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Visual Sentences for Pose Retrieval Over
Low-Resolution Cross-Media Dance Collections
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Abstract—We describe a system for matching human posture
(pose) across a large cross-media archive of dance footage spanning
nearly 100 years, comprising digitized photographs and videos of
rehearsals and performances. This footage presents unique chal-
lenges due to its age, quality and diversity. We propose a forest-like
pose representation combining visual structure (self-similarity) de-
scriptors over multiple scales, without explicitly detecting limb po-
sitions which would be infeasible for our data. We explore two com-
plementary multi-scale representations, applying passage retrieval
and latent Dirichlet allocation (LDA) techniques inspired by the
text retrieval domain, to the problem of pose matching. The result
is a robust system capable of quickly searching large cross-media
collections for similarity to a visually specified query pose. We eval-
uate over a cross-section of the UK National Research Centre for
Dance’s (UK-NRCD), and the Siobhan Davies Replay’s (SDR) dig-
ital dance archives, using visual queries supplied by dance pro-
fessionals. We demonstrate significant performance improvements
over two base-lines: classical single and multi-scale bag of visual
words (BoVW) and spatial pyramid kernel (SPK) matching [5].

Index Terms—Content based image retrieval, dance archives,
low-resolution pose similarity.

I. INTRODUCTION

HE visual arts are increasingly turning to online digital

archives for dissemination. Large online archives now
exist for paintings and textiles (VADS), film (BFi ScreenOn-
line), and in recent years dance. Two examples are the Siobhan
Davies Replay (SDR) and UK National Resource Centre for
Dance (UK-NRCD!) have launched online dance archives. As
additional dance collections appear in isolation online, a need
emerges for a single portal enabling search across collections
and across media types. The Digital Dance Archives (DDA)
project recently launched such a portal? spanning ~ 100 years
of dance history. While an online presence aids dissemination
of this wealth of material, methods for discovering this content
remain limited. Searches are typically text-based, focusing on
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authorship or time-location meta-data rather than annotation
of the choreography itself. Systems such as Labanotation [22]
exist to describe dance pose. Yet such expert annotation is costly
and not scalable to large legacy archives. This paper describes
one forthcoming aspect of DDA visual search: searching based
on the posture (pose) of performers. Rather than explicitly
estimating skeletal position (or “soft” probability distributions
of body parts), we encode pose implicitly within a novel rep-
resentation we dub “Visual Sentences”. The Visual Sentence
representation and its application to pose search forms the core
contribution of this paper.

A large dance archive, such as the UK-NRCD’s, comprises
many dance collections each containing video and photographic
footage of a specific dance company. Dance researchers are
often restricted by their familiarity with only certain collec-
tions or works within a collection. Our motivation is to produce
a search tool capable of identifying new connections between
dance collections and across media types. Dance collections are
often cross-media, containing not only video of performance
but also photographic records “Contact Sheets” of the rehearsals
that capture experimental choreography that led up to the final
production. Pose is the essential unit of dance. The ability to
match static imagery in Contact Sheets with instances of poses
in a performance presents a new way to research the develop-
ment and history of dance.

Our work is unique in its focus on low-fidelity, monocular
cross-media dance collections and in the breadth of dance ma-
terial considered—comprising four partially digitized collec-
tions circa 1920-1970 from the UK-NRCD archive—Extempo-
rary Dance Theatre, Revived Greek Dance, Natural Movement,
and Ludmila Mlada collections—and in addition, material sam-
pled from the Siobhan Davies Replay (SDR) collection. These
sources represent the two major U.K. online dance archives at
the time of writing. Although photographic content in these col-
lections has been scanned at high resolution, the digitized video
was originally captured on CineFilm or VHS tape and is grainy,
and of low-resolution. Furthermore, the footage is typically shot
with a monocular, fixed or panning camera from the back of a
darkened theatre with frequently changing lighting conditions.
This can result in contrast bleached, blurry edges and a typical
performer height of only ~ 50 — 100 pixels.

Human pose estimation (HPE) is the process of explicitly es-
timating either a skeletal pose, or a probability map indicating
the likelihood of skeleton limb positions. HPE has been demon-
strated over a variety of broadcast and movie quality monocular
footage [4], [10], [16], [27]. Fig. 1 illustrates the challenge of
applying two HPE approaches claiming generality of input [4],
[13] to the low fidelity dance footage considered in this paper.
Although these approaches are robust to clutter, this is not an
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Fig. 1. Challenge of explicit HPE in our low-resolution archival dance footage.
Performers are typically non-frontal facing, in diverse poses often ~ 50 — 100
pixels high (row 1). Even with their bounding box, localized HPE typically fails
in these conditions; row 2 [11], row 3 [4].

issue in our footage; rather other conditions assumed by these
methods (e.g., good contrast and resolution, limited self-occlu-
sion) are violated. We therefore eschew explicit HPE, opting in-
stead to implicitly encode pose through local spatial structure.
Our pose representation is based on pixel information within
a bounding box surrounding the performer. Although captured
implicitly, we do not seek to label pixels as belonging to any
particular part of the body.

Our core technical contribution is therefore a novel frame-
work for pose retrieval on low fidelity dance footage, that
does not require explicit pose estimation. We build upon
Shechtman et al.’s self-similarity (SSIM) descriptor [33],
computing descriptors at multiple scales within the bounding
box. Descriptors are codebooked using hierarchical k-means
and subsequently collected across scales to yield sequences
of visual words—dubbed visual sentences—that collectively
represent the content and scale-space containment of features
within the bounding box (Section III).

Two complementary schemes inspired from the text retrieval
literature—topic and passage analysis—are investigated to
match the visual sentence representation, and compared against
classical multi-scale approaches (Section IV). We evaluate our
system over a corpus of dance footage in Section V using a
query-set produced by dance professionals, omparing against
search driven by explicit HPE [4], [13], and implict baselines
for multi-scale matching, including classical BoVW and spatial
pyramid kernel (SPK) matching.

II. RELATED WORK

Most existing approaches to measuring pose similarity focus
on human pose estimation (HPE) to extract 2-D or 3-D limb po-
sitions as a pre-process [14], [29]. HPE underpins many tracking
and recognition applications, and has received broad attention
for both single images [15] and video sequences captured from
one [10] or multiple views [31].

HPE commonly begins with the localization of regions of in-
terest containing people. The localization problem can be solved
by background [38] or motion [2] subtraction, in simple cases.
In cluttered scenarios, sliding window classifiers based on his-
togram of gradient (HoG) descriptors can robustly identify the
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torso [10], face [36], or entire body [8]. Following localiza-
tion, pose estimation follows either: 1) top-down fitting of a
person model, optimizing limb parameters and projecting to
image space to evaluate correlation with image data; or 2) in-
dividually segmenting parts and integrating their positions in a
bottom-up manner to produce a maximal likelihood pose.

Bottom-up HPE are becoming increasingly popular. Srini-
vasan and Shi [35] use graph-cut to parse a subset of salient
shapes from an image and group these into a shape resembling
a person. However the approach is limited to a single person,
and clutter is reported to interfere with the initial segmenta-
tion. Mori and Malik sought to estimate 3-D pose by identi-
fying the position of individual joints in a 2-D image. Scale and
symmetry constraints were used to establish correspondence be-
tween a 2-D query image and training images annotated a priori
with joint positions [27]. Ren et al. propose recursively splitting
Canny edge contours into segments, classifying each segment as
a putative body part using shape cues such as parallelism [30].
Ning et al. [16] apply a bag of visual words (BoVW) frame-
work to learn codewords for body zone labelling—segmenting
2-D body parts to infer pose. We also apply BoVW in our work,
but in the context of image retrieval [28], [34], where features
are codebooked to form a representation used to form the basis
of a search index.

Eichner and Ferrari presented “Pose Search” [13], a system
using descriptors derived from the “soft” probability maps gen-
erated by their earlier HPE algorithm[10]. The system was re-
fined for improved generality in [11], and operates over high (vi-
sual) quality broadcast TV footage: Bufty the Vampire Slayer.
The approach relies on explicit HPE via pictorial structures [10].
A further approach to full-body HPE using pictorial structure
was presented by Andriluka et al. [4], and is adaptable to pose
search using a descriptor derived from estimated joint angles. In
Fig. 1, and later in Section V-E, we show that these explicit HPE
approaches to pose search are ill-suited to our diverse, low-res-
olution footage dance video shot at a distance.

Top-down approaches to 2-D HPE typically adopt a hierar-
chical limb model incorporating kinematic priors into their ob-
jective functions to bias toward feasible configurations. Lan and
Huttenlocher [24] fit such a model using joint angles and con-
sidering the conditional independence of parts; more complex
inter-limb dependencies (e.g., symmetry) are not considered. A
more global treatment is proposed in [19] using linear relax-
ation, but shows good results only on uncluttered scenes. Most
recently, pictorial structures [12] present a graphical model de-
composing the objective function across edges and nodes in
a tree. Spatio-temporal tracking of pictorial structures is ap-
plied to HPE in [23], and the fusion of pictorial structures with
Ada-Boost based shape classification was more recent explored
in [4]. Parallels between 2-D shape and 2-D pose retrieval are
noted in [32] where local sensitive hashing (LSH) is used to
retrieve pose in uncluttered scenes quite different to the low-fi-
delity archival footage we process.

Implicit representations for pose matching (i.e., omitting
HPE) are relatively uncommon in the retrieval literature.
Shechtman et al. proposed the SSIM descriptor [33]; essen-
tially an autocorrelation surface computed local to a given
key-point. SSIM demonstrates a degree of invariance across
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Fig. 2. Computing the feature representation for pose. Self-similarity (SSIM) features [33] are computed over multiple scales. Scale space containment is captured
through multiple tree representations, where nodes are features, and the root of each tree stems from features at the coarsest scale. Tree branches exhibit varying
depth; not all regions yield a valid SSIM feature. The pose representation is formed by traversing the forest in a coarse to fine manner, collecting visual words

derived form SSIM features across scales to yield (“visual sentences”).
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Fig. 3. Overview of the dance retrieval system; feature extraction (upper) is
addressed in Section III; pose matching (lower) is addressed in Section I'V.

depictive style, and can match shapes manifested in different
textures. Most relevant to our work, pose retrieval is briefly
demonstrated in [33] using an ice-skater clearly delineated
against a white background. SSIM therefore formed a natural
first step in our technique, but as we later show (Section V),
straightforward application of [33] in a regular BoVW frame-
work, does not deliver satisfactory performance over diverse
archival dance footage.

III. POSE REPRESENTATION

We now describe our system for searching dance footage
using pose similarity, beginning with the (offline) process for
extracting the pose representation. We then discuss the process
for matching the pose representation in Section IV. Fig. 3 pro-
vides an overview of the entire system.

A. Performer Identification

We begin by identifying the region-of-interest (ROI) local to
each dance performer or group of performers. Background sub-
traction based on motion [2] or color [38] is commonly used
for ROl identification in biometrics or surveillance applications.
Limited resolution inhibits the detection of repeatable interest
points on the performers which frustrates motion flow based
subtraction. Similar issues prevent camera motion compensa-
tion using features detected on the background. Consequently,
we draw upon pedestrian detection algorithms, designed to op-
erate over low-fidelity CCTV footage. We implement a variant
of the Dalal and Triggs [8] pedestrian detector based on densely

sampled HoG descriptors over four octave scale intervals. RBF-
kernel SVMs are applied to identify neighborhoods likely to
contain people. Neighborhoods are aggregated into rectangular
ROIs using a heuristic optimization to minimize intersection
while maximizing coverage [26]. A bounding box is obtained
for each performer, or huddle of performers in the case of heavy
inter-occlusion. These ROIs form our basic unit of retrieval.

B. Multi-Scale Feature Extraction

Our pose representation is based upon the SSIM descriptor
[33], extracted at multiple scales over a low-pass pyramid
within each bounding box. The bounded region is normalized
by scaling to a regular 64 x 128 window; if the ROI is not
of 1:2 aspect, then the shorter side of the box is padded to
enforce this ratio. If the ROI is of greater than 1:1 aspect, then
it is rotated 90° prior to conforming the aspect ratio and the
subsequent feature extraction steps performed twice; once per
180° rotation of the ROI, to mitigate rotational ambiguity.

SSIM are computed across four scales at octave intervals
using the luminance channel only. For computational conve-
nience we up-scale the relevant level of the low-pass pyramid
and compute SSIM densely at 5 pixel intervals, as follows. For a
pixel g, a small surrounding patch (5 x 5) is extracted and com-
pared with overlapping patches forming a larger neighborhood
(25 % 25) local to g. The sum of squared differences (SSD) is
calculated between patches. This results is a surface S.S 1), local
to g which is normalized and transformed into a correlation sur-
face S,:

SSD
Sq = exrp ( ) 3 qz ) (1)
Ind’x(gnoise? T auto (q))
where o2 . __ is a constant which reflects variance in SSD due to
non-salient visual artifacts and 02,,,,(q) denotes the maximum

“differential variance” within the 2 % 2 neighborhood local to
q; these quantities are taken as originally defined by Shechtman
et al. [33]. The surface S, is then transformed into log-polar
coordinates with origin at q. The space is quantized into 12 an-
gular and 4 radial intervals. The maximum correlation values in
each bin are collected to form a 48-dimensional SSIM descriptor
local to ¢, which is then normalized. As in [33], a threshold on
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minimum and maximum values of ¢2,,,,(¢) is employed to dis-
card descriptors computed over poorly textured regions.

1) BoVW Codebook Generation: For each bounding box,
the outcome of this process is a set of features in R*® obtained
through densely sampling descriptors over a regular grid at each
scale of the low-pass pyramid. We quantize the space R4 into k&
partitions via hierarchical k-means (HKM) clustering. The se-
lection of an appropriate & is discussed in Section V-B. We adopt
the classical or “hard assignment” BoVW strategy, as proposed
by Sivic and Zisserman [34] mapping each feature to one of &
codewords {w; ...wy } using nearest-neighbor assignment.

2) Stop-Word Removal: Stop-words are frequently occurring
visual words corresponding to common components of pose.
For example, a straight torso occurs frequently in dance. Code-
books containing visual words corresponding to this pose char-
acteristic offer reduced discriminative power. Rather than pre-
scribe such heuristics we identify stop-words through their fre-
quency distribution; in information retrieval this is commonly
achieved under a Bernoulli [3] or 2-Poisson [17] model. We
adopt the former in our experiments (Section V-B2). The docu-
ment frequency (DF) of each visual word is computed across the
dataset, and expectation maximization (EM) used to estimate
a Bernoulli distribution from the DF distribution. The proba-
bility of each visual word belonging to the distribution is esti-
mated; visual words with probabilities below a constant “credit
threshold” are deemed stop-words and discarded. Appropriate
credit threshold values are explored in Section V-B2.

C. Hierarchical Representation

Defining the low-pass pyramid at octave scales enforces
unique containment of a feature at one given scale within the
footprint of a feature at a coarser scale. Thus a set of trees
(forest) representation can be produced, with nodes corre-
sponding to visual words (features), and connectivity defined
by scale-space containment (Fig. 2, left). Each branch may be
of variable length, since it is possible that an SSIM feature at a
given scale is invalid, due to o2,,,,(g), inhibiting the discovery
of descriptors at finer scales.

We now describe the pose representations considered in this
work, derived from this multi-scale representation. The “visual
sentence” representation underpins our novel contribution,
whereas the “layered” representation serves as a baseline for
performance comparison.

1) Visual Sentences: We propose the collection of visual
words through traversal of each tree in the forest, collecting
words along all root-leaf paths. This forms a set of visual word
strings we term visual sentences. Each visual sentence encodes
individual fine-scale regions, along with supporting context en-
coding local spatial relationships at coarser scales (Fig. 2). Vi-
sual words within the visual sentences are ordered left-right
from coarse to fine scale. The sentences are right-padded with
a stop-word token w1 should they be of length less than four
(corresponding to the four scales of the pyramid). The set of vi-
sual sentences forms our pose representation. Although relative
spatial information is not explicitly coded in this (unordered)
set, it is implicitly captured in the local contextual information
within each visual sentence.
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2) Layered Representation: Visual words can be encoded
without context by simply collating into groups at each layer
of the pyramid. We compute a normalized frequency histogram
of word occurrence at each spatial scale. Such histograms may
be treated independently during matching. For example, by
assigning different weights to measures of similarity at different
scales. We refer to the sequence of such histograms computed
across each pyramid layer as the layered representation of the
ROI. Such a representation is reminiscent of the multiple-scale
collation of HOG descriptors computed by Pyramid-HOG
(PHOG) [5]. Alternatively the scale-dependent histograms
may be summed prior to normalization, and then globally
normalized to yield a single frequency histogram. In this case
the system degenerates to a standard hard-assignment BoVW
approach, using dense-sampled SSIM as the descriptor.

IV. POSE RELEVANCE ESTIMATION

We now describe the process for matching a pair of pose rep-
resentations, so establishing the relevance of an ROI or “docu-
ment” d within the dataset D, given a query ROI . We develop
several “pose similarity functions” (PSF'1 — 5) using the lay-
ered (PSF1 — 2) and visual sentence (PSF'3 — 4) representa-
tions, evaluating the performance of each in Section V.

Our retrieval process estimates p((J|d) for all d € D
and returns these documents as a ranked list of results in
descending order of this probability. The user queries the
database by selecting a performer. This is identified by drawing
a bounding box on a single image or video frame. The drawn
box is “snapped” to the spatially closest ROI detected during
pre-processing, thus ¢ € D obviating the need for any feature
extraction at query-time.

We propose five pose similarity functions (PSF1 — 5) po-
tentially suitable for matching our hierarchical representation.
PSF1 — 2 match the layered representation and serve later
as a baseline for comparison to the state of the art Section V.
PSF3 — 4 match the visual sentence representation, using two
complementary approaches that propose handling of the spatial
relationships between SSIM features in different ways. We also
propose P S F5, a mechanism for enhancing diversity within the
ranked results, to mitigate many similar video frames being re-
turned by the system for a given pose. The relative performance
of all similarity functions are compared in Section V.

A. Classical Multi-Scale BoVW (PSF1)

In the simplest case of the /ayered representation, features
from all spatial scales can be collected and a single BoVW code-
book formed over the entire feature set. p(Q|d) is measured di-
rectly as the joint probability of all visual words in d occurring
within @:

n

p(Qld) = T p(wild). @)

=1

where w; is the ith of n visual words present in (. This is the
classical BoVW “hard assignment” model as proposed by Sivic
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and Zisserman [34], trivial to compute as the pose representa-
tions are already frequency distributions of visual words w1,
ie.,

f(wu d)

o) = =

)

where ¢ indicates term frequency, and |d| normalizes for doc-
ument length (i.e., word count in the image).

Following the work of Nister and Stewenius [28], efficient
feature lookup is implemented using an inverse index. In prac-
tice, for large diverse datasets such as UK-NRCD, a perfor-
mance increase can also be obtained by blending p(w;|d) with
the frequency of occurrence of w; within D, i.e., p{w;|D) to im-
prove robustness:

plarldy = AL

w,;,d) (1—)\)
ila). 4
-t ;)p(w ). @)

In our comparative evaluation we set a blending factor of A =
0.8. We refer to the pose similarity function utilizing metric
plw;|d) as PSF1. PSF1 provides both a performance baseline
for evaluation (i.e., classical BoVW [34]), and forms a compo-
nent of the other pose similarity functions we now propose.

B. Layered Representation (PSF2)

Dance formalisms such as Laban’s Choreutics [22] describe
pose in terms of a hierarchy of body zones, and it is natural to
consider pose similarity in these terms. However, as noted in
Section I, for our dataset the explicit identification and analysis
of body parts is infeasible. In the simple case of the layered rep-
resentation, we consider our four scales to directly map to four
granularities of body zone. Rather than combining our features
into a mixed-scale BoVW as in PSF'1, we individually weight
the importance of each scale layer:

5

= Zmpsm(cgm;n (5)

=1

p(Qld)

where PSF1(.) indicates similarity of visual words at layer
{, under similarity function PSF'1 (2). We train an SVM to
learn appropriate weights 7715 using 50 manually constructed
training queries and result sets sampled from D. The resulting
trained weights exhibit an approximately linear bias toward 7 at
finer scales, identifying increased discrimination power at these
scales. We refer to this weighted summation (5) score as PSF2.

C. Topic Learning Over Visual Sentences (PSF3)

Our visual sentence representation encodes both fine-scale
features and their structural context; the spatial regions of the
body, at increasing scales, within which each codeword occurs.
In considering pose similarity, it is useful to consider such
zones. However, since semantically meaningful body zones,
e.g., an arm, or foot, are unlikely to map explicitly to the regions
used in our scale-space hierarchy, it is better to consider the
visual sentence as implicitly encoding body zone membership.
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Body zones are therefore considered as latent variables or
“topics”. Each visual sentence is considered as having a mem-
bership distribution across the range of topics. This leads to a
modification of PSF'1:

17|

p(Qld) = Hp (ti|d) 6)

where individual topic presence with the unordered set of visual
sentences (passage) is determined by

[Sal

IT »(sit:) (7

SES,

p(t;|d) =

where S; indicates the set of visual sentences within d, and 7
the set of topics. In practice, the p(.) are computed using log-
likelihoods and summed.

We draw upon latent dirichlet allocation (LDA) [9] to learn
the underpinning topic distribution for our visual sentences. The
identification of latent topics and their non-parametric distribu-
tion across document terms is a classical formulation of LDA,
and we apply the Gibbs sampling approach of [18], learning the
topic space by sampling 1 k documents from D, and iteratively
refining in alternation a set of topics 7 and their associated gen-
erative distributions for Sp. In our experiments we specify 48
topics to the LDA process. This is influenced by observations
in Choreutics that indicate a similar number of atomic postures
and zones of movement in dance [22]. Equation (6) reflects the
similarity of topics present within the set of visual sentences, an
approach frequently used in the analogous domain of text pas-
sage retrieval. We refer to this similarity measure as P.SF'3.

D. Passage Retrieval Over Visual Sentences (PSF4)

Spatial context over scale is implicitly encoded via the vi-
sual sentence representation; however PSF3 considers only
the topic frequency distributions arising from these sentences
rather than the spatial relationships between sentences. We pro-
pose a further similarity function P .S F'4 that explicitly encodes
spatial groupings of visual sentences. We are again motivated
by text retrieval literature that frequently compare local spatial
context through so-called “passage analysis” to identify co-oc-
curring phrases. The analysis of spatial co-located visual sen-
tences is analogous in our system.

We define a 2 x 2 pixel sliding window w over the coarsest
level of the low-pass pyramid extracted from the @ (i.e., 4 x 8
pixels). A similar sliding window is established over candidate
d. The relevance p(Q|d) is obtained by computing a similarity
score sim(.) between each pair of spatially corresponding win-
dows in ¢} and d, respectively, averaged that score over the set
of all valid window positions W:

p(Qld) = Z s Qs duy ) )

weW

The similarity score between a pair of corresponding windows
sim{w, w’) (typically containing 50 — 100 visual sentences) is
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PSF1 PSF2 PSF3 PSF4
Vocab. (M/S BoVW) | (Layered/SVM) (LDA/VS) (Passage/VS)
Size (k) | AP30 % AP30 % AP30 % AP30 %
100 0.003 - 0.012 - 0.104 - 0.040 -
500 0.009 | +200 | 0.030 | +150 | 0.351 | +238 | 0.181 | +352
1000 0.013 | +44 | 0.082 | +173 0.387 | +10 | 0.337 | +86
2000 0.019 | +46 | 0.190 | +132 | 0.270 | -30 | 0.325 -3
5000 0.032 | +68 | 0.220 +16 0.206 | -24 | 0.347 +7
10000 0.034 +6 0.185 -16 0.094 | -54 | 0.249 -28
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Fig. 4. Effect of vocabulary size (k) on performance for the layered representation at mixed (I>SF'1) and separate (.5 £'2) multiple scales, versus visual
sentences using LDA with no re-ranking (P.SF'3) and Passage Retrieval ( P.SF'4). In these experiments, no stop-word removal has been applied (see Tables I and
II for analysis of best performing layered and visual sentence techniques with stop-word removal).

approximated by randomly sampling one third of visual sen-
tences from each windows, and exhaustively searching for a pair
of sentences in that subset minimizing:

>

min(]Sql,|Sqr[)

sim(d,d') = min, ; IIs:. 85| ©)

where ||.|| indicates the count of in-place differences between
visual words in sentence pair {s;, s;}.

E. Diversity and Re-Ranking (PSF5)

Direct presentation of results in strict order of similarity under
(9) can lead to unsatisfactory grouping of results sampled from
a narrow temporal window of one video. This lack of diversity
(i.e., lack of dataset coverage at the expense of redundancy in
results) runs counter to our aim of enabling cross-media and
cross-collection discovery of dance.

Following recently proposed approaches in large-scale text
retrieval we inject diversity into our results by re-ranking
according to a clustering technique [7], [25] that discourages
grouping of similar documents within the ranked results.
Although re-ranking is possible over any of the four pose sim-
ilarity functions defined here, we adopt PSF'3, as this is later
shown (Section V) to yield the most promising pose retrieval
performance. We refer to PSF3 following this re-ranked
process as similarity function PSF5.

We re-rank the top n results, according to the minimized
intersection distance between one third of visual sentence
pairs uniformly sampled from @ and d—using the measure
of (9). Section V-C explores the choice of n (the scope of the
re-ranking). A weighted affinity matrix A is computed between
(2 and all D, based on (9). A matrix for each potential (} can be
pre-computed offline, since () € D. The resulting graph A is
clustered using unsupervised Kruskal clustering [21], a greedy
approach in which spanning trees are iteratively identified
within the graph. The number of clusters is the number of ex-
tracted spanning trees, forming a cluster set {Cy,Cs, ..., C,},
so that [, ,;(Ci,Cj) = @ and |J;_, C; = D. Documents
within each cluster are then re-ranked independently under
PSF3. The results presented to the user are based on a fusion

y

3

=

Fig. 5. Sample of the 65 pose search queries used in our evaluation.

of this independent ranked order, with tie-breakers resolved via
the PSF'3 score.

V. RESULTS AND DISCUSSION

We evaluated our system over two large-scale datasets. The
first “core” dataset comprised 25 dance videos and 1684 Con-
tact Sheet photographs. Sampling video key-frames every 5 s
yielded ~ 6.3k video stills, and so a total of around 6.5k im-
ages in the dataset. Approximately 8% bounding boxes (ROIs)
were identified in the data. The source footage was sampled
from 32 works across 4 cross-media collections of UK-NRCD
footage: Extemporary Dance Theatre; Revived Greek Dance;
Natural Movement; Ludmila Mlada. Videos were MPEG-2 PAL
resolution footage (704x576) digitized from analogue CineFilm
and VHS tape sources, and photographs were down-sampled to
VGA resolution from high resolution archival scans of the orig-
inal Contact Sheets with blurring applied to mitigate differences
in fidelty between the photo and video media. This dataset is
comparable in size to non-synthetic evaluation datasets of pre-
vious work focusing on fu/l-body pose estimation, e.g., [16] and
the Leeds Sport dataset [20], and an order of magnitude larger
than [4] (but recall that we match pose only, and do explicitly es-
timate skeletal pose or soft pose maps). The second “extended”
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Fig. 6. Three representative retrieval results using the best performing system configuration (PSF'5). Top 15 ranked results are shown, ordered left-right, top-
bottom. Associated Precision-Recall curves for all pose similarity functions (1”5 F1—5) are plotted. Baselines for comparison are provided by classical multi-scale

BoVW (PSTF'1) and spatial pyramid kernel (S P K ) matching.

dataset is a superset of the core dataset, including 200 additional
videos and 542 production and Contact Sheet photographs from
the Siobhan Davies Replay (SDR) collection. The SDR footage
was similarly sampled yielding approximately 64k bounding
boxes (ROIs), and so a total of ~ 68% ROIs for this dataset. A
similar order of scale-up also without a full annotation is used
to test scalability in [4]. Due to the manual overhead in gener-
ating a ground truth, all experiments are reported using the core
dataset, bar Section V-F.

An experimental GUI was developed to gather query ROIs
from the core dataset. The queries comprised either key-frames
from the videos, or monochrome contact sheets of rehearsals
or experimental choreography leading to the production of that
footage. We gathered 65 search queries from the UK-NRCD
who identified poses in the video of choreographic interest
(Fig. 5). Relevant images and video key-frames within the core
dataset were also identified to create a ground truth. Fig. 6
provides sample queries with top 5 results.

A. Experimental Configuration

We measure performance using average precision computed
over the top 30 ranked results; i.e., P30. Where a multiple query
set @ = {q1,...,qp5} is run in an experiment, this quantity
is averaged over all 65 queries to give mean average precision
(AP) at 30; i.e., AP30.

The five relevance estimation schemes proposed in
Section IV are investigated, comparing the layered (PSF'1—2)
and visual sentence (PSF3 — 5) representations:

o PSF1: classic BOVW using SSIM over mixed scales.

* PSF2: BoVW using SSIM, run independently per scale,

then fused.

* PSF3: latent dirichlet allocation (visual sentences).

» PSF4: passage retrieval (visual sentences).

* PSF5: LDA with re-ranking/diversity.

B. Visual Vocabulary

Visual vocabulary size is a key parameter in BoVW frame-
works, governing the quantization level and thus expressivity of
the codebook. Small vocabularies lack expressive power, while
large vocabularies introduce excessive visual words resulting in
poor discrimination.

1) Evaluating Codebook Size:
books by hierarchical k-means clustering of our ex-
tracted features. We compare the effects of our system
using our layered (PSF1,PSF2) and visual sentence
(PSF3,PSF4) representations without any re-ranking
post-process or stop-word removal. Six vocabulary sizes are
tried: £ = {100,500,1000,2000,5000,10000}. Fig. 4 shows
AP30 for PSF2 — 4 significantly outperforming classical
BoVW (PSF1) by at least ~ 20%. Furthermore, visual
sentences (PSF3, PSF4) consistently outperform layered
representations (PSF1,PSF2) by around ~ 10%. We
conclude that: 1) independent multi-resolution analysis can
generate more meaningful visual words than a single mixed
resolution analysis; and 2) larger visual vocabularies between
1 — 5k yield the best retrieval performance. The results support
multi-resolution approaches in a BoVW framework for dance
pose retrieval.

Table IV (left) presents a general trend toward improved re-
trieval performance delivered with larger visual vocabularies
up to around & = 5000—although performance improvement
is not always linearly correlated with vocabulary size (k) es-
pecially in the case of the LDA based method (PSF3). The
LDA approach exhibits a 4% improvement in performance over
the nearest rival (P SF4), dropping sharply at & = 1000. This
indicates LDA’s inability to effectively learn topics using an
over-complete BoVW codebook. The baseline of mixed resolu-
tion BoVW ( PSF'1) is more sensitive to & than descriptors with
separated resolutions, and suffers overall poorer performance.
Visual sentences (PSF'3, PSF4) are more robust and reach the
best performance with a smaller vocabulary size than the lay-
ered representation (PSF2). This is likely due to the greater

We build BoVW code-
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TABLE I
EFFECT OF VARYING STOP-WORD THRESHOLD FOR THE BEST PERFORMING
LAYERED SYSTEM, P S F2. B=BERNOULLI, P=POISSON

method(k) 0.7 0.75 0.8 0.85 0.9 0.95
B(1000) | 0.193 | 0.214 | 0.22 | 0.227 | 0.223 | 0.212
P(1000) 0.192 | 023 | 0.235 | 0.246 | 0.24 0.22
B(5000) | 0.223 | 0.235 | 0.246 | 0.25 | 0.262 | 0.254
P(5000) 0222 | 0.232 | 024 | 0.248 | 0.254 | 0.254

TABLE II

EFFECT OF VARYING STOP-WORD REMOVAL THRESHOLD FOR BEST
PERFORMING VISUAL SENTENCE SYSTEM (LDA NO RE-RANKING, PSF'3).
B=BERNOULLI, P=POISSON

method(k) | 0.7 0.75 0.8 0.85 0.9 0.95
B(1000) | 0.346 | 0.393 | 0.420 | 0.422 | 0.418 | 0.416
P(1000) | 0.346 | 0.400 | 0.416 | 0.420 | 0.422 | 0.420
B(5000) | 0.271 | 0.284 | 0.315 | 0.323 | 0.327 | 0.310
P(5000) | 0.271 | 0.280 | 0.312 | 0.322 | 0.316 | 0.312

TABLE III

VISUAL SENTENCES. COMPARING THE PERFORMANCE OF LDA WITH THE
RE-RANKING SCHEME (P SF5) VERSUS NO RE-RANKING (P.SF'3)

Re-ranking scope / PSF5 | Precision(AP30) | % gain over PSF3
1 0.422 -
30 0.437 +3.6
60 0.453 +7.3
120 0.487 +15.4
150 0.475 +12.6

visual context captured across scales by the visual sentences.
Performance increase slows after & = 2000 with degradation in
performance at k& = 5000. We therefore limit the scope of our
later experiments to vocabularies of 1% and 5k visual words.

2) Stop Word Effectiveness: We cull stop words from the
codebook (Section III-B2) by estimating the probability of a vi-
sual word belonging to the overall document frequency distri-
bution, computed via either a Bernoulli or a 2-Poisson hypoth-
esis. Tables I and II summarize the performance for the lay-
ered and visual sentence representations with different credit
(removal) thresholds over these two vocabulary sizes. We ob-
serve no significant performance differences between adopting
the Bernoulli or 2-Poisson hypotheses; however stop-word re-
moval improves accuracy in PSF'3 by around ~ 6%. Bernoulli
is adopted for convenience due to lower computational expense,
and we observe AP30 to peak at a credit threshold of between
0.85-0.9, and we adopt 0.85 for stop-word removal in the re-
mainder of our experiments.

C. Re-Ranking Performance

Based on the superior performance exhibited by PSF3
(Fig. 4) for k£ = 1000 we investigated re-ranking the top n
ranked results (Section IV-E) to further improve accuracy
(PSF5). Recall this process increases diversity (dataset cov-
erage) by clustering results and executing a random walk local
to each cluster. Table III illustrates the performance increase of
PSF5 over PSFE3 (i.e., no re-ranking; n = 1) under various
re-ranking scopes 7 using a BoVW vocabulary of & = 1000.
Re-ranking up to n = 120 offers an increase of around 6% (in
relative terms, an increase of ~ 15%) accuracy over the initial
PSF3 results.
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TABLE IV
LEFT: AVERAGE PERFORMANCE (AP30) OF EACH RETRIEVAL
SCHEME (PSF1 — 4) COMPARED AGAINST BASELINES
OF SINGLE-SCALE BOVW AND SPK MATCHING

Retrieval k

Scheme 1000 | 5000
PSF1 (Multi res. BoVW) | 0.014 | 0.036
PSF2 (Layered/SVM) 0.223 | 0.254
PSF3 (LDA/VS) 0.422 | 0.273
PSF4 (Passage/VS) 0.343 | 0.357
PSF5 (LDA/VS/Re-Rank) | 0.487 | 0.288
SPK 0.243 [ 0.243
Single res. BoVW 0.019 | 0.032

D. Overall Performance and Baseline Comparison

We compare our proposed system against three baselines: 1)
a classical hard-assignment BoVW framework using SSIM at a
single scale [6]; 2) classical BoVW using a mixed bag of SSIM
features computed over multiple scales (i.e., PSFE1); 3) SPK
matching [5]. These baselines are selected to evaluate the effec-
tiveness of our hierarchical approach versus regular BoVW and
a leading multiple resolution approach.

Table IV compares the performance (AP30) of all proposed
schemes to the baselines, with precision-recall graphs for rep-
resentative queries given in Fig. 6. SPK performance is compa-
rable to that of P S F'1 (multi-scale BoVW), but achieves around
half the performance of our best performing similarity function
(PSF3). Combining relevance across multiple scales (P SF'2)
yields fractionally improved results over SPK. All techniques
significantly outperform single-scale BoVW using SSIM, which
performs very poorly with apparently random results. These re-
sults support the adoption of multi-scale analysis for pose re-
trieval.

Both PSI'3 and P SF4 outperform all baselines, indicating
that the structuring of codewords across scale (i.e., through the
visual sentence) is critical to improving precision. Although our
passage retrieval approach ( P.S F'4) performs most consistently
as codebook size (k) varies, method PSF'3 exhibits around 8%
improvement in performance at & = 1000 outperforming all
other approaches. The inclusion of the re-ranking operation on
PSF3 (i.e., PSFS) produces a further improvement, resulting
in a mean average precision of 48.7% for our final system (av-
eraged over the 65 query set). We suggest that the improve-
ment delivered via re-ranking may be due to the diversity of
the dataset and the potential for ambiguity in the low-resolution
pose query.

Three representative retrieval results are presented in Fig. 6,
for the best performing retrieval scheme PSF'5. Precision re-
call graphs are presented for all multiple resolution retrieval
schemes (SPK and PSF1 — 4), showing visual sentence re-
trieval schemes (P S F3—5) to outperform the layered represen-
tation based schemes and SPK in all cases. In all cases PSF'5
(i.e., PSF'3 with re-ranking) exhibits best performance, with
plain PSF'3 a close second in two of three cases. Fig. 7 ex-
plores the failure cases where a pair of performers is mistakenly
grouped into a single ROI by the performer detection stage. The
system is able to retrieve another mistakenly grouped pair of
performer ROIs in similar poses, and within the top 5 results re-
turns poses broadly similar to those of the two performers.
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Fig. 7. Serendipity: multiple performers are accidently grouped within single
ROI. However when posed as a query, another mistakenly grouped pair of per-
formers is retrieved in a similar pose.

TABLE V
COMPARATIVE OF EXPLICIT POSE ESTIMATION
Precision | PSF3 | PSF5 PSR PS
AP30 0.323 | 0.337 0.054 0.201
AP60 0.338 | 0.355 0.002 0.163
AP90 0.270 | 0.352 | <0.001 | 0.083

E. Implicit versus Explicit Pose Estimation

Prior approaches to full-body pose search explicitly estimate
the location of body parts in the form of a probability density
map [10], [11] which may be converted into a pose descriptor
for search [13] or resolved to a single best estimate skeletal
pose [4], [10], [11]. The joint angles of the skeleton could al-
ternatively be used a descriptor. We now compare the proposed
system against two techniques that explicitly estimate pose: Pic-
torial Structures Revisited (PSR) [4] and Pose Search (PS) [13].
For PSR we parse the output of this code to determine joint an-
gles to yield a descriptor. This is necessary as PSR [4] stops
short of proposing a pose search system per se. For PS we use
the authors code from [13] to convert the soft pose estimates
of [11] into a pose descriptor. We compare against PSF3 which
exhibits the best performance without the diversity re-ranking
step (PSF5), unavailable to PSR/PS (Table V).

Although these approaches function very well over the
quality of footage for which they were designed, they perform
pooly on lower resolution footage. To explicitly detect body
parts these methods need higher contrast images with visible
limbs of sufficient size. The higher performance of PS versus
PSR is likely due to matching using soft pose estimates.

F. Extended Evaluation

Our experiments so far have focused on the large corpus of
dance footage defined as our “core” database. We have run addi-
tional experiments on the “extended” dataset incorporating ad-
ditional video material from the SDR collections. Ground truth
markup is impractical given the size of this dataset; rather we mea-
sure result precision only, by manually inspecting the correctness
ofposesreturnedusing oursetof65 query poses. The precisions of
the top 30, 60, and 90 ranked results are tabulated below for each
similarity function. Although performance is around 8%-10%
lower on average (and very slightly improved for SPK, and multi-
scale BoVW), we observe the relative performance of the simi-
larity functions to mirror our earlier experiments with PSF'5 ex-
hibiting overall best performance (Table VI).
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TABLE VI
EVALUATION OVER THE EXTENDED UK-NRCD/SDR COMBINED DATASET
Precision SPK PSF1 PSF2 | PSF3 | PSF4 | PSF5
AP30 0.051 | 0.067 | 0.280 | 0.323 | 0.293 | 0.337
AP60 0.115 | 0.148 | 0.310 | 0.338 | 0.320 | 0.355
AP90 0.107 | 0.127 | 0.308 | 0.278 | 0.270 | 0.352
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Fig. 8. Performance timings for PSF1-5 on 1k — 68k bounding boxes.

We have also performed timing analysis of approaches
PSF1 — 5 computing mean query time (MQT) over the set of
65 queries. Fig. 8 indicates sub-linear scaling of PSF1 — 3
and PSF5 with respect to database size. In the case of PSF'5
the diversity modelling adds a small approximately constant
overhead to the processing times to PSF3. For our most
successful approach PSF'5, queries over the “core” dataset of
~ 8k bounding boxes yielded an MQT of 1040ms + 65, and
over the “extended” dataset of ~ 68% bounding boxes an MQT
of 2640ms + 102.

VI. CONCLUSION

We have presented a novel representation and matching
scheme for pose retrieval over cross-media (photo and video)
dance archives. Our system is designed to operate over low-res-
olution archival dance footage, exhibiting diverse content
and artifacts arising from digitization noise, blur, and adverse
illumination. We eschew explicit estimation of limb positions
for implicit encoding of pose, delivered through the SSIM
derived visual sentence representation. Our most successful
matching scheme (PSF3) harnesses LDA to learn topics
within the dataset corresponding to body zones in canonical
poses, and can be considered to build upon the hyperfeature
meta-framework proposed by Agarwal and Triggs [1]. This
approach to pose search using implicit pose representation
has been shown to outrank classical BoVW using single and
multiple scales, and a leading multi-resolution approach (spa-
tial pyramid kernel). Further, our re-ranking post-process over
PSF3 (PSF5) delivers additional precision and introduces
diversity into the resulting poses that promotes user discovery
of content with the archive. Although explicit pose estimation
is not our goal, we have presented illustrative comparisons
of our implicit pose matching against two well-established
baselines for full body pose estimation. A further project could
explore extensive comparisons including recently proposed
flexible part-based techniques [37].
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A number of components in our system might be extended in
future work. Further refinement is needed to robustify against
view angle change and self-occlusion. Our use of a pedestrian
detection algorithm [8], trained on dance footage, for performer
localization averages only around ~ 43%. This causes many
ROIs to be absented from the index, prior to application of the
pose matching techniques introduced in this paper. This lower
than expected performance is likely due to wide variations in
pose and appearance with the footage.
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