCNN and Hyper-

IQA as representative networks, using the implementations 

provided in [56]. As for the transformer-based method, we 

employed MANIQA. Referring to Table II, limited by the 

handcrafted features, the traditional NIQE demonstrates the 

lowest performance. The CNN-based methods show 

remarkable improvements over the NIQE approach. Between 

these two CNN-based methods, DBCNN outperforms in PLCC 

and KROCC metrics, while Hyper-IQA excels in SROCC. The 

performance of these two CNN-based methods is closely 

comparable. As a representative of transformer-based methods, 

MANIQA exhibits superior performance over the CNN-based 

methods. Remarkably, our proposed D-BIQA method achieves 

the highest performance. In summary, D-BIQA demonstrates 

strong efficacy on the low-dose CT BIQA challenge dataset, 

thereby affirming the effectiveness of our proposed approach. 

Table II. Comparisons on the Low-dose CT BIQA Dataset. 

Methods PLCC SROCC KROCC Overall 

NIQE 0.9181 0.9335 0.7897 2.6414 

DBCNN 0.9716 0.9693 0.8692 2.8103 

HyperIQA 0.9680 0.9694 0.8672 2.8045 

MANIQA 0.9789 0.9792 0.9041 2.8622 

D-BIQA 0.9814 0.9816 0.9122 2.8753 

IV DISCUSSIONS AND CONCLUSION 

Given the widespread artifacts in low-dose CT images, we 

have opted for a transformer-based approach to comprehend 

these artifacts globally. It is worth emphasizing the importance 

of pretraining when utilizing transformers. In this study, we 

have chosen to use a pretrained ViT-B/8 model with a 224×224 

configuration for further training on a low-dose CT dataset. In 

typical natural image BIQA, researchers often employ a random 

crop of 224×224 to align with the requirement for training a 

transformer. However, in the case of CT images, the peripheral 

region of the image predominantly corresponds to air and 

should not influence the quality assessment. As a result, we 

have cropped each original 512 × 512 images down to a 

centralized 448 × 448 image, excluding the air and less 

important features from consideration. To ensure the quality of 

neural network training while simultaneously minimizing 

computational complexity, we have employed a common 

down-sampling technique [57]. Specifically, all images were 

consistently down-sampled to a uniform size of 224×224. This 

enables us to effectively address the globalized artifacts in low-

dose CT images while losing little information in this medical 

imaging domain.  

Directional artifacts in low-dose CT images can occasionally 

mislead radiologists because they might resemble actual 

anatomical structures. To address this issue, we have 

implemented a DDPM to mitigate these artifacts. While the 

DDPM has demonstrated the capability to generate high-quality 

images that closely resemble reality, it is important to clarify 

that our intention is not to restore a perfectly pristine or 

distortion-free image. Our DDPM efforts may still retain 

compromised information when dealing with severely distorted 

images. Nevertheless, our primary objective is to emulate the 

active inference process employed by IGM to predict the vital 

content within the image. As long as the DDPM results are 

helpful to derive the primary content and guide our image 

quality assessment, our goal is achieved. 

In conclusion, we have introduced a novel D-BIQA model 

for image quality assessment based on DDPM-driven active 

inference. Leveraging the amazing image synthesis capability 

of DDPM, our active inference module seems adeptly 

emulating the IGM theory to forecast the primary contents from 

distorted images. Through the amalgamation of information 

derived from distorted images and dissimilarity maps, a multi-

channel image tensor is formed and fed into a transformer-

based quality evaluator. A comprehensive set of experiments 

substantiates the efficacy and superiority of our proposed 

approach. While we achieved the second place in the MICCAI 

2023 low-dose CT perceptual image quality assessment grand 

challenge with our reported transformer-based quality 

evaluator, this much-improved approach for D-BIQA has 

further enhanced performance guided by the IGM theory, which 

is the main innovation of this work. 
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