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Abstract—The objectives of this work are cross-modal text-
audio and audio-text retrieval, in which the goal is to retrieve the
audio content from a pool of candidates that best matches a given
written description and vice versa. Text-audio retrieval enables
users to search large databases through an intuitive interface:
they simply issue free-form natural language descriptions of
the sound they would like to hear. To study the tasks of
text-audio and audio-text retrieval, which have received limited
attention in the existing literature, we introduce three challenging
new benchmarks. We first construct text-audio and audio-text
retrieval benchmarks from the AUDIOCAPS and CLOTHO audio
captioning datasets. Additionally, we introduce the SOUNDDESCS
benchmark, which consists of paired audio and natural language
descriptions for a diverse collection of sounds that are comple-
mentary to those found in AUDIOCAPS and CLOTHO. We employ
these three benchmarks to establish baselines for cross-modal
text-audio and audio-text retrieval, where we demonstrate the
benefits of pre-training on diverse audio tasks. We hope that our
benchmarks will inspire further research into audio retrieval
with free-form text queries. Code, audio features for all datasets
used, and the SOUNDDESCS dataset are publicly available at
https://github.com/akoepke/audio-retrieval-benchmark.

Index Terms—Audio Retrieval, Text-based Retrieval, Datasets

I. INTRODUCTION

THE vast and unabated growth of user-generated content
in recent years has introduced a pressing need to search

ever-growing databases of multimedia. Free-form natural lan-
guage sentences (i.e. sequences of text that are written as they
would be spoken) form an intuitive and powerful interface
for composing search queries for these databases since they
allow for expressing virtually any concept. Spanning multiple
modalities, different retrieval strategies were developed for
content as diverse as text (including web pages and books),
images [1], and videos [2], [3]. Surprisingly, while search
engines currently exist for these modalities (e.g. Google,
Flickr and YouTube, respectively), unstructured audio is not
accessible in the same way. The aim of this paper is to
address this gap by curating the SOUNDDESCS dataset which
contains paired sound and natural language and by introducing
benchmarks for text-audio retrieval.

* Equal contribution.
A. S. Koepke and Z. Akata are with the Explainable Machine Learning
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It is important to distinguish content-based retrieval from
that based on metadata, such as the title of a video or song
or an audio tag. Metadata retrieval is feasible for manually-
curated databases such as song or movie catalogues. However,
content-based retrieval is more important in user-generated
data, which often has little structure or metadata. There are
methods to search for audio which matches an audio query [4],
[5], but satisfying the requirement to input an example audio
query can be difficult for a human (e.g. making convincing
frog sounds is difficult). We, on the other hand, propose a
framework which enables the searching of a sound database
using detailed free-form natural language queries of the de-
sired sound (e.g. “A man talking as music is playing followed
by a frog croaking.”). This enables the retrieval of audio data
which will ideally match the temporal sequence of events in
the query instead of just a single class tag. Furthermore, natural
language queries are a familiar user interface widely used in
current search engines. Therefore, our proposed audio retrieval
with free-form text queries could be a first step towards more
natural and flexible audio-only search.

Text-based audio retrieval could also be beneficial for video
retrieval. The majority of recent works that address the text-
based video retrieval task focus heavily on the visual and text
domains [1], [2], [6], [7]. Since audio and visual information
inherently have natural semantic alignment for a significant
portion of video data, text-based audio retrieval could also
be used for querying video databases by only considering
the audio stream of the video data. This would allow for
video retrieval in the audio domain at reduced computational
cost for cases in which audio and visual information cor-
respond, with applications for low-power IoT devices, such
as microphones in natural habitats, of particular interest for
conservation and biology. Historical archives with extensive
sound collections, such as the British Library Sounds1, would
be easier to search, facilitating historical research and public
access. Furthermore, text-based retrieval could enable appeal-
ing creative applications, such as automatically finding (non-
music) background sounds which correspond to input text.
This could be especially useful given the growing popularity of
audio podcasts and audiobooks which are often supplemented
with (background) sounds that match their content.

Learning to retrieve audio, given natural language queries,
requires data with paired text and sound. Audio captioning
datasets naturally lend themselves to this task, since they
contain audio and a matching text description for the sound.
However, existing captioning datasets are limited in size and

1https://sounds.bl.uk
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in the diversity of their audio content. Hence, we curated the
novel SOUNDDESCS dataset, which was sourced from the
BBC Sound Effects database2. SOUNDDESCS contains text
describing the sounds with significant variation with respect
to the audio content and 2with a relatively large vocabulary
used in the descriptions.

We introduce three new benchmarks for text-based audio re-
trieval, based on our proposed SOUNDDESCS dataset, and the
AUDIOCAPS [8] and CLOTHO [9] audio captioning datasets.
AUDIOCAPS consists of a subset of 10-second audio clips
from the AudioSet dataset [10] with additional human-written
audio captions, while CLOTHO contains sounds sourced from
the Freesound platform [11], varying between 15 and 30
seconds in duration, and accompanied by crowd-sourced text
captions. SOUNDDESCS is considerably more varied in du-
ration and audio content than the other two benchmarks.
However, the text descriptions are of mixed quality, since they
are obtained automatically from descriptions provided with the
data.

In contrast to sound event class labels, audio captions con-
tain detailed information about the sounds. A user searching
for a particular sound would usually describe the sound using
text similar to an audio caption. AUDIOCAPS [8], CLOTHO [9],
and SOUNDDESCS allow to leverage the matching text-audio
pairs to train text-based audio retrieval frameworks. To estab-
lish baselines for this task, we adapt existing video retrieval
frameworks for audio retrieval. We employ multiple pre-
trained audio expert networks and show that using an ensemble
of audio experts improves audio retrieval.

In summary, we make three contributions: (1) we introduce
the SOUNDDESCS dataset for text-based audio retrieval; (2)
we introduce three new benchmarks for audio retrieval with
natural language queries—to the best of our knowledge, these
represent the first public benchmarks for this task; (3) we pro-
vide baseline performances with existing multi-modal video
retrieval models that we adapt to text-based audio retrieval and
show the benefits of using multiple datasets for pre-training.

This paper extends an initial Interspeech 2021 conference
version of our work [12] in two ways: (i) we introduce the
new SOUNDDESCS dataset for text-audio retrieval and provide
an analysis of its characteristics (in Sec. III), (ii) we provide
more extensive baselines for the audio retrieval task with more
detailed ablations across datasets and an additional retrieval
architecture (Sec. V). In particular, we explore the use of the
Multi-modal Transformer architecture [7].

II. RELATED WORK

Our work relates to several themes in the literature: sound
event recognition, audio captioning, audio-based retrieval,
text-based video retrieval and text-domain audio retrieval. We
discuss each of these next.
Sound event recognition. There is a rich literature addressing
the task of sound event recognition, which seeks to assign
a given segment of audio with a corresponding semantic
label. Examples include detecting audio events associated with
sports [13], urban sounds [14], and distinguishing vocal and

2https://sound-effects.bbcrewind.co.uk/

nonvocal events [15]. Research in this area has been driven by
challenges, such as DCASE [16], [17], and by the collection
of sound event datasets. These include TUT Acoustic scenes
[18], CHIME-Home [19], ESC-50 [20], FSDKaggle [21], and
AudioSet [10]. Of relevance to our approach, a number of
prior works have employed deep learning for audio compre-
hension [22], [23], [24], [25], [26]. Our work differs from
theirs in that we focus instead on the task of retrieval with
natural language queries, rather than audio recognition.
Audio captioning. Audio captioning consists of generating a
natural language description for a sound [27]. This requires a
more detailed understanding of the sound than simply mapping
the sound to a set of labels (sound event recognition). Recently,
several audio captioning datasets have been introduced, such
as CLOTHO [9] which was used in the DCASE automated
audio captioning challenge 2020 [28], Audio Caption [29],
and AUDIOCAPS [8]. Drawing inspiration from work on
video captioning [30], [31], multiple works have addressed
automatic audio captioning on the AUDIOCAPS and CLOTHO
datasets [32], [33], [34], [35], [36]. In this work, we use the
AUDIOCAPS and CLOTHO datasets for cross-modal retrieval.
Audio-based retrieval. Multiple content-based audio retrieval
frameworks, in particular query by example methods, leverage
the similarity of sound features that represent different aspects
of sounds (e.g. pitch, or loudness) [37], [38], [39], [5]. More
recently, [4] use a twin neural network framework to learn to
encode semantically similar audio close together in the embed-
ding space. [40] address multimedia event detection using only
audio data, while [41] tackle near-duplicate video retrieval by
audio retrieval. These are purely audio-based methods that are
applied to video datasets, but without using visual information.
[42] propose a two-step approach for video retrieval which
uses audio (coarse) and visual (fine) information together.
Text-based video retrieval. More closely related to our work,
a number of methods showed that embedding video and text
jointly into a shared space (such that their similarity can
be computed efficiently) is an effective approach [1], [3],
[2], [6], [43], [7], [44] (though other formulations, such as
computing similarities directly in visual space have also been
explored [45]). One particular trend has been to combine cues
from several “experts”—pre-trained models that specialise in
different tasks (such as object recognition, action classification
etc.) to inform the joint embedding. Recently, transformer-
based architectures have demonstrated impressive results for
text-based video retrieval [7], [46], [47]. In this work, we
propose to adapt three expert-based methods: the Mixture of
Embedded Experts method of [2], the Collaborative Experts
model of [6], and the Multi-Modal Transformer [7] by re-
purposing them for the task of audio retrieval (described in
more detail in Sec. IV).
Cross-domain audio retrieval. Methods that retrieve audio by
matching associated text, such as metadata or sound event la-
bels, have the implicit assumption that the text is relevant [48].
2In contrast, [49] is an early work that proposes to link audio
and text representations in hierarchical semantic and acoustic
spaces. [50] builds on this using mixture-of-probability-expert
models for each of the modalities. Chechik et al. [51] propose

https://sound-effects.bbcrewind.co.uk/
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Fig. 1: Pie chart showing the distribution of audio files in the
SOUNDDESCS dataset over different categories.

a text-based sound retrieval framework which uses single-
word audio tags as queries rather than caption-like natural
language. Similarly, [52], [53] learn shared latent spaces be-
tween onomatopoeias (words that mimic non-speech sounds)
and sound for searching audio using onomatopoeia queries and
for generating sound words from audio. The creative approach
of [54] learns to align visual, audio, and text representations
to enable cross-modal retrieval. Their framework is trained
with captioned images and paired image-sound data (sourced
from videos) and evaluated using the soundtrack of captioned
videos. Other works have explored using images [55] or video
data [56], [57], [58], [59], [60] as queries for retrieving audio.
More recently, [61] use a twin network to learn a shared latent
text and sound space for cross-modal retrieval. While they
use class labels as text labels, we study unconstrained text
descriptions as queries. Another highly related, concurrent line
of works has explored the task of grounding sounds given a
text description. [62], [63] presented results for the grounding
task on the AudioGrounding dataset, proposed by [62], which
augments a subset of the AUDIOCAPS dataset (approximately
10% of the full AUDIOCAPS dataset) by adding fine-grained
temporal grounding labels. In contrast to the audio grounding
task, text-based audio retrieval does not require expensive
temporal annotations and we can therefore leverage large
databases which contain immensely varied content.

III. SOUNDDESCS DATASET

In this section, we introduce the SOUNDDESCS dataset for
text-audio retrieval. The SOUNDDESCS dataset consists of
32,979 audio files accompanied by natural language descrip-
tions. We present an overview of the SOUNDDESCS dataset
by describing how it was collected in Section III-A, and by
providing an analysis and comparison to related datasets which
contain pairs of audio files and text descriptions in Section
III-B. Furthermore, we show some examples of the data in
Section III-C.

Fig. 2: Histogram of audio files lengths for the AUDIOCAPS,
CLOTHO and SOUNDDESCS datasets.

A. Dataset collection

The SOUNDDESCS data was sourced from the BBC Sound
Effects webpage2. It contains audio files and corresponding
textual descriptions of a wide range of sounds from the
BBC Radiophonic workshop, the Blitz in London, special
effects made for the BBC, and recordings from the Natural
History Unit archive. The sounds are of high quality and
were recorded for professional applications, such as radio and
TV special effects. In some cases, additional information is
provided which contains the size and number of channels of
the audio file together with the date it was recorded and other
sound tags. The audio files are associated with 23 categories,
including but not limited to nature, clocks, fire, etc. We show
the proportion of files from the different categories in Fig. 1.
For this, we use the text tags accompanying the collected
audio files. Since some of the files contain multiple text tags,
we collected all of them in a bag-of-words fashion and then
provided the frequencies with which they appear. We obtained
32,979 audio files sampled at 44.1 Hz which have a non-empty
textual description (out of the 33,066 audio files on the BBC
website). We propose to split the SOUNDDESCS dataset into
training/validation/test subsets by randomly selecting 70% of
the files for training, and 15% each for validation and testing.

B. Data analysis

We compare the SOUNDDESCS dataset to related datasets
which contain matching sound and language data in Table I.
The two main novelties of the SOUNDDESCS dataset com-
pared to related sound-text datasets are the wide variation in
duration of the audio files and the size of the vocabulary used
for the descriptions. The audio captioning datasets AUDIO-
CAPS [8]3 and CLOTHO [9] contain audio files that are only
10-30 seconds long. As can be seen in Fig. 2, SOUNDDESCS
contains sounds with a much wider range of audio durations
with 109 files lasting longer than 10 minutes. Processing audio
files with such variations in duration is challenging, but it
enables the detailed analysis of the performance of current
text-audio and audio-text retrieval methods with respect to

3The numbers provided for the AUDIOCAPS dataset in Table I correspond
to the subset which does not have an overlap with the VGGSound dataset.
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TABLE I: Comparative overview of sound-language datasets. Comparing the number of files in the different datasets, including
their training, validation, and test subsets, audio duration (dur.) and caption lengths (#words) measured in seconds and words
respectively. Text is sourced from human caption annotations or audio descriptions provided with the sound data.

Dataset Text source language duration(h) #audios #captions max dur.(s) avg dur.(s) max #words avg #words train val test
AUDIOCAPS [8] Human captions English 135.01 50535 55512 10.08 9.84 52 8.80 49291 428 816
CLOTHO [9] Human captions English 22.55 3938 3938 30.00 22.44 21 11.32 2314 579 1045
Audio Caption [29] Human captions Chinese 10.3 3707 3707 N/A 10.00 54 11.14 3337 - 371
SOUNDDESCS Descriptions English 1060.40 32979 32979 4475.89 115.75 65 15.28 23085 4947 4947

Fig. 3: Distribution of the number of words per caption for
the AUDIOCAPS, CLOTHO and SOUNDDESCS datasets.

Fig. 4: Vocabulary size of descriptions in the SOUNDDESCS
dataset, compared to the AUDIOCAPS and CLOTHO datasets,
divided into nouns, verbs, adjectives, adverbs, and pronouns.

the audio duration. In addition to this, the SOUNDDESCS
dataset is larger than all related sound-language datasets with
a total duration of 1060 hours, compared to 135 hours for
AUDIOCAPS. Since SOUNDDESCS contains fewer audio files
with associated captions than AUDIOCAPS, the SOUNDDE-
SCS dataset presents a more challenging retrieval benchmark
dataset. Furthermore, the average audio duration and average
length of the text descriptions in SOUNDDESCS is significantly
higher than for AUDIOCAPS or CLOTHO. The word length
distributions for these datasets can be seen in Fig. 3. Inter-
estingly, for the CLOTHO and SOUNDDESCS dataset which
contain audio and descriptions with varied lengths, there is no
strong correlation between the audio and description lengths.

Lastly, the descriptions in the SOUNDDESCS dataset have
a larger vocabulary with respect to nouns, verbs, adjectives
used, compared to the AUDIOCAPS and CLOTHO datasets

Fig. 5: t-SNE visualisation for word2vec description embed-
dings on SOUNDDESCS. Example descriptions corresponding
to embeddings marked with a star are shown in text boxes.

(see Fig. 4). In particular, the descriptions in SOUNDDESCS
contain almost 4000 distinct nouns as apposed to around 2000
in AUDIOCAPS and CLOTHO. This is consistent with the wide
array of topics (Fig. 1), which reflects a high diversity of
environments in which the sound effects were recorded, and
thus hugely varied sources of sounds are identified in the
descriptions. A large contributor to this diversity in nouns
is the high proportion of Nature sounds (Fig. 1), for which
species names are often specified (an example is shown in
Fig. 5).

Further details about the related datasets that we use in this
work can be found in Section V. A more in depth analysis
of the SOUNDDESCS’s text descriptions can be found in the
Appendix.

C. Dataset examples

In Fig. 5 we visualise the distribution of the descriptions in
SOUNDDESCS, showing the full descriptions for some exam-
ples. The averaged word2vec [64] vectors extracted from each
description are embedded using t-SNE [65], and colour-coded
according to the category (Fig. 1). We show 500 randomly
chosen samples per class for 6 out of the 23 categories present
in SOUNDDESCS. We can observe that the descriptions cluster
smoothly according to the categories, and that the descriptions
are fairly specific and of high quality, despite not always
resembling full sentences.

D. Rights to use

Data collected for generating the new SOUNDDESCS dataset
is protected by the BBC RemArc4 licence. This allows the

4https://sound-effects.bbcrewind.co.uk/licensing

https://sound-effects.bbcrewind.co.uk/licensing
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data to be used for non-commercial, personal or research
purposes. We have released the list with urls along with code
for downloading and constructing the SOUNDDESCS dataset
with our proposed train/val/test split.

IV. METHODS, DATASETS, AND BENCHMARK

In this section, we first formulate the problem of audio
retrieval with natural language queries. Next, we describe three
cross-modal embedding methods that we adapt for the task of
audio retrieval (Section IV-A). Finally, we describe the five
datasets used in our experimental study (Section IV-B), and the
three benchmarks that we propose for evaluating performance
on the audio retrieval task (Section IV-C).
Problem formulation. Given a natural language query (i.e. a
written description of an audio event to be retrieved) and a pool
of audio samples, the objective of text-audio (abbreviated to
t2a) retrieval is to rank the audio samples according to their
similarity to the query. We also consider the converse a2t
task, viz. retrieving text with audio queries.

A. Methods

To tackle the problem of text-audio retrieval, we propose to
learn cross-modal embeddings. Specifically, given a collection
of N audio samples with corresponding textual descriptions,
{(ai, ti) : i ∈ {1, . . . , N}}, we aim to learn embedding
functions, ψa and ψt, that project each audio sample ai and
text sample ti into a shared space, such that ψa(ai) and ψt(ti)
are close when the text describes the audio, and far apart
otherwise. Writing sij for the cosine similarity of the audio
embedding ψa(ai) and the text embedding ψt(tj), we learn
the embedding functions by minimising a contrastive ranking
loss [66]:

L =
1

B

B∑
i=1,j 6=i

[m+ sij − sii]+ + [m+ sji − sii]+ (1)

where B denotes the batch size, m the margin (set as a
hyperparameter), and [·]+ = max(·, 0) the hinge function.

We consider three recent state-of-the-art frameworks for
learning such embedding functions ψa and ψt: Mixture-
of-Embedded Experts (MoEE) [2], Collaborative-Experts
(CE) [6], and the Multi-modal Transformer (MMT) [7]. All
three frameworks were originally designed for text-video re-
trieval and construct their video encoder from a collection
of “experts” (features extracted from networks pre-trained for
object recognition, action classification, sound classification,
etc.) which are computed for each video.
MoEE and CE aggregate the experts along their tempo-
ral dimension with NetVLAD [67], and project them to a
lower dimension via a self-gated linear map followed by
L2-normalisation. Their text encoder first embeds each word
token with word2vec [64] and aggregates the results with
NetVLAD [67]. The result is projected by a sequence of
self-gated linear maps (one for each expert) into a shared
embedding space with the outputs of the video encoder.
Finally, a scalar-weighted sum of the embedded experts in each
joint space is used to compute the overall cosine similarity

between the video and text (see [2] for more details). CE
adopts the same text encoder as MoEE and similarly makes
use of multiple video experts. However, rather than projecting
them directly into independent spaces against the embedded
text, CE first applies a “collaborative gating” mechanism,
which filters each expert with an element-wise attention mask
that is generated with a small MLP that ingests all pairwise
combinations of experts (see [6] for further details).
MMT, on the other hand, uses a multi-modal transformer en-
coder which refines the expert embeddings by passing through
multiple multi-headed self-attention layers. Differently from
the temporal aggregation of expert features used by MoEE
and CE, expert features are instead passed as input directly to
the transformer encoder. This allows to iteratively focus on the
relevant information from each expert at multiple time steps by
comparing content from different experts, rather than down-
projecting the expert embeddings in a single step (as is the
case for MoEE and CE). Each input expert uses an aggregated
embedding which collects the information for that expert
through the layers and serves as the output expert represen-
tation. The iterative attention across different modalities and
time steps enables MMT to combine information across input
experts, rather than comparing each expert individually to the
text query embeddings. MMT leverages a pre-trained BERT
model [68] to extract text embeddings. Gated embedding
functions are learned to obtain a text embedding for each
video expert. The similarity sij between the aggregated audio
and text embeddings is computed as the weighted sum of the
similarity between each expert and the text embedding. Further
information about MMT can be found in [7].

To adapt the MoEE, CE, and MMT frameworks for audio
retrieval, we use the same text encoder structures as used for
video retrieval ψt. We build audio encoders ψa by mimicking
the structure of their video encoders, replacing the “video
experts” with “audio experts” (described in Sec. V).

B. Datasets

As the primary focus of our work, we study three audio-
centric datasets—these are datasets which comprise audio
streams (sometimes with accompanying visual streams) paired
with natural language descriptions that focus explicitly on the
content of the audio track. To explore differences between
audio retrieval and video retrieval, we also consider two
visual-centric datasets, that comprise audio and video streams
paired with natural language which focus primarily (though
not always exclusively) on the content of the video stream.
Details of the five datasets we employ are given next.
1. SOUNDDESCS (audio-centric) consists of sounds sourced
from the BBC Sound Effects webpage and annotated with
free-form text descriptions. It contains 23,085 training, 4947
validation and 4947 test samples. 5 Further information on
our newly introduced SOUNDDESCS dataset is provided in
Section III.
2. AUDIOCAPS [8] (audio-centric) is a dataset of sounds
with event descriptions which was introduced for the task

5The sample list is publicly available at the project page [69].
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of audio captioning, with sounds sourced from the AudioSet
dataset [10]. Annotators were provided the audio tracks to-
gether with category hints (and with additional video hints if
needed). We use a subset of the data, excluding a small number
of samples for which either: (i) the YouTube-hosted source
video is no longer available, (ii) the source video overlaps with
the training partition of the VGGSound dataset [70]. Filtering
to exclude samples affected by either issue leads to a dataset
with 49,291 training, 428 validation and 816 test samples.5

3. CLOTHO [9] (audio-centric) is a dataset of described sounds
that was also introduced for the task of audio captioning,
with sounds sourced from the Freesound platform [11]. During
labelling, annotators only had access to the audio stream (i.e.
no visual stream or meta tags) to avoid their reliance on
contextual information for removing ambiguity that could not
be resolved from the audio stream alone. The descriptions are
filtered to exclude transcribed speech. The publicly available
version of the dataset includes a dev set of 2893 audio
samples and an evaluation set of 1045 audio samples.
Every audio sample is accompanied by 5 written descriptions.
We used a random split of the dev set into a training and
validation set with 2,314 and 579 samples, respectively.
4. ACTIVITYNET-CAPTIONS [71] (visual-centric) consists of
videos sourced from YouTube and annotated with dense event
descriptions. It allocates 10,009 videos for training and 4,917
videos for testing (we use the public val_1 split provided
by [71]). For this dataset, descriptions also tend to focus on
the visual stream.
5. QUERYD [72] (visual-centric) is a dataset of described
videos sourced from YouTube and the YouDescribe [73]
platform. It is accompanied by audio descriptions that are pro-
vided with the explicit aim of conveying the video content to
visually impaired users. Therefore, the provided descriptions
focus heavily on the visual modality. We use the version of the
dataset comprising trimmed videos with 9,114 training, 1,952
validation, and 1,954 test samples.

C. Benchmark

To facilitate the study of the text-based audio retrieval
task, we introduce the SOUNDDESCS dataset and propose
to re-purpose the two audio-centric datasets described above,
AUDIOCAPS and CLOTHO, to provide benchmarks for text-
based audio retrieval. The approach is inspired by precedents
in the vision and language communities, where datasets, such
as [74], that were originally introduced for the task of video
captioning, have become popular benchmarks for text-based
video retrieval [2], [43], [6], [7].

V. EXPERIMENTS

In this section, we first compare text-audio retrieval (t2a)
and audio-text retrieval (a2t) performance on audio-centric
and visual-centric datasets. Next, we perform an ablation
study on the contributions of different experts and present
our baselines for the proposed AUDIOCAPS, CLOTHO, and
SOUNDDESCS benchmarks. Finally we perform experiments
to assess the influence of pre-training, audio segment duration
and training dataset size, and give qualitative examples of

retrieval results. Throughout the section, we use the standard
retrieval metrics: recall at rank k (R@k) which measures the
percentage of targets retrieved within the top k ranked results
(higher is better), along with the median (medR) and mean
(meanR) rank. For all metrics, we report the mean and standard
deviation of three different randomly seeded runs.
Implementation details. We use pre-trained feature extractors
to obtain audio and visual expert features. To encode the audio
signal, we use two pre-trained audio feature extractors6 which
we refer to as VGGish and VGGSound. We explain both in
more detail in the following.
VGGish. These audio features are obtained with a VGGish
model [75], trained for audio classification on the YouTube-
8M dataset [76]. To produce the input for the VGGish model,
the audio stream of each video is re-sampled to a 16kHz mono
signal, converted to an STFT with a window size of 25ms
and a hop size of 10ms with a Hann window, then mapped
to a 64 bin log mel spectrogram. Finally, the features are
parsed into non-overlapping 0.96s collections of frames (each
collection comprises 96 frames, each of 10ms duration), which
are mapped to a 128-dimensional feature vector.
VGGSound. These features are extracted using a ResNet-18
model [77] that has been pre-trained on the VGGSound dataset
(model H) [70]. We modify the last average pooling layer to
aggregate along the frequency dimension, but keep the full
temporal dimension. This results in features of dimension t x
512, where t denotes the number of time steps.

For the results with visual experts in Table IV, we employed
a subset of visual feature extractors used in [6] which we refer
to as Inst, Scene, and R2P1D. We we will describe each of
those in more detail below.
Inst. These features are extracted using a ResNeXt-101 model
[78] that has been pre-trained on Instagram hashtags [79] and
finetuned on ImageNet [80] for the task of image classification.
Features are extracted from frames extracted at 25 fps, where
each frame is resized to 224 × 224 pixels. Embeddings are
2048-dimensional.
Scene. Scene features are extracted from 224×224 pixel cen-
tre crops with a DenseNet-161 model [81] pre-trained on
Places365 [82]. Embeddings are 2208-dimensional.
R2P1D. Features are extracted with a 34-layer R(2+1)D model
[83] trained on IG-65M [84] which processes clips of 8
consecutive 112 × 112 pixel frames, extracted at 30 fps.
Embeddings are 512-dimensional.
Training All models were trained using the contrastive rank-
ing loss (Eqn. 1), with m set to 0.2 for CE and MoEE, and
0.05 for MMT (those parameters were taken from [6] and
[7] respectively). CE and MoEE models were trained with a
batch size of 128 for 20 epochs and the models that gave the
best performance on the geometric mean of R@1, R@5, and
R@10 were chosen as the final models. MMT was trained
with a batch size of 32 for 50K steps.

For CE and MoEE, we used the Lookahead solver [85] in
combination with RAdam [86] (implementation by [87]) with

6Since the AudioCaps test set is a subset of the AudioSet training set
(unbalanced), we do not use audio experts pre-trained on AudioSet.
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TABLE II: Audio retrieval on AUDIOCAPS, CLOTHO, and SOUNDDESCS, using the CE, MoEE, and MMT frameworks.
Retrieval performance metrics for text to audio and audio to text retrieval reported are recall at rank k (R@1, R@5, R@10),
and the median and mean rank (medR and meanR). Audio experts used are obtained from the VGGish model [10] and from
a ResNet18 model pre-trained on VGGSound [70].

Text =⇒ Audio Audio =⇒ Text
Dataset R@1 ↑ R@5 ↑ R@10 ↑ R@50 ↑ medR ↓ meanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ R@50 ↑ medR ↓ meanR ↓
AUDIOCAPS
CE 23.6±0.6 56.2±0.5 71.4±0.5 92.3±1.5 4.0±0.0 18.3±3.0 27.6±1.0 60.5±0.7 74.7±0.8 94.2±0.4 4.0±0.0 14.7±1.4

MoEE 23.0±0.7 55.7±0.3 71.0±1.2 93.0±0.3 4.0±0.0 16.3±0.5 26.6±0.7 59.3±1.4 73.5±1.1 94.0±0.5 4.0±0.0 15.6±0.8

MMT 36.1±3.3 72.0±2.9 84.5±2.0 97.6±0.4 2.3±0.6 7.5±1.3 39.6±0.2 76.8±0.9 86.7±1.8 98.2±0.4 2.0±0.0 6.5±0.5

CLOTHO
CE 6.7±0.4 21.6±0.6 33.2±0.3 69.8±0.3 22.3±0.6 58.3±1.1 7.0±0.3 22.7±0.6 34.6±0.5 67.9±2.3 21.3±0.6 72.6±3.4

MoEE 6.0±0.1 20.8±0.7 32.3±0.3 68.5±0.5 23.0±0.0 60.2±0.8 7.2±0.5 22.1±0.7 33.2±1.1 67.4±0.3 22.7±0.6 71.8±2.3

MMT 6.5±0.6 21.6±0.7 32.8±2.1 66.9±2.0 23.0±2.6 67.7±3.1 6.3±0.5 22.8±1.7 33.3±2.2 67.8±1.5 22.3±1.5 67.3±2.9

SOUNDDESCS
CE 31.1±0.2 60.6±0.7 70.8±0.5 86.0±0.2 3.0±0.0 63.6±2.2 30.8±0.8 60.3±0.3 69.5±0.1 85.4±0.2 3.0±0.0 63.2±0.6

MoEE 30.8±0.7 60.8±0.3 70.9±0.5 85.9±0.6 3.0±0.0 62.0±3.8 30.9±0.3 60.3±0.4 70.1±0.3 85.3±0.6 3.0±0.0 61.5±3.2

MMT 30.7±0.4 61.8±1.0 72.2±0.8 88.8±0.4 3.0±0.0 34.0±0.6 31.4±0.8 63.2±0.7 73.4±0.5 89.0±0.3 3.0±0.0 32.5±0.4

TABLE III: Audio retrieval on audio-centric and visual-
centric datasets. Performance is strongest on the audio-centric
SOUNDDESCS dataset and weakest on the visual-centric
ACTIVITYNET-CAPTIONS (ACTNETCAPS) dataset.

Text =⇒ Audio Audio =⇒ Text
Dataset Anno. Focus Pool R@1 ↑ R@10 ↑ R@1 ↑ R@10 ↑
AUDIOCAPS [8] audio 816 18.5±0.3 62.0±0.5 20.7±1.8 62.9±0.4

CLOTHO [9] audio 1045 4.0±0.2 25.4±0.5 4.8±0.4 25.8±1.7

SOUNDDESCS audio 4947 25.4±0.6 64.1±0.3 24.2±0.3 62.5±0.2

ACTNETCAPS [71] visual 4917 1.4±0.1 8.5±0.2 1.1±0.1 7.9±0.0

QUERYD [72] visual 1954 3.7±0.2 17.3±0.6 3.8±0.2 16.8±0.2

an initial learning rate of 0.01 and weight decay of 0.001.
We use a learning rate decay for each parameter group with a
factor of 0.95 every epoch. MMT was trained using Adam
and a learning rate of 0.00005, which was decayed by a
multiplicative factor 0.95 every 1K optimisation steps.

For the NetVLAD module in CE and MoEE, we used 20
VLAD clusters and one ghost cluster [88] for text, and 16
VLAD clusters for the audio features. On AUDIOCAPS, we
used a maximum of 52 word tokens, a maximum of 10 time
frames for VGGish and a maximum of 32 time frames for
VGGSound features. For CLOTHO, we used a maximum of
21 word tokens, a maximum of 31 time frames for VGGish,
and 95 VGGSound features per sample (95 for both audio
feature experts for MMT). For SOUNDDESCS, the maximum
number of word tokens was set to 46, and audio time frames
used to 400 (both for VGGish and VGGSound).
Audio-centric vs. visual-centric queries. We first investigate
audio retrieval with audio-centric and visual-centric queries
(The audio-centric datasets contain audio-centric queries, and
the video-centric datasets contain video-centric queries.). For
this experiment, we use CE with a single expert (VGGish
audio features). In Table III, we observe that performance
is strongest on the audio-centric datasets SOUNDDESCS and
AUDIOCAPS, and it is weakest overall on the visual-centric
ACTIVITYNET-CAPTIONS dataset. This is expected, since
visual-centric queries contain information that is not captured
in the audio data. We note that the CLOTHO dataset is
particularly challenging, with performance weaker (accounting
for pool size) than the visual-centric QUERYD dataset. We
hypothesise that this is for two reasons: (1) the significantly
smaller training set size of CLOTHO, compared to all other

TABLE IV: The influence of different experts on AUDIOCAPS.
A comparison of audio and visual experts (applied to the
video from which the audio was sourced) using CE [6]. Audio
features are significantly more effective than visual features
(which nevertheless provide some complementary signal as
can be seen when jointly using audio and visual features).

Text =⇒ Audio/Video Audio/Video =⇒ Text
Expert R@1 ↑ R@10 ↑ R@1 ↑ R@10 ↑
Visual experts only
Scene 6.0±0.0 35.6±0.8 6.8±0.6 31.9±1.3

Inst 8.2±0.3 46.2±0.5 10.1±0.8 41.3±0.6

R2P1D 8.1±0.4 45.8±0.2 10.7±0.1 43.4±1.9

Scene + Inst 8.2±0.3 47.1±0.2 10.2±1.2 41.5±1.3

Scene + R2P1D 8.6±0.1 47.4±0.2 11.6±0.4 43.5±0.8

R2P1D + Inst (CE-Visual) 9.5±0.6 50.0±0.5 11.2±0.1 45.2±1.9

Audio experts only
VGGish 18.5±0.3 62.0±0.5 20.7±1.8 62.9±0.4

VGGSound 22.4±0.3 69.2±0.9 27.0±0.9 72.5±0.7

VGGish + VGGSound (CE-Audio) 23.6±0.6 71.4±0.5 27.6±1.0 74.7±0.8

Audio and visual experts
CE-Visual + VGGish 24.5±0.8 74.9±1.0 31.0±2.2 78.8±1.2

CE-Visual + VGGSound 27.6±0.2 78.0±0.8 32.7±0.9 82.4±0.4

CE-Visual + CE-Audio 28.0±0.5 80.4±0.3 35.8±0.6 83.3±0.6

datasets, (2) CLOTHO was constructed such that the audio
tag distribution resulted in varied audio content, making it
a potentially more difficult benchmark. We note, however,
that the QUERYD experiments suggest that computationally
efficient video retrieval using only the audio stream can still
be obtained, although at a lower accuracy.
Ablation study. We next conduct an ablation study to investi-
gate the effectiveness of different audio and visual experts for
audio retrieval on the AUDIOCAPS dataset. We perform this
experiment on the AUDIOCAPS dataset, since the SOUND-
DESCS and CLOTHO datasets are audio-only datasets which
implies that we cannot use any visual experts. We present
the results in Table IV, where we observe that audio experts
significantly outperform visual experts (pre-trained models
for visual tasks like scene classification, which we compute
from the video from which the audio was sourced). We note
that the combination of audio and visual experts performs
strongest overall, suggesting that the audio-centric queries
contain information that is more accessible from the visual
modality. The strongest audio-only retrieval is achieved by
combining VGGish and VGGSound features—we therefore
adopt this setting for the remaining experiments.

Additionally, we experimented with using speech features
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Fig. 6: Qualitative results. Text-based audio retrieval results on AUDIOCAPS using CE with VGGish and VGGSound features.
For an input text query, we visualise the top 3 retrieved audio samples using a video frame from the corresponding videos
(the audio can be heard at the project webpage [69]). We mark the audio samples which correspond to the query with green
boxes. Successful retrievals are shown in a), failures in b). Note, in particular, the examples in b), where the model’s top 1
retrieved audio is not the correct one, but the retrieved results nevertheless sound reasonable (visually convincing results are
marked with yellow boxes).

TABLE V: Pre-training for audio retrieval. Text-audio and
audio-text retrieval results for CE [6] with VGGish and
VGGSound features on the proposed SOUNDDESCS, AUDIO-
CAPS, and CLOTHO retrieval benchmarks. Pre-training on
AUDIOCAPS improves the performance on CLOTHO, and pre-
training on SOUNDDESCS slightly boosts the performance on
AUDIOCAPS.

Text =⇒ Audio Audio =⇒ Text
Pre-training R@1 ↑ R@10 ↑ R@1 ↑ R@10 ↑
AUDIOCAPS
None 23.6±0.6 71.4±0.5 27.6±1.0 74.7±0.8

SOUNDDESCS 24.6±0.1 72.2±0.8 27.8±0.6 75.2±0.4

CLOTHO
None 6.7±0.4 33.2±0.3 7.0±0.3 34.6±0.5

AUDIOCAPS 9.1±0.3 39.7±0.4 11.1±1.1 39.6±1.1

SOUNDDESCS 6.4±0.5 32.5±1.7 6.1±0.7 31.4±1.8

SOUNDDESCS
None 31.1±0.2 70.8±0.5 30.8±0.8 69.5±0.1

AUDIOCAPS 23.3±0.7 63.9±0.5 22.2±0.4 63.3±0.3

(word2vec [64] encodings of speech-to-text transcriptions [89]
of the audio stream). However, this did not improve the re-
trieval performance. Upon further investigation, we found that
the audio captions and the spoken words in the AUDIOCAPS
dataset do not have a significant overlap (corresponding to a
METEOR [90] score of only 0.03 – perfect agreement between
text sentences would give a score of 1).

Benchmark results. Incorporating the strongest combination
of experts from the ablation study, we report our final baselines
for text-audio and audio-text retrieval for three methods on
the SOUNDDESCS, AUDIOCAPS, and CLOTHO datasets in
Table II. We observe that MMT outperforms CE and MoEE
on the AUDIOCAPS and CLOTHO datasets for both text-audio
and audio-text retrieval. For SOUNDDESCS, all three models
yield comparable results, with CE and MoEE being slightly

stronger than MMT.
We also report the performance after pre-training the CE

model for retrieval on the AUDIOCAPS or SOUNDDESCS
datasets and then fine-tuning on CLOTHO, AUDIOCAPS, or
SOUNDDESCS in Table V. Here, we observe that pre-training
on the SOUNDDESCS brings a slight boost for AUDIOCAPS
and harms the performance on CLOTHO. This might be due
to a larger domain gap between SOUNDDESCS and CLOTHO
compared to AUDIOCAPS. Pre-training on AUDIOCAPS im-
proves the performance on CLOTHO, but is not beneficial
for SOUNDDESCS. Furthermore, we explored pre-training on
CLOTHO and fine-tuning on the AUDIOCAPS and SOUND-
DESCS datasets, but found negligible change in performance
(likely due to the fact that the AUDIOCAPS training set is
significantly larger than that of CLOTHO).

Qualitative results. The qualitative results in Fig. 6 show ex-
amples in which the CE model with VGGish and VGGSound
expert modalities (CE-Audio) is used to retrieve audio with
natural language queries. The retrieved results mostly contain
audio that is semantically similar to the input text queries.
Observed failure cases arise from audio samples sounding very
similar to one another despite being semantically distinct (e.g.
the siren of a fire engine sounds very similar to a police siren).

Influence of audio segment duration. Next, we investigate
the influence of audio segment duration on retrieval accuracy
on the SOUNDDESCS dataset. The retrieval accuracy for CE
on different subsets of the test data according to their audio
duration is shown in Fig. 7a. We show the performance for
SOUNDDESCS audio files with a duration up to 30 seconds,
those between 30 and 120 seconds, and those that are longer
than 120 seconds. We observe that the retrieval performance
is slightly weaker for longer audio segments than for those
that last less than 30 seconds. However, the performance for
very long audio files (longer than 120 seconds) is still solid.

https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/
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(a) Audio duration. (b) Training data size.

Fig. 7: The influence of audio duration and training data
scale on the audio retrieval performance on SOUNDDESCS.
Performance for the CE model is shown for the subsets of the
SOUNDDESCS test set according to different audio durations
in a), and for different proportions of available training data
in b).

Influence of training scale. Finally, we present experiments
using different proportions of the SOUNDDESCS dataset for
training CE-Audio in Fig. 7b. As expected for deep learning
frameworks, we observe that as more training data becomes
available, the performance increases monotonically. We also
observe that there is still clear room for improvement in terms
of retrieval results simply by collecting additional training
data, motivating further dataset construction work to support
future research on this important task.

VI. CONCLUSION

We introduced the novel SOUNDDESCS dataset for natural
language based audio retrieval. Furthermore, we proposed
three benchmarks for natural language based audio retrieval
on the CLOTHO, AUDIOCAPS, and SOUNDDESCS datasets,
and provided baseline results by adapting strong multi-modal
video retrieval methods. Our results show that these methods
are relatively well-suited for the audio retrieval task, however
there is room for improvement, as expected for an under-
explored problem. We hope that our proposed benchmarks
will facilitate the development of future audio search engines,
and make this large fraction of the world’s produced media
available for public use.
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APPENDIX

In this appendix, we provide additional information about
the SOUNDDESCS dataset.

In Fig. 3, we presented a comparison of the descrip-
tion length distributions for the AUDIOCAPS, CLOTHO, and
SOUNDDESCS datasets. Since descriptions in SOUNDDESCS
can contain one or more sentences, we also provide the
distribution of sentence lengths in Fig. 8.

Fig. 8: Sentence length distribution for SOUNDDESCS.

To provide further insights into the text descriptions in the
SOUNDDESCS dataset, Figures 9 and 10 show the distribu-
tion of unique nouns and verbs per description (0 unique
nouns/verbs indicates that none were present). SOUNDDE-
SCS contains noticeably more descriptions without any nouns
and/or any verbs than AUDIOCAPS and CLOTHO. There are
many Nature instances in SOUNDDESCS which contain names
of species of birds that are labelled as Proper Nouns instead
of Nouns. Descriptions shown to not contain any verbs are
either wrongly tagged, or they do not describe actions, e.g.
Fountains: Rome - Sound of fountains, with street atmosphere.

Fig. 9: Distribution of unique nouns for descriptions in the
SOUNDDESCS, AUDIOCAPS, and CLOTHO datasets.

Fig. 10: Distribution of unique verbs for descriptions in the
SOUNDDESCS, AUDIOCAPS, and CLOTHO datasets.
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